JPH02278608A - Superfine enamel wire - Google Patents

Superfine enamel wire

Info

Publication number
JPH02278608A
JPH02278608A JP10130689A JP10130689A JPH02278608A JP H02278608 A JPH02278608 A JP H02278608A JP 10130689 A JP10130689 A JP 10130689A JP 10130689 A JP10130689 A JP 10130689A JP H02278608 A JPH02278608 A JP H02278608A
Authority
JP
Japan
Prior art keywords
conductor
oxygen
wire
tensile strength
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10130689A
Other languages
Japanese (ja)
Other versions
JP2602546B2 (en
Inventor
Sueji Chabata
茶畑 末治
Kazuo Hanaoka
花岡 和夫
Shigemi Takahashi
重美 高橋
Michio Koike
小池 三千夫
Akito Kurosaka
昭人 黒坂
Takashi Nishida
西田 孝至
Kazuyuki Yotsuya
四ツ谷 和幸
Takao Tsuboi
坪井 孝夫
Kazuo Tamura
和夫 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1101306A priority Critical patent/JP2602546B2/en
Publication of JPH02278608A publication Critical patent/JPH02278608A/en
Application granted granted Critical
Publication of JP2602546B2 publication Critical patent/JP2602546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain superfine enamel wire with high tensile strength and no resistance increase of a conductor by using an oxygen-free copper containing 0.03-0.5%wt. of silver as a conductor and having >=7% of elongation. CONSTITUTION:An insulating layer is formed on an oxygen-free copper conductor containing 0.03-0.5%wt. of silver and balance copper (including inevitable impurities) and having >=7% of elongation. The insulating layer is formed by applying an insulating paint of polyester, polyurethane, polyesterimide, etc., to the conductor and baking it by a conventional method, and among them, in terms of solderability, polyurethane is most preferable. By this structure, in spite of superfineness of the wire diameter, the tensile strength is heightened and wire severing in automatical coiling up and assembly processes does not occur.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、導体径か40μm程度以下の極細エナメル
線に関し、特にフロノピーティスク装置、ハードティス
フ装置等の磁気ティスフ装置の磁気ヘッド用コイルとし
て好適な極細エナメル線に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ultrafine enameled wire with a conductor diameter of approximately 40 μm or less, and is particularly applicable as a coil for a magnetic head of a magnetic tissue device such as a phronoptic device or a hard tissue device. This invention relates to a suitable ultrafine enameled wire.

〔従来の技術〕[Conventional technology]

磁気ディスク装置の磁気ヘット用コイルに用いられるエ
ナメル線としては、従来タフピッチ銅からなる導体径5
0〜55 it mの導体に厚さ3〜5μmのポリウレ
タンなどからなる絶縁層を設けたものか用いられている
The enameled wire used in the magnetic head coil of a magnetic disk device has traditionally been made of tough pitch copper and has a conductor diameter of 5.
A conductor having a diameter of 0 to 55 it m and an insulating layer made of polyurethane or the like having a thickness of 3 to 5 μm is used.

〔発明か解決しようとする課題〕[Invention or problem to be solved]

しかしなから、近時磁気ティスフ装置の小9−1j化が
要求され、磁気ヘット自体も小!−t、’!化する必要
か生し、コイル用エナメル線も導体径を30〜4011
mとさらに極細化することか要求されている。
However, recently there has been a demand for smaller 9-1J magnetic disk devices, and the magnetic head itself is also smaller! -t,'! Due to the need to change the conductor diameter of enamelled wire for coils from 30 to 4011
There is a demand for further miniaturization to m.

一方、磁気ヘットへのエナメル線の巻線加−L方法も、
従来の顕微鏡下での低速手巻き加工から高速自動巻線機
による加圧へと転換されつつある。
On the other hand, the method of winding enamelled wire on the magnetic head is also
The conventional low-speed manual winding process under a microscope is being replaced by high-speed automatic winding machines.

このため、導体径か30〜40 tt mの極細エナメ
ル線を用いると、高速自動巻線機による巻線加工の際に
エナメル線が異常に伸びて導体抵抗か増加したり、ある
いは断線する不都合か生しる。また、導体径か細いため
に、磁気ヘットのアセンブリ加工時にエナメル線端末を
引き回して半田イ」けする過程で断線する欠点もある。
For this reason, if an ultra-fine enameled wire with a conductor diameter of 30 to 40 ttm is used, the enameled wire may stretch abnormally during the winding process using a high-speed automatic winding machine, increasing the conductor resistance or causing wire breakage. Live. Furthermore, because the diameter of the conductor is small, there is a drawback that the wire may break during the process of routing and soldering the end of the enameled wire during assembly of the magnetic head.

これらは、導体径か30〜40 it m程度となると
、導体自体の引張強度か極めて低くなるために生じるも
のであって、例えば導体径50μmのポリウレタン線で
は引張強度か56g、伸びか23%であるのに対し、導
体径4011mのポリウレタン線では引張強度か35g
、伸ひか21%、導体径30μmでは引張強度か21g
、伸びか20%となる。
These occur because the tensile strength of the conductor itself becomes extremely low when the conductor diameter is about 30 to 40 it m. For example, a polyurethane wire with a conductor diameter of 50 μm has a tensile strength of 56 g and an elongation of 23%. In contrast, a polyurethane wire with a conductor diameter of 4011 m has a tensile strength of 35 g.
, tensile strength is 21g at 21% elongation and 30μm conductor diameter.
, the elongation is 20%.

よって、この発明は、導体径を30〜40μm程度とし
ても引張強度か高く、かつ導体抵抗の増加かない極細エ
ナメル線を提供することを目的とする。
Therefore, an object of the present invention is to provide an ultrafine enameled wire that has high tensile strength and no increase in conductor resistance even when the conductor diameter is about 30 to 40 μm.

〔課題を解決するだめの手段〕[Failure to solve the problem]

この発明では、導体として0.03〜0.5重量%の銀
(Ag)を含有する無酸素銅からなり、伸びか7%以上
のものを用いることにより」―記課題を解決するように
した。
In this invention, the problem described above is solved by using oxygen-free copper containing 0.03 to 0.5% by weight of silver (Ag) and having an elongation of 7% or more. .

以下、この発明の詳細な説明する。The present invention will be explained in detail below.

この発明の極細エナメル線における導体は、OO3〜0
.5重量%の銀(Ag)を含有する)j!(酸素鋼から
作られている。この導体は、純度9999%以」二の無
酸素銅に−1−記規定II(となる銀を添加して得られ
た銅合金から作られる。ここで、無酸素銅の純度か99
.99%未満ては導体抵抗か大きくなったり、軟化温度
か高くなるなとの問題かある。銀は導体の引張強度を高
めるためのもので、銀の含有率が0.03重量%未満て
は、引張強度増加効果か得られず、また0 5重量%を
越えると導体抵抗か大きくなるとともにコスI・か高く
なって不都合となる。また、ここでの無酸素銅の酸素含
有率は重量比で30 ppm以下とされ、30 ppm
を越えると酸化物からなる非金属介在物量か増大し、伸
線時に断線しやすい問題がある。さらに、この発明での
無酸素銅においては不可避の不純物か含まれていてもよ
いが、これら不可避不純物の総量は0.009重量%以
下とすることか好ましい。
The conductor in the ultrafine enameled wire of this invention is OO3~0
.. Contains 5% by weight of silver (Ag))j! (Made from oxygen steel. This conductor is made from a copper alloy obtained by adding silver to oxygen-free copper with a purity of at least 9999%. Here, The purity of oxygen-free copper is 99
.. If it is less than 99%, there are problems such as increased conductor resistance and increased softening temperature. Silver is used to increase the tensile strength of the conductor. If the silver content is less than 0.03% by weight, no effect of increasing the tensile strength can be obtained, and if it exceeds 0.5% by weight, the conductor resistance increases and The cost will be high, which is inconvenient. In addition, the oxygen content of the oxygen-free copper here is 30 ppm or less in terms of weight ratio, and 30 ppm
If it exceeds this, the amount of non-metallic inclusions made of oxides will increase, causing the problem that the wire is likely to break during wire drawing. Furthermore, although the oxygen-free copper of the present invention may contain unavoidable impurities, it is preferable that the total amount of these unavoidable impurities be 0.009% by weight or less.

この組成の無酸素銅からの導体の製造は、通常の線引方
法で行われる。また、導体の径は特に限定されることは
ないが、50μm以下、好ましくは40μm以下とする
ことか発明の目的からして望ましい。
The manufacture of conductors from oxygen-free copper of this composition is carried out by conventional wire drawing methods. Further, the diameter of the conductor is not particularly limited, but it is desirable for the purpose of the invention to be 50 μm or less, preferably 40 μm or less.

このような無酸素銅からなる導体」二には絶縁層が設け
られて極細エナメル線とされる。絶縁層はポリエステル
、ポリウレタン、ポリエステルイミド、ポリアミドイミ
ド、ポリアミド、ボリヒタン!・イン、ポリイミド、ポ
リビニルポルマール、ボJビニルブチラール、エボキン
、シリコーンなとの絶縁塗料を常θ、によって塗布、焼
付して形成することかできるが、半El’l (”Iけ
性の点からはポリウレタンか最も好ましい。この絶縁層
の厚さは、特に限定されないが、本発明の目的から薄い
方か好ましく、通常] Q μm以下、好ましくは5μ
m以下とされる。
An insulating layer is provided on such a conductor made of oxygen-free copper to form an ultrafine enamelled wire. The insulation layer is made of polyester, polyurethane, polyesterimide, polyamideimide, polyamide, polyhythane!・It can be formed by applying and baking insulating paints such as insulating paint, polyimide, polyvinyl polymer, vinyl butyral, evoquin, silicone, etc., but it has a semi-el'l ("I" point Polyurethane is most preferable.The thickness of this insulating layer is not particularly limited, but from the purpose of the present invention, it is preferably thinner, and usually] Q μm or less, preferably 5 μm
m or less.

また、この絶縁層」−には、必要に応してナイロンなと
からなる自己潤滑層やポリビニルブチラールなとからな
る自己接着層を設けることができる。
Further, this insulating layer may be provided with a self-lubricating layer made of nylon or a self-adhesive layer made of polyvinyl butyral, if necessary.

さらに、自己潤滑層と自己接着層とを設けることもてき
、絶縁層を樹脂の種類を変えて2層以゛−1−とするこ
ともてきる。
Furthermore, a self-lubricating layer and a self-adhesive layer can be provided, and the insulating layer can be made of two or more layers by changing the type of resin.

このような極細エナメル線にあっては、導体径か細いに
もかかわらず、その引張強度が高く、自動巻線時やアセ
ンブリ加工時なとにおい−C断線することがない。また
、導体径が細いにもかかわらず、導体抵抗か増加かなく
、巻回数を増加しても直流抵抗の増加がない。さらに、
無酸素銅であることから、高周波特性か良好であり、]
OMIIz程度まての信号を低損失で伝送できる。
In spite of the small conductor diameter, such ultra-fine enameled wire has high tensile strength and does not cause wire breakage during automatic winding or assembly processing. Furthermore, even though the conductor diameter is small, the conductor resistance does not increase, and even if the number of turns is increased, the DC resistance does not increase. moreover,
Since it is oxygen-free copper, it has good high frequency characteristics.]
Signals up to OMIIz level can be transmitted with low loss.

以下、具体例を示してこの発明の作用効果を明確にする
Hereinafter, specific examples will be shown to clarify the effects of this invention.

〔試験例1〜14〕 酸素含有量8ppm、不可避不純物路ff1o、o。[Test Examples 1 to 14] Oxygen content 8 ppm, inevitable impurity path ff1o, o.

6重量%の無酸素銅に銀を種々の割合で添加し、デイプ
ホーミング法によって荒引線としたのら、連続伸線機に
よって径30 it mおよび7′lOμrnの導体と
した。
Silver was added in various proportions to 6% by weight of oxygen-free copper, and the wire was roughly drawn by a deep homing method, and then made into a conductor with a diameter of 30 it m and 7'lOμrn by a continuous wire drawing machine.

これらの導体について、その導体抵抗、引張強j良およ
び(中ひを乙用定した。
For these conductors, their conductor resistance, tensile strength, and medium strength were determined.

結果を第1表に示す。The results are shown in Table 1.

〔試験例15〜22〕 酸素含有f、7t200ppm、純度9998%のタフ
ピッチ銅に銀を種々の割合て添!Il’l L、連続鋳
造圧延tにによって伸線し、径30μmおよび/IOμ
mの導体とした。
[Test Examples 15 to 22] Various proportions of silver were added to tough pitch copper with an oxygen content of f, 7t, 200 ppm, and a purity of 9998%! Il'l L, drawn by continuous casting and rolling, diameter 30μm and /IOμ
m conductor.

これらの導体についてその導体抵抗、引張強度および伸
ひを測定した。
The conductor resistance, tensile strength and elongation of these conductors were measured.

結果を第21くに示す。The results are shown in the 21st column.

第1表および第2表の結束から銀を0.03〜05重量
%含有する無酸素銅から得られた導体は、従来の−・般
用電気銅(タフピッチ銅)およびこれに銀を少ji1′
添加した銀入り銅に比へて電気抵抗か少なく、かっ引張
強度か高いことかわかる。
Conductors obtained from oxygen-free copper containing 0.03 to 05% by weight of silver from the bundles shown in Tables 1 and 2 are conventional electric copper for general use (tough pitch copper) and a small amount of silver added thereto. ′
It can be seen that the electrical resistance is lower and the tensile strength is higher than that of copper containing added silver.

また、銀を含有しない無酸素銅に比較しても電気抵抗か
ほぼ同効で、かつ引張強度か高いこともわかる。
It can also be seen that compared to oxygen-free copper that does not contain silver, it has almost the same electrical resistance and higher tensile strength.

〔実施例1〜4〕 銀角イ■量01重量%、酸素含イf晴8ppm、不可避
不純物0006小11t%の11!℃酸素銅から導体径
 30  ノl m、   35  ノt m、   
4 0  μ m、   4 571 m  の 導体
を得たのら、ポリウレタン塗料を塗布、焼イー・1して
厚さ/111mのポリウレタンの絶縁層を113成して
極rtn エナメル線どした。
[Examples 1 to 4] 11% by weight of silver square, 8 ppm of oxygen, and 11 t% of unavoidable impurities! Conductor diameter from ℃ oxygen copper: 30 nol m, 35 nom,
After obtaining a conductor of 40 μm and 4571 m, it was coated with polyurethane paint, baked to form an insulating layer of polyurethane with a thickness of 111 m, and then made into a RTN enamelled wire.

これらの極細エナメル線について、絶縁層のピンポール
個数、絶縁破壊電圧、引張強度、沖ひ、’14 IT+
 (τjけ性を4[す定した。ピノポール個数はIts
O−3003Kに準処してエナメル線5 m ”’)た
りの個数で表した。また、半1’lJイー・jけ性は1
111I〆11111−丸か380°Cて、2秒間て半
田てj’:h’れたものを良とした。
Regarding these ultra-fine enameled wires, the number of pinpoles in the insulating layer, dielectric breakdown voltage, tensile strength, Okihi, '14 IT+
(τj resistance was set to 4. The number of pinopoles is
In accordance with O-3003K, it is expressed as the number of pieces per 5 m of enameled wire.Also, the half 1'lJ E・j sharpness is 1
111I〆11111-Those soldered at 380°C for 2 seconds were considered good.

結果を第3表に示す。The results are shown in Table 3.

〔比較例1〜3〕 酸素含有量200ppm、純度9998%のタフピッチ
銅から導体径30μm、40μrn、5Q71 mの導
体を得たのら、ポリウレタン塗料を塗イ1−J、焼イ・
1して厚さ4ノzmのポリウレタンの絶縁層を)lニ成
して極細エナメル線を得た。
[Comparative Examples 1 to 3] After obtaining a conductor with a conductor diameter of 30 μm, 40 μrn, and 5Q71 m from tough pitch copper with an oxygen content of 200 ppm and a purity of 9998%, a polyurethane paint was applied.
Then, an insulating layer of polyurethane having a thickness of 4 nm was formed to obtain an ultrafine enameled wire.

これらについて、実施例と同様にしてピンポール個数、
絶縁G皮壊電圧、引張強度、伸ひ、半田付は性を111
1定し、第4表に示した。
Regarding these, the number of pin poles,
Insulation G skin breakdown voltage, tensile strength, elongation, soldering properties are 111
1 and shown in Table 4.

〔実施例5〕 銀含有量01市h1%、酸素こ町有量8ppm、不可避
不純物0006重Iτt%の無酸素銅から径40μmの
導体を得たのち、厚さ35μmのポリウレタンの絶縁層
を設け、この上に厚さ05μmのナイロンの1′1己潤
謂層を設けて極細エナメル線を得た。このものについて
ピンポール個数、絶縁破壊電圧、引張強度、伸ひ、半田
(:Iけ性を求めた。
[Example 5] A conductor with a diameter of 40 μm was obtained from oxygen-free copper with a silver content of 01 h1%, an oxygen content of 8 ppm, and an inevitable impurity of 0006 wt%, and then an insulating layer of polyurethane with a thickness of 35 μm was provided. A 1'1 self-lubricating layer of nylon having a thickness of 05 μm was provided on this to obtain an ultrafine enameled wire. The number of pin poles, dielectric breakdown voltage, tensile strength, elongation, and solderability were determined for this product.

結果を第3表に(1: tjて示す。The results are shown in Table 3 (1:tj).

〔実施例6〕 実施例5て用いた導体上に厚さ35μmのボッウレタン
の絶縁層を設け、この上に厚さ0571 mのリーイロ
ンの自己潤謂層を設け、さらにこの上に厚さ1μmのポ
リビニルフチラールの自己接着層を設けて極細エナメル
線を得た。このものについてピンポール個数、絶縁破壊
電圧、引張強度、仲ひ、半1’111(τjは性を求め
た。
[Example 6] On the conductor used in Example 5, an insulating layer of urethane with a thickness of 35 μm was provided, a self-lubricating layer of Leeron with a thickness of 0571 m was provided on this, and a layer of self-lubricating iron with a thickness of 1 μm was further applied on this. An ultrafine enameled wire was obtained by providing a self-adhesive layer of polyvinyl phthyral. Regarding this material, the number of pin poles, dielectric breakdown voltage, tensile strength, thickness, and half 1'111 (τj is the property) were determined.

結果を第3表に併=Uて示す。The results are shown in Table 3 with =U.

〔発明の効果〕〔Effect of the invention〕

以」二説明したように、この発明の極細エナメル線は0
03〜0.5重量%の銀(Δg)をfηイ1し、残部か
銅(Cu)である無酸素銅((l”j L、不「」避的
不純物を含む)からなり、かっ沖ひか7%以上の導体」
二に絶縁層を設けたちのであるので、導体抵抗を増加す
ることなくその引71N強度を大幅に向上させることか
でき、よって導体径/IOμm程度以下どしても高速[
1動巻線加り時やアセンフj−加工時なとに発生ずる断
線事故を皆無とすることかできる。また、引張強度か1
・分高いので、更に極細化か可能であり、例えば30μ
ffl以1′:の超極細エナメル線としても断線の恐れ
かなく、磁気ヘット等のコイルに適用可能となる。
As explained below, the ultrafine enameled wire of this invention has a
03 to 0.5% by weight of silver (Δg) is mixed with fη, and the remainder is copper (Cu), which is oxygen-free copper ((l''j L, including unavoidable impurities). Conductor with 7% or more
Second, since an insulating layer is provided, the tensile strength of 71N can be greatly improved without increasing the conductor resistance.
It is possible to completely eliminate wire breakage accidents that occur when applying the first moving winding or when assembling the winding. Also, the tensile strength is 1
・Since it is expensive, it is possible to make it even finer, for example, 30 μ
Even as an ultra-fine enameled wire of ffl to 1', there is no risk of wire breakage, and it can be applied to coils of magnetic heads, etc.

Claims (3)

【特許請求の範囲】[Claims] (1)0.03〜0.5重量%の銀(Ag)を含有し、
残部か銅(Cu)である無酸素銅(但し、不可避的不純
物を含む)からなる伸び7%以上の導体上に絶縁層を設
けたことを特徴とする極細エナメル線。
(1) Contains 0.03 to 0.5% by weight of silver (Ag),
An ultrafine enameled wire characterized in that an insulating layer is provided on a conductor having an elongation of 7% or more and made of oxygen-free copper (including inevitable impurities), the remainder of which is copper (Cu).
(2)導体が、純度99.99%以上の無酸素銅に銀を
添加して得られたものである請求項(1)記載の極細エ
ナメル線。
(2) The ultrafine enameled wire according to claim (1), wherein the conductor is obtained by adding silver to oxygen-free copper having a purity of 99.99% or more.
(3)導体径が、40μm以下である請求項(1)記載
の極細エナメル線。
(3) The ultrafine enameled wire according to claim (1), wherein the conductor diameter is 40 μm or less.
JP1101306A 1989-04-20 1989-04-20 Extra fine enameled wire Expired - Fee Related JP2602546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1101306A JP2602546B2 (en) 1989-04-20 1989-04-20 Extra fine enameled wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1101306A JP2602546B2 (en) 1989-04-20 1989-04-20 Extra fine enameled wire

Publications (2)

Publication Number Publication Date
JPH02278608A true JPH02278608A (en) 1990-11-14
JP2602546B2 JP2602546B2 (en) 1997-04-23

Family

ID=14297128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1101306A Expired - Fee Related JP2602546B2 (en) 1989-04-20 1989-04-20 Extra fine enameled wire

Country Status (1)

Country Link
JP (1) JP2602546B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627009B1 (en) * 1999-11-19 2003-09-30 Hitachi Cable Ltd. Extrafine copper alloy wire, ultrafine copper alloy wire, and process for producing the same
US6674011B2 (en) * 2001-05-25 2004-01-06 Hitachi Cable Ltd. Stranded conductor to be used for movable member and cable using same
JP2010218927A (en) * 2009-03-18 2010-09-30 Autonetworks Technologies Ltd Vehicular electric wire conductor for automobile, and vehicular electric wire

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6062009A (en) * 1983-09-14 1985-04-10 日立電線株式会社 Composite superconductor stabilized by ag-filled oxygenless copper

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6062009A (en) * 1983-09-14 1985-04-10 日立電線株式会社 Composite superconductor stabilized by ag-filled oxygenless copper

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627009B1 (en) * 1999-11-19 2003-09-30 Hitachi Cable Ltd. Extrafine copper alloy wire, ultrafine copper alloy wire, and process for producing the same
US6674011B2 (en) * 2001-05-25 2004-01-06 Hitachi Cable Ltd. Stranded conductor to be used for movable member and cable using same
JP2010218927A (en) * 2009-03-18 2010-09-30 Autonetworks Technologies Ltd Vehicular electric wire conductor for automobile, and vehicular electric wire

Also Published As

Publication number Publication date
JP2602546B2 (en) 1997-04-23

Similar Documents

Publication Publication Date Title
KR950007086B1 (en) Copper alloy cable and insulation cable component core combind wire
JP2001148206A (en) Material for ultra thin copper alloy wire and its method of manufacturing
JP2001148205A (en) Material for ultra thin copper alloy wire and its method of manufacturing
JP4288844B2 (en) Extra fine copper alloy wire
JPH02278608A (en) Superfine enamel wire
KR102207956B1 (en) Manufacturing method of audio cable having magnetic high shield and high insulating property, and audio cable manufactured by the same
EP0823120B1 (en) Wire enamel formulation with internal lubricant
JP2001295011A (en) Bending resistant copper alloy wire and cable using the same
JP3279374B2 (en) Copper alloy wire and method of manufacturing the same
JPH0352523B2 (en)
JP3050554B2 (en) Magnet wire
JPH01289021A (en) Manufacture of copper clad steel stranded wire
JPH06240388A (en) Copper alloy wire and its production
WO2021049183A1 (en) Electrically conductive wire, insulated electric wire, coil, and electric/electronic instrument
JPS6053106B2 (en) Oxygen-free copper wire material
JPH0644413B2 (en) Copper alloy composite wire for extra fine wire
JPH04341708A (en) Extra fine multicore parallel bonded wire
JPH0412402A (en) Extremely thin conductor and extremely thin enamel wire
JP3718036B2 (en) Extra fine copper wire and method for producing the same
JP6352501B1 (en) High-frequency coil wires and electronic components
JP2000282157A (en) Foil conductor
JP3010906B2 (en) Copper alloy wire
JP4475004B2 (en) Insulation structure of coils for rotating electrical machines
JPH04363812A (en) Lead wire
JPS6256218B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees