JPH02277544A - Production of refractory hollow sphere - Google Patents

Production of refractory hollow sphere

Info

Publication number
JPH02277544A
JPH02277544A JP1096219A JP9621989A JPH02277544A JP H02277544 A JPH02277544 A JP H02277544A JP 1096219 A JP1096219 A JP 1096219A JP 9621989 A JP9621989 A JP 9621989A JP H02277544 A JPH02277544 A JP H02277544A
Authority
JP
Japan
Prior art keywords
core material
refractory
raw material
material powder
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1096219A
Other languages
Japanese (ja)
Other versions
JPH0560980B2 (en
Inventor
Hajime Asami
浅見 肇
Hiroshi Takenaka
宏 竹中
Hideo Motai
馬渡 日出男
Shunsuke Shirohige
白髭 俊介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP1096219A priority Critical patent/JPH02277544A/en
Publication of JPH02277544A publication Critical patent/JPH02277544A/en
Publication of JPH0560980B2 publication Critical patent/JPH0560980B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glanulating (AREA)

Abstract

PURPOSE:To obtain superior strength, shape and yield by coating the surface of a core material made of a combustible substance with a binder, sticking powdery refractory starting material to the core material, charging this core material and the residual powdery refractory starting material into a rotary granulator and shaping them while adding a binder. CONSTITUTION:The surface of a core material made of a combustible substance is coated with a binder and powdery refractory starting material is stuck to the core material. This core material and the residual powdery refractory starting material are charged into a rotary granulator with a rotating bottom plate and shaped while adding a binder. The resulting shaped core material is calcined to produce refractory hollow spheres. Since the coating layer on the surface of the core material is shaped and made dense, superior strength, shape and yield are obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は軽量コンクリート、耐火軽量構造材料、海洋開
発の浮力材料、飛翔物体用構造材料、触媒担体、r過材
料、水素(H2)ガスの吸着分離材、捕集吸油材、建築
用吸音部材、複合材料、レーザ核融合燃料の容器、溶融
金属の保温材等に使用される耐火中空球の製造方法の改
良に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to lightweight concrete, fireproof lightweight structural materials, buoyancy materials for offshore development, structural materials for flying objects, catalyst carriers, r-permeable materials, hydrogen (H2) gas This invention relates to improvements in the manufacturing method of fireproof hollow spheres used for adsorption/separation materials, oil-collecting and absorbing materials, sound-absorbing members for construction, composite materials, containers for laser fusion fuel, heat insulating materials for molten metal, etc.

[従来の技術] 中空球の製造方法として従来下記のような方法が使用さ
れていた: ■原料を溶融した後に炉より流出させ、その流出液に向
かって高圧ガスを吹付け、液を中空状小球として飛散さ
せ、微小中空球を得る方法(溶融吹付法); ■発泡材を添加した原料あるいはもともと水分や揮発分
を含有している原料を使用し、一定精度に揃えた後、短
時間の焼成を行い粒子を発泡させ、内部が空孔の微小中
空球体を得る方法(加熱分解法); ■発泡ポリスチレン球などの融点の低い物質を心として
、これに目的とする原料粉末を被覆する。
[Prior art] The following methods have been used to manufacture hollow spheres: - After melting raw materials, they are flowed out of a furnace, and high-pressure gas is blown toward the flowed liquid to form the liquid into a hollow shape. A method of obtaining minute hollow spheres by scattering them as small spheres (melt spraying method); ■Using raw materials to which foaming material has been added or raw materials that originally contain moisture and volatile matter, and after aligning them to a certain level of precision, A method of obtaining micro hollow spheres with holes inside by firing and foaming the particles (thermal decomposition method); ■A material with a low melting point, such as a foamed polystyrene sphere, is coated with the desired raw material powder. .

乾燥後、これを焼成して芯材を溶融あるいは分解させて
内部を空孔とし、更に高温処理して外殻部分を焼結ある
いは溶融させてガラス相を生成させて中空球体を得る方
法く芯材分解法)。
After drying, this is fired to melt or decompose the core material to create voids inside, and then treated at high temperatures to sinter or melt the outer shell to generate a glass phase to obtain a hollow sphere. material decomposition method).

これらの方法の中で中空球を製造するために芯材分解法
がよく使用されている。
Among these methods, the core decomposition method is often used to produce hollow spheres.

この方法を使用する中空球の例として、例えば特開昭6
1−215238号公報にはプラスチックの粒子の表面
にバインダーを適用し、このバインダーにより粒子の表
面に耐火物の粉末を付着させて殻を形成し、焼成してプ
ラスチックの粒子を除去することにより、はぼ中心に1
個の空洞を有する耐火物の中空球を得ることからなる耐
火断熱材の製造方法が開示されている。
As an example of a hollow sphere using this method, for example,
1-215238 discloses that a binder is applied to the surface of plastic particles, a refractory powder is attached to the surface of the particles by the binder to form a shell, and the plastic particles are removed by firing. 1 in the center
A method for producing a refractory insulation material is disclosed, which consists in obtaining hollow spheres of refractory material having several cavities.

また、特開昭62−230455号公報には、断熱用中
空粒材の殻の厚さ、通気率等を特定することにより、金
属の表面の遮蔽、保温材として繰返し長期に使用できる
中空粒材を開示しており、該公報の実施例におては芯材
分解法による中空球材の製造例が記載されている。
In addition, Japanese Patent Application Laid-Open No. 62-230455 discloses that by specifying the shell thickness, air permeability, etc. of hollow granules for heat insulation, hollow granules can be used repeatedly over a long period of time as a material for shielding metal surfaces and as a heat insulator. This publication discloses an example of manufacturing a hollow spherical material by a core material decomposition method.

更に、特開昭63−149306号公報には、核部が発
泡ポリマーから成る金属化軽量球状粒子の表面に別の層
を塗布して壁体の強度を高めた中空球または中空球複合
体を製造する方法において、金属壁厚5〜20μ鴎の金
属化軽量粒状粒子を、金属、金属酸化物、セラミック材
料及び耐火物のいずれか1種の微細分散液で処理して被
覆し、被覆層の厚さを15〜500μ陶とした前記軽量
球状粒子を乾燥し、乾燥した前記粒子を約400℃の温
度に加熱してポリマー核部を熱分解し、続いて900〜
14oO℃の温度で焼結することを特徴とする方法が開
示されている。
Furthermore, JP-A No. 63-149306 discloses a hollow sphere or a hollow sphere composite in which the strength of the wall is increased by applying another layer to the surface of metalized lightweight spherical particles whose core portion is made of a foamed polymer. In the manufacturing method, metallized lightweight granular particles with a metal wall thickness of 5 to 20 μm are treated and coated with a fine dispersion of any one of metals, metal oxides, ceramic materials, and refractories to form a coating layer. The lightweight spherical particles having a thickness of 15 to 500 μm are dried, the dried particles are heated to a temperature of about 400° C. to thermally decompose the polymer core, and then
A method is disclosed, characterized in that the sintering is carried out at a temperature of 14oO<0>C.

[発明が解決しようとする課題] 上述のような芯材分解法による中空球の製造の際の課題
を解決するために一番重要な点は造粒工程にある。即ち
、芯材の外側にいかに上手に原料粉末を被覆し、真球度
の高い粗球を行うかにある。
[Problems to be Solved by the Invention] The most important point in solving the problems in manufacturing hollow spheres by the core decomposition method as described above lies in the granulation process. That is, how well the outside of the core material is coated with the raw material powder to form a coarse ball with high sphericity.

そのためには、原料粉末の粒度、原料に適したバインダ
ーの選択と配合率、造粒機の種類、造粒条件及び造粒後
の乾燥方法などのファクターを充分に制御しなければな
らない。
For this purpose, factors such as the particle size of the raw material powder, selection and blending ratio of a binder suitable for the raw material, type of granulator, granulation conditions, and drying method after granulation must be sufficiently controlled.

しかし、上述の芯材分解法により製造された中空球はい
ずれも強度的に問題があり、形状も真球状で無く、安息
角が大きく、流動性が悪く、更に、収率が悪く、コスト
高となる等の課題がある。
However, the hollow spheres produced by the above-mentioned core material decomposition method all have problems in strength, are not perfectly spherical, have a large angle of repose, have poor fluidity, and furthermore have poor yields and high costs. There are issues such as:

従って、本発明の目的は上述の課題を簡便に解消するこ
とができる改良された芯材分解法による耐火中空球の製
造方法を提供することにある。
Therefore, an object of the present invention is to provide a method for producing a fireproof hollow sphere using an improved core decomposition method that can easily solve the above-mentioned problems.

[課題を解決するための手段] 即ち、本発明は可燃性物質を芯材として、該芯材表面に
耐火粉末を被覆し、次に、被覆済芯材を加熱して熱分解
せしめて中空化することからなる芯材分解法による耐火
中空球の製造方法において、(a)可燃性物質の芯材表
面にバインダーを被覆し、(b)工程(a)で得られた
芯材に耐火原料粉末を付着させ、(c)工程(b)で得
られた芯材と残存する耐火原料粉末を底板回転式造粒機
に装入し、バインダーを添加しながら整形することを特
徴とする耐火中空球の製造方法に係る。
[Means for Solving the Problems] That is, the present invention uses a combustible material as a core material, coats the surface of the core material with refractory powder, and then heats the coated core material to thermally decompose it to form a hollow material. In the method for producing a refractory hollow sphere by a core material decomposition method, the method comprises: (a) coating the surface of the core material of a flammable substance with a binder; and (b) applying refractory raw material powder to the core material obtained in step (a). (c) The core material obtained in step (b) and the remaining refractory raw material powder are charged into a bottom plate rotary granulator and shaped while adding a binder. Relating to the manufacturing method.

[作  用] 本発明方法に使用する可燃性物質の芯材は通常の芯材分
解法に使用されるものであればいずれのものでも使用す
ることができ、例えば発泡スチロール環、有機繊維球状
物、中実ポリエチレン環等を使用することができるが、
コスト面より発泡スチロール環の使用が好ましい、なお
、芯材の球径は1〜10Iの範囲内が好ましい6球径が
1!III未満であったり、10mmを超えると、耐火
原料粉末を好適な状態で被覆できないために好ましくな
い。
[Function] The core material of the combustible substance used in the method of the present invention can be any material used in a normal core material decomposition method, such as expanded polystyrene rings, organic fiber spheres, Although solid polyethylene rings etc. can be used,
From a cost perspective, it is preferable to use a styrofoam ring.The spherical diameter of the core material is preferably within the range of 1 to 10I.6 The spherical diameter is 1! If it is less than III or exceeds 10 mm, it is not preferable because the refractory raw material powder cannot be coated in a suitable state.

本発明方法に使用する耐火粉末原料としては、慣用の耐
火中空球に使用されているものであればいずれのもので
も使用することができ、例えばジルコニア、マグネシア
、アルミナ、シリカ、炭化珪素、シャモット等を使用す
ることができる。なお、耐火原料粉末の粒度は全て0.
3mm以下であり、74μm以下の粒子が30%以上含
まれていることが必要である。耐火原料粉末の粒度が0
.3mn+を超える場合には、耐火原料粉末の芯材への
被覆をうまく行うことができず、また、74μm以下の
粒子が30%未満であると、工程(c)において整形す
る際に、耐火原料粉末被覆の剥離が生ずることがあるた
めに好ましくない。
As the refractory powder raw material used in the method of the present invention, any material used in conventional refractory hollow spheres can be used, such as zirconia, magnesia, alumina, silica, silicon carbide, chamotte, etc. can be used. Note that the particle size of all refractory raw material powders is 0.
It is necessary that particles of 3 mm or less and 74 μm or less of particles be contained at least 30%. Particle size of refractory raw material powder is 0
.. If it exceeds 3mm+, the core material cannot be coated with the refractory raw material powder, and if the proportion of particles of 74 μm or less is less than 30%, the refractory raw material powder will not be coated properly during shaping in step (c). This is not preferred because peeling of the powder coating may occur.

耐火原料粉末の配合を数例記載すると、耐火中空球とし
て例えばマグネシア質のものを製造する場合には、例え
ばマグネシアを80重量部以上含み、残部がアルミナセ
メント、シャモット、粘土類、カルシア、炭酸マグネシ
ウム、炭酸カルシウム、シリカ、アルミナ等からなる群
から選択された1種または2種以上を含んでなる耐火原
料粉末を使用することができる。
A few examples of the composition of the refractory raw material powder are as follows: When producing magnesia-based refractory hollow spheres, for example, it contains 80 parts by weight or more of magnesia, and the balance is alumina cement, chamotte, clays, calcia, and magnesium carbonate. A refractory raw material powder containing one or more selected from the group consisting of , calcium carbonate, silica, alumina, etc. can be used.

また、コージェライト質またはジルコニア質の耐火中空
球を製造する場合には、マグネシアをコージェライトま
たはジルコニアに置換した配合をもつ耐火原料粉末を使
用する。ことができる。
Furthermore, when producing cordierite or zirconia refractory hollow spheres, a refractory raw material powder having a composition in which magnesia is replaced with cordierite or zirconia is used. be able to.

本発明方法の工程(a)において、可燃性物質の芯材の
表面に被覆するバインダーは、該芯材として発泡スチロ
ールを使用する場合には、発泡スチロールとの濡れ性の
観点からポリビニルアルコール水溶液が好適である。有
機溶剤溶解品は作業環境、危険性等の面から使用・する
ことは好ましくない、ポリビニルアルコール水溶液の粘
度は104ボイズ〜102ボイズの範囲内のものが好ま
しい。
In step (a) of the method of the present invention, when expanded polystyrene is used as the core material, the binder coated on the surface of the core material of the combustible material is preferably an aqueous polyvinyl alcohol solution from the viewpoint of wettability with the expanded polystyrene material. be. It is not preferable to use a product dissolved in an organic solvent from the viewpoint of working environment, danger, etc. The viscosity of the polyvinyl alcohol aqueous solution is preferably within the range of 104 to 102 voids.

ポリビニルアルコール水溶液の粘度が1o4ボイズを超
えると、芯材の表面に均一に該水溶液が付着せず且つ固
まりを生ずるために好ましくなく、また、該粘度が10
2ボイズ未満であると、工程(b)において、耐火原料
粉末の付着量が少なくなり、耐火原料粉末の殻厚が薄く
なり、強度も低くなるために好ましくない。
If the viscosity of the polyvinyl alcohol aqueous solution exceeds 104 voids, the aqueous solution will not adhere uniformly to the surface of the core material and will form a lump, which is undesirable.
If the number of voids is less than 2, the amount of the refractory raw material powder deposited in step (b) will decrease, the shell thickness of the refractory raw material powder will become thinner, and the strength will also decrease, which is not preferable.

本発明方法の工程(c)において使用するバインダーは
水溶性有機バインダー及び無機バインダーを使用するこ
とができる。水溶性有機バインダーとしては例えばメチ
ルセルローズ、カルボキシメチルセルローズ、ポリビニ
ルアルコール、糖蜜、リグニンスルホン酸等を挙げるこ
とができる。また、無機バインダーとしてはコロイダル
シリカ、コロイダルアルミナ、アミンシリケート、水ガ
ラス等を使用することができる。使用するバインダーの
粘度は1000〜5センチボイズの範囲内であることが
必要である。バインダーの粘度が1000センチボイズ
を超える場合には、工程(C)における整形時に球と球
とが付着し易く、真珠が得られにくい、また、5センチ
ボイズ未溝の場合には、工程(c)における整形時に耐
火原料粉末層が剥離することがあるために好ましくない
The binder used in step (c) of the method of the present invention can be a water-soluble organic binder or an inorganic binder. Examples of the water-soluble organic binder include methylcellulose, carboxymethylcellulose, polyvinyl alcohol, molasses, and ligninsulfonic acid. Further, as the inorganic binder, colloidal silica, colloidal alumina, amine silicate, water glass, etc. can be used. The viscosity of the binder used must be within the range of 1000 to 5 centivoise. If the viscosity of the binder exceeds 1000 centimeters, the balls tend to stick to each other during shaping in step (C), making it difficult to obtain pearls. This is not preferable because the refractory raw material powder layer may peel off during shaping.

以下、本発明方法を工程を追って説明する。Hereinafter, the method of the present invention will be explained step by step.

まず、工程(a)においては、可燃性物質の芯材とバイ
ンダーをモルタルミキサー、ハイスピードミキサー、ヘ
ンシェルミキサー等の既知のミキサーへ装入し、混練す
ることにより芯材表面をバインダーで被覆する。
First, in step (a), a core material of a flammable substance and a binder are charged into a known mixer such as a mortar mixer, a high speed mixer, a Henschel mixer, etc., and kneaded to coat the surface of the core material with the binder.

次に、工程(b)において、工程(a)で得られた芯材
を所定の配合をもつ耐火原料粉末と共に別個のミキサー
例えばモルタルミキサー、ハイスピードミキサー、ヘン
シェルミキサー等に装入し、混練することにより前記芯
材表面に耐火原料粉末を付着させる。
Next, in step (b), the core material obtained in step (a) is charged into a separate mixer such as a mortar mixer, high-speed mixer, Henschel mixer, etc., together with the refractory raw material powder having a predetermined composition, and kneaded. This causes the refractory raw material powder to adhere to the surface of the core material.

更に、工程(c)において、工程(b)で得られた耐火
原料粉末被覆済芯材及び工程(b)において余った耐火
原料粉末を、造粒性能を有する造粒機へ装入し、回転造
粒しながらバインダーを投入しく10〜100cc/秒
の速度で徐々に投入)、余剰耐火原料粉末を付着させな
がら整形する。この工程(c)の処理により被覆層が整
形され且つ緻密となる。工程(c)において使用する造
粒機としては例えば底板回転式造粒機を使用することが
でき、底板回転式造粒機としては例えばマルメライザ−
[不二パウダル(株)社製]等を使用することが好まし
い。
Furthermore, in step (c), the core material coated with the refractory raw material powder obtained in step (b) and the refractory raw material powder left over in step (b) are charged into a granulator having granulation performance, and rotated. While granulating, the binder is gradually added at a rate of 10 to 100 cc/sec), and the excess refractory raw material powder is shaped while adhering. The coating layer is shaped and becomes dense by the treatment in step (c). As the granulator used in step (c), for example, a bottom plate rotary granulator can be used, and as the bottom plate rotary granulator, for example, a Marmerizer can be used.
[Manufactured by Fuji Paudal Co., Ltd.] etc. are preferably used.

工程(c)で得られた整形済芯材は次に常法に従って5
0〜80℃で12〜24時間乾燥した後、炉例えばロー
タリーキルン等で1000〜1800℃程度の温度で焼
成することにより耐火中空球とすることができる。
The shaped core material obtained in step (c) is then subjected to 5 steps according to a conventional method.
After drying at 0 to 80°C for 12 to 24 hours, a fireproof hollow sphere can be obtained by firing at a temperature of about 1000 to 1800°C in a furnace such as a rotary kiln.

上述の操作に従って得られた中空球は強度、形状、収率
等が向上し、例えば軽量コンクリート、耐火軽量構造材
料、海洋開発の浮力材料、飛翔物体用構造材料、触媒担
体、ヂ過材料、水素(H2)ガスの吸着分離材、捕集吸
油材、建築用吸音部材、複合材料、レーザ核融合燃料の
容器、溶融金属の保温材等として好適に使用できる。
The hollow spheres obtained according to the above operation have improved strength, shape, yield, etc., and can be used, for example, in lightweight concrete, fire-resistant lightweight structural materials, buoyancy materials for marine development, structural materials for flying objects, catalyst carriers, permeable materials, and hydrogen. (H2) It can be suitably used as a gas adsorption/separation material, an oil collecting material, a sound absorbing member for construction, a composite material, a container for laser fusion fuel, a heat insulating material for molten metal, etc.

なお、可燃性物質の芯材を100重量部とした時の工程
(a)におけるバインダーの添加量は100〜1000
重量部の範囲内であり、工程(b)における耐火原料粉
末の添加量は100〜10000重量部の範囲内であり
、工程((+)におけるバインダーの添加量は10〜7
00重量部の範囲内である。
In addition, when the core material of the combustible substance is 100 parts by weight, the amount of binder added in step (a) is 100 to 1000 parts by weight.
The amount of refractory raw material powder added in step (b) is within the range of 100 to 10,000 parts by weight, and the amount of binder added in step ((+) is 10 to 7 parts by weight.
00 parts by weight.

[実 施 例] 以下に、実施例を挙げて本発明方法による耐火中空球の
製造方法を更に説明する。
[Example] Hereinafter, the method for producing a refractory hollow sphere according to the method of the present invention will be further explained with reference to Examples.

え1■ユ マグネシア質耐火中空球 直径31の発泡スチロール球100重量部とポリビニル
アルコールの15%水溶液(粘度10’ボイズ)300
重量部をモルタルミキサーに装入し、混練して発泡スチ
ロール球をポリビニルアルコール水溶液で被覆した。
E1 ■ Yumagnesia refractory hollow sphere 100 parts by weight of expanded polystyrene spheres with a diameter of 31 mm and a 15% aqueous solution of polyvinyl alcohol (viscosity: 10'voices) 300 parts by weight
Parts by weight were charged into a mortar mixer and kneaded to coat expanded polystyrene spheres with an aqueous polyvinyl alcohol solution.

次に、得られた発泡スチロール球と粒度が0.31以下
で且つ74μ糟以下の粒子を50%以上含むマグネシア
85重量部、アルミナセメント(0,3m−以下)10
重量部、ベントナイト5重量部よりなる耐火原料粉末2
500重量部とを別のモルタルミキサーへ装入し、混練
することにより発泡スチロール球に耐火原料粉末を付着
させた。
Next, the obtained expanded polystyrene spheres, 85 parts by weight of magnesia containing 50% or more of particles with a particle size of 0.31 or less and 74 μm or less, and 10 parts of alumina cement (0.3 m or less) were added.
Refractory raw material powder 2 consisting of parts by weight and 5 parts by weight of bentonite
500 parts by weight were charged into another mortar mixer and kneaded to adhere the refractory raw material powder to the expanded polystyrene balls.

次に、耐火原料粉末付着済発泡スチロール球と前記工程
で余った耐火原料粉末をマルメライザーへ装入し、ポリ
ビニルアルコールの1%水溶液(粘度100センチボイ
ズ)400重量部を添加しながら(20cc/の速度)
耐火原料粉末を付着させ且つ整形を行った。
Next, the foamed polystyrene balls with refractory raw material powder attached and the refractory raw material powder left over from the above step are charged into a marmerizer, and 400 parts by weight of a 1% aqueous solution of polyvinyl alcohol (viscosity 100 centivoise) is added (at a rate of 20 cc/cm). )
Refractory raw material powder was applied and shaping was performed.

得られた球状物を70℃で10時間にわたり乾燥し、次
に、ローターリ−キルン中1400℃で4時間焼成する
ことによりマグネシア質耐火中空球を得た。
The obtained spheres were dried at 70°C for 10 hours, and then fired in a rotary kiln at 1400°C for 4 hours to obtain magnesia refractory hollow spheres.

得られたマグネシア質耐火中空球の緒特性を以下の第1
表に記載する。
The properties of the obtained magnesia refractory hollow spheres are determined by the following first method.
Record in the table.

11fiユ コージェライト質耐火中空球 直径3輪輪の発泡スチロール球100重量部とポリビニ
ルアルコールの10%水溶液(粘度102ボイズ)28
0重量部をモルタルミキサーに装入し、混線して発泡ス
チロール球をポリビニルアルコール水溶液で被覆した。
11fi Yukogelite fireproof hollow sphere 100 parts by weight of expanded polystyrene spheres with three diameter wheels and a 10% aqueous solution of polyvinyl alcohol (viscosity: 102 voids) 28
0 parts by weight were charged into a mortar mixer and mixed to coat expanded polystyrene balls with an aqueous polyvinyl alcohol solution.

次に、得られた発泡スチロール球と粒度が0.3−以下
で且つ74μ−以下の粒子を70%以上含むコージェラ
イト90重量部、カオリン10重量部よりなる耐火原料
粉末4000重量部とを別のモルタルミキサーへ装入し
、混練することにより発泡スチロール球に耐火原料粉末
を付着させた。
Next, the obtained expanded polystyrene spheres and 4000 parts by weight of a refractory raw material powder consisting of 90 parts by weight of cordierite and 10 parts by weight of kaolin containing 70% or more of particles having a particle size of 0.3- or less and 74 μ- or less were separated into The refractory raw material powder was attached to the expanded polystyrene balls by charging the balls into a mortar mixer and kneading them.

次に、耐火原料粉末付着済発泡スチロール球と前記工程
で余った耐火原料粉末をマルメライザーへ装入し、カル
ボキシメチルセルローズの3%水溶液(粘度150セン
チボイズ)300重量部を添加しながら(80cc/秒
の速度で)耐火原料粉末を付着させ且つ整形を行った。
Next, the foamed polystyrene spheres with refractory raw material powder attached and the refractory raw material powder left over from the above step were charged into a marmerizer, and 300 parts by weight of a 3% aqueous solution of carboxymethyl cellulose (viscosity: 150 centiboise) was added (80 cc/sec). refractory raw material powder was deposited and shaped.

得られた球状物を60℃で8時間にわたり乾燥し、次に
、ローターリ−キルン中1380℃で4時間焼成するこ
とによりコージェライト質耐火中空球を得た。
The obtained spheres were dried at 60°C for 8 hours, and then fired in a rotary kiln at 1380°C for 4 hours to obtain cordierite refractory hollow spheres.

得られたコージェライト質耐火中空球の緒特性を以下の
第1表に記載する。
The properties of the cordierite refractory hollow spheres obtained are listed in Table 1 below.

夫胤■ユ ジルコニア質耐火中空球 直径3論−の発泡スチロール球100重量部とボリビニ
ルアルコールの15%水溶液(粘度103ボイズ)30
0重量部をモルタルミキサーに装入し、混練して発泡ス
チロール球をポリビニルアルコール水溶液で被覆した。
Futane ■ Yuzirconia fireproof hollow sphere 100 parts by weight of expanded polystyrene spheres with a diameter of 3 and a 15% aqueous solution of volivinyl alcohol (viscosity: 103 voids) 30
0 parts by weight was charged into a mortar mixer and kneaded to coat expanded polystyrene balls with an aqueous polyvinyl alcohol solution.

次に、得られた発泡スチロール球と粒度が0.3mm以
下で且つ74μm以下の粒子を90%以上含むMg○安
定化ジルコニア(Zr○296:Mg04)よりなる耐
火原料粉末4000重量部とを別のモルタルミキサーへ
装入し、混練することにより発泡スチロール球に耐火原
料粉末を付着させた。
Next, the obtained expanded polystyrene spheres and 4000 parts by weight of a refractory raw material powder made of Mg○ stabilized zirconia (Zr○296:Mg04) containing 90% or more of particles with a particle size of 0.3 mm or less and 74 μm or less were separated into The refractory raw material powder was attached to the expanded polystyrene balls by charging the balls into a mortar mixer and kneading them.

次に、耐火原料粉末付着済発泡スチロール球と前記工程
で余った耐火原料粉末をマルメライザーへ装入し、ポリ
ビニルアルコールの1%水溶液(粘度100センチボイ
ズ)450重量部を添加しながら(90cc/秒の速度
で)耐火原料粉末を付着させ且つ整形を行った。
Next, the styrofoam balls with refractory raw material powder attached and the refractory raw material powder left over from the above step were charged into a marmerizer, and while adding 450 parts by weight of a 1% aqueous solution of polyvinyl alcohol (viscosity: 100 centivoise) (at a rate of 90 cc/sec), refractory raw material powder was deposited and shaped.

得られた球状物を70℃で10時間にわたり乾燥し、次
に、ローターリ−キルン中1800℃で5時間焼成する
ことによりジルコニア質耐火中空球を得た。
The obtained spheres were dried at 70°C for 10 hours, and then fired in a rotary kiln at 1800°C for 5 hours to obtain zirconia refractory hollow spheres.

得られたジルコニア質耐火中空球の諸特性を以下の第1
表に記載する。
The properties of the obtained zirconia refractory hollow spheres are as follows:
Record in the table.

之双コ 上述の実施例1〜3において、マルメライザーによる余
剰耐火原料粉末を付着し且つ球状物を整形する工程を行
わない以外は実施例1〜3と同様の操作でマグネシア質
中空球(比較品1)、コージェライト質中空球(比較品
2)及びジルコニア質中空球(比較品3)を得た。
In Examples 1 to 3 described above, magnesia hollow spheres (comparison Product 1), cordierite hollow spheres (comparative product 2), and zirconia hollow spheres (comparative product 3) were obtained.

比較品1〜3の諸特性を第1表に併記する。The characteristics of Comparative Products 1 to 3 are also listed in Table 1.

[発明の効果] 上述の実施例から明らかなように、比較的簡便な操作で
ある本発明方法に従って、強度、形状、収率ともに優れ
た耐火中空球を得ることができる。
[Effects of the Invention] As is clear from the above-mentioned Examples, refractory hollow spheres having excellent strength, shape, and yield can be obtained by the method of the present invention, which is a relatively simple operation.

特許出願人 品川白煉瓦株式会社Patent applicant Shinagawa White Brick Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 1.可燃性物質を芯材として、該芯材表面に耐火粉末を
被覆し、次に、被覆済芯材を加熱して熱分解せしめて中
空化することからなる芯材分解法による耐火中空球の製
造方法において、(a)可燃性物質の芯材表面にバイン
ダーを被覆し、(b)工程(a)で得られた芯材に耐火
原料粉末を付着させ、(c)工程(b)で得られた芯材
と残存する耐火原料粉末を底板回転式造粒機に装入し、
バインダーを添加しながら整形することを特徴とする耐
火中空球の製造方法。
1. Manufacture of fire-resistant hollow spheres by a core material decomposition method, which consists of using a flammable substance as a core material, coating the surface of the core material with refractory powder, and then heating the coated core material to thermally decompose it and make it hollow. In the method, (a) a binder is coated on the surface of a core material of a combustible substance, (b) a refractory raw material powder is attached to the core material obtained in step (a), and (c) a refractory raw material powder is applied to the core material obtained in step (b). The core material and the remaining refractory raw material powder are charged into a bottom plate rotary granulator.
A method for producing a fire-resistant hollow sphere, characterized by shaping it while adding a binder.
2.耐火原料粉末がマグネシアを80重量部以上含み、
残部がアルミナセメント、シャモット、粘土類、カルシ
ア、炭酸マグネシウム、炭酸カルシウム、シリカ及びア
ルミナからなる群から選択された1種または2種以上の
成分である請求項1記載の耐火中空球の製造方法。
2. The refractory raw material powder contains 80 parts by weight or more of magnesia,
2. The method for producing a refractory hollow sphere according to claim 1, wherein the remainder is one or more components selected from the group consisting of alumina cement, chamotte, clays, calcia, magnesium carbonate, calcium carbonate, silica, and alumina.
3.耐火原料粉末がコージエライトを80重量部以上含
み、残部がアルミナセメント、シャモット、粘土類、カ
ルシア、炭酸マグネシウム、炭酸カルシウム、シリカ及
びアルミナからなる群から選択された1種または2種以
上の成分である請求項1記載の耐火中空球の製造方法。
3. The refractory raw material powder contains 80 parts by weight or more of cordierite, and the remainder is one or more components selected from the group consisting of alumina cement, chamotte, clays, calcia, magnesium carbonate, calcium carbonate, silica, and alumina. A method for manufacturing a fireproof hollow sphere according to claim 1.
4.耐火原料粉末がジルコニアを80重量部以上含み、
残部がアルミナセメント、シャモット、粘土類、カルシ
ア、炭酸マグネシウム、炭酸カルシウム、シリカ及びア
ルミナからなる群から選択された1種または2種以上の
成分である請求項1記載の耐火中空球の製造方法。
4. The refractory raw material powder contains 80 parts by weight or more of zirconia,
2. The method for producing a refractory hollow sphere according to claim 1, wherein the remainder is one or more components selected from the group consisting of alumina cement, chamotte, clays, calcia, magnesium carbonate, calcium carbonate, silica, and alumina.
JP1096219A 1989-04-18 1989-04-18 Production of refractory hollow sphere Granted JPH02277544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1096219A JPH02277544A (en) 1989-04-18 1989-04-18 Production of refractory hollow sphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1096219A JPH02277544A (en) 1989-04-18 1989-04-18 Production of refractory hollow sphere

Publications (2)

Publication Number Publication Date
JPH02277544A true JPH02277544A (en) 1990-11-14
JPH0560980B2 JPH0560980B2 (en) 1993-09-03

Family

ID=14159126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1096219A Granted JPH02277544A (en) 1989-04-18 1989-04-18 Production of refractory hollow sphere

Country Status (1)

Country Link
JP (1) JPH02277544A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030782A1 (en) * 1996-02-20 1997-08-28 Mikuni Corporation Method for producing granulated material
JP2008093629A (en) * 2006-10-16 2008-04-24 Kao Corp Manufacturing method of composite particle
EP2394972A1 (en) * 2010-06-09 2011-12-14 AGC Ceramics Co., Ltd. Light-weight refractory aggregate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945773A (en) * 1972-09-04 1974-05-01 Seiko Instr & Electronics Denkidokei no hatsuteikiko
JPS55109258A (en) * 1979-02-10 1980-08-22 Kautsuzu Refurakutoriizu Ltd Improved refractory composition
JPS5921651A (en) * 1982-07-28 1984-02-03 Chisso Corp Ester derivative of 4'-fluorophenyl 2-chloro-4- hydroxybenzoate
JPS59209455A (en) * 1983-05-11 1984-11-28 Nagao Soda Kk Heat insulating material for molten metal
JPS6025182A (en) * 1983-07-20 1985-02-07 松下電器産業株式会社 Electromagnetic cooking device
JPS6055176A (en) * 1983-09-06 1985-03-30 日本鋼管株式会社 Construction of composite structural storage tank
JPS61215238A (en) * 1985-03-19 1986-09-25 大同特殊鋼株式会社 Refractory heat insulator and manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945773A (en) * 1972-09-04 1974-05-01 Seiko Instr & Electronics Denkidokei no hatsuteikiko
JPS55109258A (en) * 1979-02-10 1980-08-22 Kautsuzu Refurakutoriizu Ltd Improved refractory composition
JPS5921651A (en) * 1982-07-28 1984-02-03 Chisso Corp Ester derivative of 4'-fluorophenyl 2-chloro-4- hydroxybenzoate
JPS59209455A (en) * 1983-05-11 1984-11-28 Nagao Soda Kk Heat insulating material for molten metal
JPS6025182A (en) * 1983-07-20 1985-02-07 松下電器産業株式会社 Electromagnetic cooking device
JPS6055176A (en) * 1983-09-06 1985-03-30 日本鋼管株式会社 Construction of composite structural storage tank
JPS61215238A (en) * 1985-03-19 1986-09-25 大同特殊鋼株式会社 Refractory heat insulator and manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030782A1 (en) * 1996-02-20 1997-08-28 Mikuni Corporation Method for producing granulated material
JP2008093629A (en) * 2006-10-16 2008-04-24 Kao Corp Manufacturing method of composite particle
EP2394972A1 (en) * 2010-06-09 2011-12-14 AGC Ceramics Co., Ltd. Light-weight refractory aggregate

Also Published As

Publication number Publication date
JPH0560980B2 (en) 1993-09-03

Similar Documents

Publication Publication Date Title
US4278544A (en) Filter medium for fluid
US4039480A (en) Hollow ceramic balls as automotive catalysts supports
US4255197A (en) Process for obtaining refractory materials with controlled characteristics of porosity and density
EP2752395A1 (en) A porous glass ceramic composition and method for manufacturing the same
JP2000211918A (en) Production of lightweight alumina grain
JPS6291448A (en) Burnt hollow ceramic sphere
JP2001046490A (en) Manufacture of bioimplant
US9181136B2 (en) Method for producing hollow bodies having enclosed freely displaceable particles
JPH11128639A (en) Ceramic filter and its production
JPH04124073A (en) Zirconia-based complex refractory and heat-insulating material
JPH02277544A (en) Production of refractory hollow sphere
EP1443031A1 (en) Thermally insulating coating material for refractory containing carbon
US20220185683A1 (en) Methods for Producing Seed for Growth of Hollow Spheres
US5039629A (en) Hybrid ceramic composition and process for its manufacture
US4188450A (en) Shell investment molds embodying a metastable mullite phase in its physical structure
JPS6131315A (en) Production of alumina balloon
CN110872188A (en) Ceramic particle, filter element and preparation method of filter element
JPS63262453A (en) Ceramic-glass particle for thermal spraying and its production
JPH0623502A (en) Exothermic type granular mold powder for continuous casting of steel
JPH06198404A (en) Hollow ceramic particle for heat insulation of molten steel and its production
JPH0661603B2 (en) Method for manufacturing molten metal heat insulating material
SU734167A1 (en) Charge for producing ceramic material
JPH03257081A (en) Production of porous ceramics
JPH0292880A (en) Production of heat resistant and porous acoustical material
JPS61236643A (en) Glass shell covered particle and manufacture