JP2008093629A - Manufacturing method of composite particle - Google Patents

Manufacturing method of composite particle Download PDF

Info

Publication number
JP2008093629A
JP2008093629A JP2006281521A JP2006281521A JP2008093629A JP 2008093629 A JP2008093629 A JP 2008093629A JP 2006281521 A JP2006281521 A JP 2006281521A JP 2006281521 A JP2006281521 A JP 2006281521A JP 2008093629 A JP2008093629 A JP 2008093629A
Authority
JP
Japan
Prior art keywords
particles
particle
composite
composite particles
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006281521A
Other languages
Japanese (ja)
Other versions
JP4911762B2 (en
Inventor
Koichi Fukuda
公一 福田
Koji Mine
浩二 峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2006281521A priority Critical patent/JP4911762B2/en
Publication of JP2008093629A publication Critical patent/JP2008093629A/en
Application granted granted Critical
Publication of JP4911762B2 publication Critical patent/JP4911762B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a composite particle by laminating a particle layer, wherein particles smaller than a nuclear particle and having a uniform particle size are regularly arranged, on the surface of the nuclear particle to cover the same without unevenly deforming the surface of the nuclear particle or grinding a plate-shaped nuclear particle. <P>SOLUTION: The manufacturing method of the composite particle wherein particles B are regularly arranged on a part or the whole surface of a particle A includes a process for covering the surface of a particle A with an average particle size of 1-1,000 μm with particles B of which the average particle size is below 1/5 or below that of the particle A and the coefficient of variation is 50% or below using 0.001-10 g/m<SP>2</SP>of an aqueous liquid per the unit area of the particle A as a joining medium. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複合化粒子の製造方法に関する。さらに詳しくは、撥水性、撥油性、光学特性、紫外線防御性、赤外線防御性、感触、安全性、活性等が制御された化粧料、塗料、インク及び樹脂組成物に好適に使用しうる複合化粒子の製造方法に関する。   The present invention relates to a method for producing composite particles. More specifically, a composite that can be suitably used for cosmetics, paints, inks, and resin compositions with controlled water repellency, oil repellency, optical properties, UV protection, infrared protection, touch, safety, activity, etc. The present invention relates to a method for producing particles.

超臨界流体又は亜臨界流体を用いて、有機化合物を媒体とする粉体と微粒子の複合化粒子を製造する方法が知られている(特許文献1参照)。   A method for producing composite particles of powder and fine particles using an organic compound as a medium using a supercritical fluid or a subcritical fluid is known (see Patent Document 1).

しかしながら、この方法により得られる複合化粒子では、均一に分散した状態で微粒子が粉体表面を単層被覆しており、微粒子の配列に規則性は見られない。   However, in the composite particles obtained by this method, the fine particles cover the powder surface with a single layer in a uniformly dispersed state, and there is no regularity in the arrangement of the fine particles.

また、球状ポリエチレン粒子の表面を、規則配列したシリカ粒子で被覆した複合化粒子が知られている(非特許文献1参照)。   Further, composite particles in which the surface of spherical polyethylene particles is coated with regularly arranged silica particles are known (see Non-Patent Document 1).

しかしながら、この複合化粒子はハイブリダイザーを用いた高速気流中衝撃処理により製造されており、核粒子である球状ポリエチレン粒子の表面に、シリカ粒子の一部が埋設されているため、核粒子の表面に凹凸状の変形を生じている。また、製造時に強い機械的作用が働くため、雲母などの割れやすい板状粒子への応用は難しい。   However, this composite particle is produced by impact treatment in a high-speed air stream using a hybridizer, and a part of the silica particle is embedded in the surface of the spherical polyethylene particle that is the core particle. The surface is deformed in an uneven shape. Moreover, since a strong mechanical action works at the time of manufacture, it is difficult to apply to fragile plate-like particles such as mica.

また、板状粉体と有機球状粉体とを混合機にて乾式混合し、メカノケミカル法により複合化する方法が知られている(特許文献2参照)。   In addition, a method is known in which plate-like powder and organic spherical powder are dry-mixed with a mixer and combined by a mechanochemical method (see Patent Document 2).

しかしながら、この方法により得られる複合化粒子では、微粒子の配列に規則性は見られない。
特開2004−82089号公報 Colloids and Surface A: Physicochemical and Engineering Aspects, 82 (1994), H. Honda, M. Kimura, F. Honda, T. Matsuno, M. Koishi, p. 117 特開平9−12430号公報
However, the composite particles obtained by this method have no regularity in the arrangement of the fine particles.
JP 2004-82089 A Colloids and Surface A: Physicochemical and Engineering Aspects, 82 (1994), H. Honda, M. Kimura, F. Honda, T. Matsuno, M. Koishi, p. 117 Japanese Patent Laid-Open No. 9-12430

本発明の課題は、核粒子の表面が凹凸状に変形したり、板状の核粒子が粉砕されたりすることなく、核粒子の表面が、核粒子よりも小さく粒径の揃った粒子が規則的に配列した粒子層により被覆された複合化粒子の製造方法を提供することにある。   The problem of the present invention is that the surface of the core particle is smaller than the core particle and has a uniform particle size without causing irregular deformation of the surface of the core particle or pulverization of the plate-like core particle. It is an object of the present invention to provide a method for producing composite particles covered with a layer of particles arranged in an ordered manner.

本発明は、平均粒径が1〜1000μmの粒子Aの表面に、平均粒径が該粒子Aの1/5以下、変動係数が50%以下の粒子Bを、粒子Aの単位表面積あたり0.001〜10g/m2の水性液体を接合媒体として、被覆させる工程を含む、粒子Aの表面の一部又は全面に粒子Bが規則的に配列してなる複合化粒子の製造方法に関する。 In the present invention, particles B having an average particle size of 1 to 1000 μm on the surface of particles A having an average particle size of 1/5 or less of the particle A and a coefficient of variation of 50% or less are 0.001 to The present invention relates to a method for producing composite particles in which particles B are regularly arranged on a part of or the entire surface of particles A, including a step of coating with 10 g / m 2 of an aqueous liquid as a bonding medium.

本発明により、核粒子の表面が凹凸状に変形したり、板状の核粒子が粉砕されたりすることなく、核粒子の表面に、核粒子よりも小さく粒径の揃った粒子が規則的に配列した粒子層により被覆された複合化粒子を製造することができる。   According to the present invention, particles having a uniform particle size smaller than the core particles are regularly formed on the surface of the core particles without deforming the surface of the core particles into irregularities or pulverizing the plate-like core particles. Composite particles coated with an ordered particle layer can be produced.

本発明の複合化粒子の製造方法は、粒子A(核粒子)と粒子B(被覆粒子)の接合媒体として、粒子Aの単位表面積あたり0.001〜10g/m2の水性液体を用い、粒子Aの表面の一部又は全面に、粒子Bを被覆させる方法である。本発明では、液体による液架橋力を利用することにより、比較的穏やかな混合操作条件下での複合化が可能となるため、粒子A表面の変形や粒子Aの粉砕が抑制され、粒子Aの表面に、粒子Aよりも小さく粒径の揃った粒子Bが規則的に配列した粒子層を形成させることができる。本発明において、粒子Bが規則的に配列した状態とは、粒子Bが粒子Aの表面上に二次元的に均一に分散した状態であり、1個の粒子Bを中心として4〜7個、最も理想的には6個の粒子Bが隣接して配置された基本配列が連続的に繰り返されている状態が好ましい。 In the method for producing composite particles of the present invention, 0.001 to 10 g / m 2 of an aqueous liquid per unit surface area of particle A is used as a bonding medium for particle A (core particle) and particle B (coated particle). In this method, the particle B is coated on a part or the entire surface. In the present invention, by utilizing the liquid cross-linking force of the liquid, it becomes possible to make a composite under a relatively gentle mixing operation condition. Therefore, deformation of the surface of the particle A and pulverization of the particle A are suppressed, and the particle A A particle layer in which particles B smaller than particles A and having a uniform particle diameter are regularly arranged can be formed on the surface. In the present invention, the state in which the particles B are regularly arranged is a state in which the particles B are two-dimensionally uniformly dispersed on the surface of the particle A, and 4 to 7 particles centering on one particle B, Most ideally, a state in which a basic array in which six particles B are arranged adjacent to each other is continuously repeated is preferable.

粒子Aとしては、例えば、タルク、マイカ、セリサイト、カオリン、ゼオライト、チタン被膜雲母、硫酸バリウム、酸化ジルコニウム、ガラスビース、ガラスフレーク、シリカ等の無機粒子;スチレン樹脂、アクリル樹脂、ポリオレフィン、ナイロン、シリコーン樹脂、フッ素樹脂、ポリエステル、ポリアミド等の熱可塑性樹脂、並びにエポキシ樹脂、フェノール樹脂等の熱硬化性樹脂等の有機高分子化合物の粒子等が挙げられ、これらの中では、滑らかな表面を有する観点から、ガラスフレークが好ましい。これらはそれぞれ単独で又は2種以上を混合して用いることができる。   Examples of the particles A include inorganic particles such as talc, mica, sericite, kaolin, zeolite, titanium-coated mica, barium sulfate, zirconium oxide, glass beads, glass flakes, and silica; styrene resin, acrylic resin, polyolefin, nylon, Examples include silicone resins, fluororesins, polyesters, polyamides, and other thermoplastic resins, and epoxy polymers, particles of organic polymer compounds such as phenolic resins, and the like. Among these, they have a smooth surface. From the viewpoint, glass flakes are preferable. These can be used alone or in admixture of two or more.

粒子Aとしては、粒子Bの規則配列の妨げにならないようにする観点から、滑らかな表面を有する粒子が好ましい。滑らかな表面を有する粒子とは、多少の凹凸を部分的に有していても全体としてなめらかな表面と判断されるものをいう。また、粒子Aの形状は、球状でも板状でもよい。   As the particles A, particles having a smooth surface are preferable from the viewpoint of preventing the regular arrangement of the particles B from being hindered. The particles having a smooth surface mean particles that are judged as a smooth surface as a whole even if they have some unevenness. Further, the shape of the particles A may be spherical or plate-like.

粒子Aの平均粒径は、特に限定されないが、粒子Aの表面に粒子Bを存在させる観点から、1〜1000μmであり、好ましくは1〜200μm、より好ましくは5〜100μmである。粒子Aが板状粒子である場合は、1平面上の最長径をその粒子の粒径とし、平均粒径は、レーザー回折散乱法(面積基準)により算出されるものとする。   The average particle diameter of the particles A is not particularly limited, but is 1 to 1000 μm, preferably 1 to 200 μm, more preferably 5 to 100 μm from the viewpoint of allowing the particles B to exist on the surface of the particles A. When the particle A is a plate-like particle, the longest diameter on one plane is the particle diameter of the particle, and the average particle diameter is calculated by a laser diffraction scattering method (area standard).

粒子Bとしては、例えば、シリカ、酸化亜鉛、酸化チタン、酸化ジルコニウム、硫酸バリウム、黄酸化鉄、黒酸化鉄、ベンガラ等の無機粒子;スチレン樹脂、アクリル樹脂、ポリオレフィン、ナイロン、シリコーン樹脂、フッ素樹脂、ポリエステル、ポリアミド等の熱可塑性樹脂、並びにエポキシ樹脂、フェノール樹脂等の熱硬化性樹脂等の有機高分子化合物の粒子等が挙げられる。これらは、それぞれ単独で又は2種以上を混合して用いることができる。   Examples of the particles B include inorganic particles such as silica, zinc oxide, titanium oxide, zirconium oxide, barium sulfate, yellow iron oxide, black iron oxide, and bengara; styrene resin, acrylic resin, polyolefin, nylon, silicone resin, fluorine resin And particles of organic polymer compounds such as thermoplastic resins such as polyester and polyamide, and thermosetting resins such as epoxy resin and phenol resin. These can be used alone or in admixture of two or more.

粒子Bの規則配列の妨げにならないようにする観点から、粒子Bは粒径の揃った球状粒子であるの好ましい。かかる観点から、粒子Bの変動係数(CV値)は、50%以下が好ましく、40%以下がより好ましい。ここでCV値は、粒径の標準偏差を平均粒径で除したものである。   From the viewpoint of preventing the regular arrangement of the particles B, the particles B are preferably spherical particles having a uniform particle size. From this viewpoint, the coefficient of variation (CV value) of the particles B is preferably 50% or less, and more preferably 40% or less. Here, the CV value is obtained by dividing the standard deviation of the particle diameter by the average particle diameter.

また、粒子Bによる粒子Aの被覆の均一性を高める観点から、粒子Bは疎水性又は撥水性であることが好ましい。粒子B自身が、疎水性及び撥水性のいずれでもない場合は、粒子Bの表面に、フッ素化合物等により疎水処理又は撥水処理が施されていることが好ましい。   Further, from the viewpoint of improving the uniformity of the coating of the particles A by the particles B, the particles B are preferably hydrophobic or water repellent. When the particle B itself is neither hydrophobic nor water-repellent, the surface of the particle B is preferably subjected to a hydrophobic treatment or a water-repellent treatment with a fluorine compound or the like.

粒子Bの平均粒径は、粒子Aの表面に存在させる観点から、粒子Aの平均粒径の1/5以下であり、好ましくは1/10以下、より好ましくは1/20以下である。また、粒子Bの平均粒径は、粒子Bを粒子Aの表面に存在させるとともに、粒子の感触をよくする観点から、0.1〜200μmが好ましく、0.1〜20μmがより好ましく、0.1〜5μmがさらに好ましい。粒子Bの平均粒径とは、走査型電子顕微鏡(SEM)による観察像より算出される個数平均粒径である。また、変動係数は、レーザー回折散乱法の測定法で測定された体積基準での粒度分布から算出される。   The average particle diameter of the particles B is 1/5 or less, preferably 1/10 or less, more preferably 1/20 or less, from the viewpoint of being present on the surface of the particles A. The average particle diameter of the particles B is preferably 0.1 to 200 μm, more preferably 0.1 to 20 μm, and further preferably 0.1 to 5 μm from the viewpoint of allowing the particle B to exist on the surface of the particle A and improving the feel of the particles. . The average particle diameter of the particle B is a number average particle diameter calculated from an observation image obtained by a scanning electron microscope (SEM). The coefficient of variation is calculated from the particle size distribution on a volume basis measured by the laser diffraction scattering method.

また、粒子Bの量は、用いる粒子A及び粒子Bの比重や粒径を考慮して、適宜選択される。   The amount of the particles B is appropriately selected in consideration of the specific gravity and particle size of the particles A and B to be used.

本発明において、接合媒体としては、水性液体が用いられる。本発明において、水性液体としては、水であっても、無機塩及び/又は有機化合物を含有した水溶液であってもよい。   In the present invention, an aqueous liquid is used as the joining medium. In the present invention, the aqueous liquid may be water or an aqueous solution containing an inorganic salt and / or an organic compound.

無機塩としては、塩化ナトリウム、塩化カリウム、水酸化ナトリウム、硫酸ナトリウム、硫酸アンモニウム等の水溶性無機化合物が挙げられる。また、溶解度が非常に低い無機化合物が微量溶解していてもよい。   Examples of the inorganic salt include water-soluble inorganic compounds such as sodium chloride, potassium chloride, sodium hydroxide, sodium sulfate, and ammonium sulfate. In addition, a trace amount of an inorganic compound having very low solubility may be dissolved.

有機化合物としては、メタノール、エタノール、2−プロパノール、アセトン、メチルエチルケトン、ジメチルホルムアミド等の親水性有機溶媒、酢酸ナトリウム、ショ糖、ポリビニルアルコール等の水溶性有機化合物等が挙げられる。また、溶解度が非常に低い有機化合物が微量溶解していてもよい。   Examples of the organic compound include hydrophilic organic solvents such as methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, and dimethylformamide, and water-soluble organic compounds such as sodium acetate, sucrose, and polyvinyl alcohol. An organic compound having very low solubility may be dissolved in a trace amount.

水溶液中の無機塩又は有機化合物の含有量、両者が併用されている場合にはその総量は、50重量%以下が好ましく、10重量%以下がより好ましい。   When the content of the inorganic salt or the organic compound in the aqueous solution and both are used in combination, the total amount is preferably 50% by weight or less, and more preferably 10% by weight or less.

水性液体の配合量は、粒子Aの単位表面積あたり、0.001〜10g/m2であり、0.001〜1g/m2が好ましく、0.001〜0.5g/m2がより好ましい。 The amount of aqueous liquid per unit surface area of the particles A, a 0.001 to 10 g / m 2, preferably 0.001~1g / m 2, 0.001~0.5g / m 2 is more preferable.

粒子Aと粒子Bの接合媒体となる水性液体は、混合操作に供する前に、あらかじめ粒子A及び粒子Bの少なくとも一方に被覆処理されていることが好ましく、粒子Bによる粒子Aの被覆の均一性を高める観点から、粒子Aと水性液体との混合等の方法により、粒子Aにあらかじめ被覆処理されていることがより好ましい。   It is preferable that at least one of the particle A and the particle B is coated in advance with the aqueous liquid serving as a bonding medium between the particle A and the particle B before being subjected to the mixing operation. From the viewpoint of enhancing the ratio, it is more preferable that the particles A are coated in advance by a method such as mixing of the particles A and an aqueous liquid.

本発明における混合操作は、ハイブリダイザー((株)奈良機械製作所製)等のように大きな応力を与える混合操作ではなく、複合化処理時における粒子の破壊が生じない程度の応力により比較的穏やかな条件下で行うことができる混合操作が好ましい。また、多量の液体溶媒を用いて粉体をスラリー化する湿式操作よりも、粉体のままで操作ができる乾式混合操作が好ましい。具体的には、混合槽内における撹拌翼による混合、吹き付け、塗布、回転ディスク等による摩擦による複合化等の混合操作等が好ましく、複合化の均一性及び操作の簡便性の観点から、高速流動型混合機を用いた乾式混合がより好ましい。本発明において好適に用いられる高速流動型混合機としては、スーパーミキサー((株)カワタ製)、ヘンシェルミキサー(三井鉱山(株)製)、ハイスピードミキサー(深江工業(株)製)等が挙げられる。   The mixing operation in the present invention is not a mixing operation that applies a large stress such as a hybridizer (manufactured by Nara Machinery Co., Ltd.) or the like, but is relatively gentle due to a stress that does not cause particle breakage during the composite treatment. Mixing operations that can be performed under conditions are preferred. In addition, a dry mixing operation in which the powder can be operated as it is is preferable to a wet operation in which the powder is slurried using a large amount of liquid solvent. Specifically, mixing operations such as mixing with a stirring blade in the mixing tank, spraying, coating, and compounding by friction with a rotating disk, etc. are preferable. From the viewpoint of uniformity of compounding and ease of operation, high-speed flow Dry mixing using a mold mixer is more preferred. Examples of the high-speed fluid mixer suitably used in the present invention include a super mixer (manufactured by Kawata Co., Ltd.), a Henschel mixer (manufactured by Mitsui Mining Co., Ltd.), a high speed mixer (manufactured by Fukae Kogyo Co., Ltd.) and the like. It is done.

粒子Bによる被覆の均一性と生産性を高める観点から、高速流動型混合機を用いる場合の周速(翼径×π×回転数)は、0.1〜50m/sが好ましく、0.3〜30m/sがより好ましい。   From the viewpoint of improving the uniformity and productivity of the coating with the particles B, the peripheral speed (blade diameter × π × rotational speed) when using a high-speed fluid mixer is preferably 0.1 to 50 m / s, and 0.3 to 30 m / s. Is more preferable.

また、粒子Bによる被覆の均一性を高める観点から、高速流動型混合機を用いた場合の混合時間は、0.5分以上が好ましく、1分以上がより好ましく、5分以上がさらに好ましい。混合時間の上限は特にないが、生産性の観点から10時間以下が好ましく、5時間以下がより好ましい。   Further, from the viewpoint of improving the coating uniformity with the particles B, the mixing time when using a high-speed fluid mixer is preferably 0.5 minutes or more, more preferably 1 minute or more, and further preferably 5 minutes or more. The upper limit of the mixing time is not particularly limited, but is preferably 10 hours or less and more preferably 5 hours or less from the viewpoint of productivity.

本発明により得られる複合化粒子において、粒子Aを被覆する粒子Bは、単層構造の状態であっても、三次元的に積層構造を形成した状態であってもよい。なお、積層構造を形成している場合には、粒子Bにより形成される層間にも前記接合媒体が存在していることが好ましい。なお、本明細書において、粒子Bによる被覆層が複層である複合化粒子を積層複合化粒子と記載し、かかる積層複合化粒子に対し、粒子Bによる被覆層が単層である複合化粒子を単層複合化粒子と記載することもある。また、粒子Bが積層である場合、粒子Aの表面からみてn層目を形成する粒子Bを粒子Bn、粒子Bnからなる層の上に形成された(n+1)層目を形成する粒子Bを粒子Bn+1と記載することもある。 In the composite particles obtained by the present invention, the particles B covering the particles A may be in a single-layer structure or a three-dimensionally laminated structure. In addition, when forming the laminated structure, it is preferable that the said joining medium exists also in the interlayer formed with the particle | grains B. FIG. In the present specification, the composite particle in which the coating layer by the particle B is a multilayer is described as a multilayer composite particle, and the composite particle in which the coating layer by the particle B is a single layer with respect to the multilayer composite particle May be described as single-layer composite particles. Further, when the particle B is a laminate, the particle B forming the n-th layer when viewed from the surface of the particle A is the particle forming the (n + 1) -th layer formed on the layer composed of the particles B n and the particles B n. B may be referred to as particle B n + 1 .

粒子Bが単層ではなく複層(積層)の状態で粒子Aの表面を被覆した積層複合化粒子を製造する場合には、粒子B(粒子B1)により被覆された粒子A(単層複合化粒子)を得た後、単層複合化粒子の表面に、2層目を形成する粒子B(粒子B2)を、水性液体を接合媒体として、被覆させることにより、粒子Bを積層させることができる。 In the case of producing a laminated composite particle in which the surface of the particle A is coated in a state where the particle B is not a single layer but a multilayer (laminated), the particle A (single layer composite) coated with the particle B (particle B 1 ) The particles B are laminated by coating the surface of the single-layer composite particles with the particles B (particles B 2 ) that form the second layer using an aqueous liquid as a bonding medium. Can do.

本発明により得られる複合化粒子において、粒子Aの表面における粒子Bによる被覆率は、50%以上が好ましく、70%以上がより好ましく、90%以上がさらに好ましい。粒子Bからなる粒子層が単層である場合、粒子Aの表面における粒子Bによる被覆率は、50%以上が好ましく、70%以上がより好ましく、90%以上がさらに好ましい。粒子Bによる被覆率は、式(A):
被覆率(%)=(b/a)×100 (A)
(式中、aは粒子A単位面積に粒子Bを単層で最密充填させた個数(個/cm2)、bは複合化粒子における粒子A単位面積あたりの粒子Bの個数(個/cm2)を示す)
により算出される。
In the composite particles obtained by the present invention, the coverage by the particles B on the surface of the particles A is preferably 50% or more, more preferably 70% or more, and further preferably 90% or more. When the particle layer composed of the particles B is a single layer, the coverage by the particles B on the surface of the particles A is preferably 50% or more, more preferably 70% or more, and further preferably 90% or more. The coverage with particles B is given by the formula (A):
Coverage (%) = (b / a) × 100 (A)
(Wherein, a is the number (particles / cm 2 ) in which particles B are packed in a single layer in the particle A unit area, and b is the number of particles B per particle A unit area in the composite particles (particles / cm 2 ). 2 ))
Is calculated by

また、粒子Bからなる粒子層が複層である場合、粒子Aの表面からみてm層目を形成する粒子Bを粒子Bm、粒子Bmからなる層の上に形成された(m+1)層目を形成する粒子Bを粒子Bm+1と記載すると、粒子Bmにより被覆された複合化粒子の表面における粒子Bm+1による被覆率は、50%以上が好ましく、70%以上がより好ましく、90%以上がさらに好ましい。粒子Bm+1による被覆率は、式(B):
被覆率(%)=(bm+1/am)×100 (B)
(式中、amは粒子Bmにより被覆された複合化粒子の単位面積に粒子Bm+1を単層で最密充填させた個数(個/cm2)、bm+1は複合化粒子における粒子Bmにより被覆された複合化粒子の単位面積あたりの粒子Bm+1の個数(個/cm2)を示す)
により算出される。
Further, when the particle layer composed of the particles B is a multilayer, the particles B forming the m-th layer when viewed from the surface of the particles A are the (m + 1) layers formed on the layer composed of the particles B m and the particles B m. When the particles B to form the eye to as particle B m + 1, coverage by the particles B m + 1 at the surface of the composite particles coated with particles B m is preferably at least 50%, more 70% or more Preferably, 90% or more is more preferable. The coverage by the particles B m + 1 is expressed by the formula (B):
Coverage (%) = (b m + 1 / a m ) × 100 (B)
(Wherein, a m is the number (pieces / cm 2 where the particles B m + 1 in a unit area of the composite particles coated with particles B m is close-packed in a single layer), b m + 1 is composited shows the number of particles B m + 1 per unit area of the composite particles coated with particles B m in the particle (number / cm 2))
Is calculated by

得られた複合化粒子には、適宜、粉砕、解砕等の操作を施してもよい。また、得られた複合化粒子を構成する物質に応じて、焼結、可塑化、コーティング等の操作により粒子Bを粒子A上に固定化してもよい。   The obtained composite particles may be appropriately subjected to operations such as crushing and crushing. Further, the particle B may be immobilized on the particle A by an operation such as sintering, plasticizing, coating, etc. according to the substance constituting the obtained composite particle.

本発明により得られる複合化粒子の平均粒径は、粒子として取り扱う観点から、1〜1000μmが好ましく、1〜200μmがより好ましい。複合化粒子の平均粒径も粒子Aの平均粒径と同様にして測定される。   The average particle size of the composite particles obtained by the present invention is preferably from 1 to 1000 μm, more preferably from 1 to 200 μm, from the viewpoint of handling as particles. The average particle diameter of the composite particles is also measured in the same manner as the average particle diameter of the particles A.

粒子A及び粒子Bは、それぞれ、複合化粒子の用途に応じて、撥水性、撥油性、光学特性、紫外線防御性、赤外線防御性、感触、安全性、活性の制御等の所望の性質を有することが好ましい。本発明により得られる複合化粒子はその性質に応じて、様々な分野に応用することができる。   Particles A and B each have desired properties such as water repellency, oil repellency, optical properties, UV protection, infrared protection, touch, safety, and activity control depending on the application of the composite particles. It is preferable. The composite particles obtained by the present invention can be applied to various fields depending on their properties.

実施例1
高速流動型混合機スーパーミキサー〔商品名:ピッコロSMP-2、(株)カワタ製、内容量:300mL、翼径:73mm〕内に、板状酸化チタン被覆ガラスフレーク〔平均粒径:80μm、商品名:メタシャイン1080RC-S1、日本板硝子(株)〕30.0gと、単分散球状シリカ粒子〔平均粒径:0.31μm、変動係数:20.2%、商品名:シーホスターKE-P30、(株)日本触媒〕5.00gを仕込み、スーパーミキサーの回転数を3000r/min(周速11.5m/s)に合わせ、5分間混合処理を行った。
Example 1
High-speed fluidized mixer Super mixer (trade name: Piccolo SMP-2, manufactured by Kawata Co., Ltd., internal volume: 300 mL, blade diameter: 73 mm), plate-like titanium oxide-coated glass flakes [average particle size: 80 μm, product Name: Metashine 1080RC-S1, Nippon Sheet Glass Co., Ltd. 30.0 g, monodispersed spherical silica particles [average particle size: 0.31 μm, coefficient of variation: 20.2%, product name: Seahoster KE-P30, Nippon Shokubai Co., Ltd. 5.00 g was charged, the rotation speed of the super mixer was adjusted to 3000 r / min (circumferential speed 11.5 m / s), and the mixture was mixed for 5 minutes.

次いで、接合媒体としてイオン交換水1.80g(板状酸化チタン被覆ガラスフレークの単位表面積あたり0.082g/m2)を添加し、スーパーミキサーの回転数を3000r/min(周速11.5m/s)に合わせ、15分間混合処理を行って、複合化粒子を得た。 Next, 1.80 g of ion-exchanged water (0.082 g / m 2 per unit surface area of the plate-like titanium oxide-coated glass flakes) is added as a joining medium, and the rotation speed of the super mixer is set to 3000 r / min (circumferential speed 11.5 m / s). Combined and mixed for 15 minutes to obtain composite particles.

得られた複合化粒子の走査型電子顕微鏡写真を図1、2(倍率:5000倍)に示す。   Scanning electron micrographs of the resulting composite particles are shown in FIGS. 1 and 2 (magnification: 5000 times).

図1に示された写真から、板状酸化チタン被覆ガラスフレークの表面の一部を単分散球状シリカ粒子が被覆しており、シリカ粒子がひとつの粒子を中心にその周囲を6つの粒子で囲まれた規則配列構造を形成していることがわかる。しかしその一方で、図2に示された写真から、別の部位では単分散球状シリカ粒子が凝集していることがわかる。   From the photograph shown in FIG. 1, monodispersed spherical silica particles cover a part of the surface of the plate-like titanium oxide-coated glass flakes, and the silica particles are surrounded by six particles around one particle. It can be seen that a regular ordered structure is formed. However, on the other hand, it can be seen from the photograph shown in FIG. 2 that the monodispersed spherical silica particles are aggregated in another part.

実施例2
高速流動型混合機スーパーミキサー〔商品名:ピッコロSMP-2、(株)カワタ製、内容量:300mL、翼径:73mm〕内に、板状酸化チタン被覆ガラスフレーク〔平均粒径:80μm、商品名:メタシャイン1080RC-S1、日本板硝子(株)〕30.0gと、接合媒体としてイオン交換水1.80g(板状酸化チタン被覆ガラスフレークの単位表面積あたり0.082g/m2)を仕込み、スーパーミキサーの回転数を3000r/min(周速11.5m/s)に合わせ、5分間混合処理を行い、表面イオン交換水処理板状酸化チタン被覆ガラスフレークを得た。
Example 2
High-speed fluidized mixer Super mixer (trade name: Piccolo SMP-2, manufactured by Kawata Co., Ltd., internal volume: 300 mL, blade diameter: 73 mm), plate-like titanium oxide-coated glass flakes [average particle size: 80 μm, product Name: Metashine 1080RC-S1, Nippon Sheet Glass Co., Ltd.] 30.0 g and 1.80 g of ion-exchanged water (0.082 g / m 2 per unit surface area of plate-like titanium oxide coated glass flakes) as the joining medium The rotational speed was adjusted to 3000 r / min (circumferential speed 11.5 m / s), and the mixture was mixed for 5 minutes to obtain surface ion-exchanged water-treated plate-like titanium oxide-coated glass flakes.

次いで、単分散球状シリカ粒子〔平均粒径:0.31μm、変動係数:20.2%、商品名:シーホスターKE-P30、(株)日本触媒〕5.00gを仕込んだ。   Next, 5.00 g of monodispersed spherical silica particles (average particle size: 0.31 μm, coefficient of variation: 20.2%, trade name: Seahoster KE-P30, Nippon Shokubai Co., Ltd.) were charged.

仕込み後、スーパーミキサーの回転数を3000r/min(周速11.5m/s)に合わせ、15分間混合処理を行って、複合化粒子を得た。   After charging, the rotation speed of the super mixer was adjusted to 3000 r / min (circumferential speed 11.5 m / s) and mixed for 15 minutes to obtain composite particles.

得られた複合化粒子の走査型電子顕微鏡写真を図3(倍率:5000倍)に示す。   A scanning electron micrograph of the resulting composite particles is shown in FIG. 3 (magnification: 5000 times).

図3に示された写真から、積層している粒子がやや多いものの、板状酸化チタン被覆ガラスフレークのほぼ全面を単分散球状シリカ粒子が被覆しており、シリカ粒子がひとつの粒子を中心にその周囲を6つの粒子で囲まれた規則配列構造を形成していることがわかる。   From the photograph shown in FIG. 3, monolithic spherical silica particles cover almost the entire surface of the plate-like titanium oxide-coated glass flakes, although the number of laminated particles is somewhat large, and the silica particles are centered on one particle. It can be seen that a regular array structure surrounded by six particles is formed.

実施例3
単分散球状シリカ粒子の代わりに、フッ素化合物で表面処理された単分散球状シリカ粒子〔平均粒径:0.32μm、変動係数:35.7%、商品名:PF-5 ALH05 SS-300、シリカ粒子:触媒化成工業(株)、表面処理:大東化成(株)、表面処理剤:パーフルオロアルキルリン酸エステルジエタノールアミン塩(0.0055g/m2)〕5.03gを使用した以外は、実施例1と同様にして、複合化粒子を得た。
Example 3
Monodispersed spherical silica particles surface-treated with a fluorine compound instead of monodispersed spherical silica particles [average particle size: 0.32 μm, coefficient of variation: 35.7%, trade name: PF-5 ALH05 SS-300, silica particles: catalyst Kasei Kogyo Co., Ltd., Surface treatment: Daito Kasei Co., Ltd., Surface treatment agent: Perfluoroalkyl phosphate diethanolamine salt (0.0055 g / m 2 )] 5.03 g] was used in the same manner as in Example 1. As a result, composite particles were obtained.

得られた複合化粒子の走査型電子顕微鏡写真を図4(倍率:5000倍)に示す。   A scanning electron micrograph of the obtained composite particles is shown in FIG. 4 (magnification: 5000 times).

図4に示された写真から、やや被覆ムラがあるものの、板状酸化チタン被覆ガラスフレークのほぼ全面を単分散球状シリカ粒子が被覆しており、シリカ粒子がひとつの粒子を中心にその周囲を6つの粒子で囲まれた規則配列構造を形成していることがわかる。   From the photograph shown in FIG. 4, although there is some coating unevenness, monodisperse spherical silica particles cover almost the entire surface of the plate-like titanium oxide-coated glass flakes, and the silica particles are centered on one particle and the periphery thereof. It can be seen that a regular array structure surrounded by six particles is formed.

実施例4
単分散球状シリカ粒子の代わりに、フッ素化合物で表面処理された単分散球状シリカ粒子〔平均粒径:0.32μm、変動係数:35.7%、商品名:PF-5 ALH05 SS-300、シリカ粒子:触媒化成工業(株)、表面処理:大東化成(株)、表面処理剤:パーフルオロアルキルリン酸エステルジエタノールアミン塩(0.0055g/m2)〕5.03gを使用した以外は、実施例2と同様にして、複合化粒子を得た。
Example 4
Monodispersed spherical silica particles surface-treated with a fluorine compound instead of monodispersed spherical silica particles [average particle size: 0.32 μm, coefficient of variation: 35.7%, trade name: PF-5 ALH05 SS-300, silica particles: catalyst Kasei Kogyo Co., Ltd., Surface treatment: Daito Kasei Co., Ltd., Surface treatment agent: Perfluoroalkyl phosphate diethanolamine salt (0.0055 g / m 2 )] 5.03 g] was used in the same manner as in Example 2. As a result, composite particles were obtained.

得られた複合化粒子の走査型電子顕微鏡写真を図5(倍率:5000倍)に示す。   A scanning electron micrograph of the obtained composite particles is shown in FIG. 5 (magnification: 5000 times).

図5に示された写真から、板状酸化チタン被覆ガラスフレークの全面を表面フッ素処理単分散球状シリカ粒子が被覆しており、シリカ粒子がひとつの粒子を中心にその周囲を6つの粒子で囲まれた規則配列構造を形成していることがわかる。   From the photograph shown in FIG. 5, the entire surface of the plate-like titanium oxide-coated glass flakes is covered with surface fluorinated monodispersed spherical silica particles, and the silica particles are surrounded by six particles around one particle. It can be seen that a regular ordered structure is formed.

比較例1
高速流動型混合機スーパーミキサー〔商品名:ピッコロSMP-2、(株)カワタ製、内容量:300mL、翼径:73mm〕内に、板状酸化チタン被覆ガラスフレーク〔平均粒径:80μm、商品名:メタシャイン1080RC-S1、日本板硝子(株)〕30.0gと、表面フッ素処理単分散球状シリカ粒子〔平均粒径:0.32μm、変動係数:35.7%、商品名:PF-5 ALH05 SS-300、シリカ粒子:触媒化成工業(株)、表面処理:大東化成(株)、表面処理剤:パーフルオロアルキルリン酸エステルジエタノールアミン塩(0.0055g/m2)〕8.38gを仕込んだ。
Comparative Example 1
High-speed fluidized mixer Super mixer (trade name: Piccolo SMP-2, manufactured by Kawata Co., Ltd., internal volume: 300 mL, blade diameter: 73 mm), plate-like titanium oxide-coated glass flakes [average particle size: 80 μm, product Name: Metashine 1080RC-S1, Nippon Sheet Glass Co., Ltd. 30.0 g, surface fluorinated monodispersed spherical silica particles [average particle size: 0.32 μm, coefficient of variation: 35.7%, product name: PF-5 ALH05 SS-300 Silica particles: Catalyst Kasei Kogyo Co., Ltd., Surface treatment: Daito Kasei Co., Ltd., Surface treatment agent: Perfluoroalkyl phosphate diethanolamine salt (0.0055 g / m 2 )] 8.38 g.

仕込み後、スーパーミキサーの回転数を3000r/min(周速11.5m/s)に合わせ、15分間混合処理を行って、複合化粒子を得た。   After charging, the rotation speed of the super mixer was adjusted to 3000 r / min (circumferential speed 11.5 m / s) and mixed for 15 minutes to obtain composite particles.

得られた複合化粒子の走査型電子顕微鏡写真を図6(倍率:5000倍)に示す。   A scanning electron micrograph of the obtained composite particles is shown in FIG. 6 (magnification: 5000 times).

図6に示された結果から、酸化チタン被覆ガラスフレークの表面に表面フッ素処理単分散球状シリカ粒子がほとんど付着しておらず、複合化されていないことがわかる。   From the results shown in FIG. 6, it can be seen that the surface-fluorinated monodispersed spherical silica particles are hardly attached to the surface of the titanium oxide-coated glass flakes and are not combined.

実施例1〜4及び比較例1の概要を表1に示す。   An outline of Examples 1 to 4 and Comparative Example 1 is shown in Table 1.

本発明により得られる複合化粒子は、撥水性、撥油性、光学特性、紫外線防御性、赤外線防御性、感触、安全性、活性等が制御された化粧料、塗料、インク及び樹脂組成物に好適に使用し得るものである。   The composite particles obtained by the present invention are suitable for cosmetics, paints, inks and resin compositions with controlled water repellency, oil repellency, optical properties, UV protection, infrared protection, touch, safety, activity, etc. It can be used for.

実施例1で得られた複合化粒子の粒子構造を示す走査型電子顕微鏡写真(倍率:5000倍)である。2 is a scanning electron micrograph (magnification: 5000 times) showing the particle structure of the composite particles obtained in Example 1. FIG. 実施例1で得られた複合化粒子の粒子構造を示す走査型電子顕微鏡写真(倍率:5000倍)である。2 is a scanning electron micrograph (magnification: 5000 times) showing the particle structure of the composite particles obtained in Example 1. FIG. 実施例2で得られた複合化粒子の粒子構造を示す走査型電子顕微鏡写真(倍率:5000倍)である。4 is a scanning electron micrograph (magnification: 5000 times) showing the particle structure of the composite particles obtained in Example 2. FIG. 実施例3で得られた複合化粒子の粒子構造を示す走査型電子顕微鏡写真(倍率:5000倍)である。4 is a scanning electron micrograph (magnification: 5000 times) showing the particle structure of the composite particles obtained in Example 3. FIG. 実施例4で得られた複合化粒子の粒子構造を示す走査型電子顕微鏡写真(倍率:5000倍)である。4 is a scanning electron micrograph (magnification: 5000 times) showing the particle structure of the composite particles obtained in Example 4. FIG. 比較例1で得られた複合化粒子の粒子構造を示す走査型電子顕微鏡写真(倍率:5000倍)である。3 is a scanning electron micrograph (magnification: 5000 times) showing the particle structure of the composite particles obtained in Comparative Example 1. FIG.

Claims (7)

平均粒径が1〜1000μmの粒子Aの表面に、平均粒径が該粒子Aの1/5以下、変動係数が50%以下の粒子Bを、粒子Aの単位表面積あたり0.001〜10g/m2の水性液体を接合媒体として、被覆させる工程を含む、粒子Aの表面の一部又は全面に粒子Bが規則的に配列してなる複合化粒子の製造方法。 On the surface of the particle A having an average particle diameter of 1 to 1000 μm, particles B having an average particle diameter of 1/5 or less of the particle A and a coefficient of variation of 50% or less are applied to the surface of the particle A by 0.001 to 10 g / m 2. A method for producing composite particles in which particles B are regularly arranged on a part of or the entire surface of particles A, which comprises a step of coating with the aqueous liquid as a bonding medium. 高速流動型混合機による乾式混合により、水性液体を接合媒体として、粒子Aの表面に粒子Bを被覆させる請求項1記載の複合化粒子の製造方法。   The method for producing composite particles according to claim 1, wherein the surface of the particle A is coated with the particle B by dry mixing with a high-speed fluid mixer using an aqueous liquid as a bonding medium. 粒子Aが板状又は球状粒子である請求項1又は2記載の複合化粒子の製造方法。   The method for producing composite particles according to claim 1 or 2, wherein the particles A are plate-like or spherical particles. 粒子Bが、平均粒径が0.1〜200μmの球状粒子である請求項1〜3いずれか記載の複合化粒子の製造方法。   The method for producing composite particles according to claim 1, wherein the particles B are spherical particles having an average particle diameter of 0.1 to 200 μm. あらかじめ粒子Aの表面に、水性液体を被覆処理した後、粒子Bを加えて、水性液体を媒体として、粒子Bを粒子Aの表面に被覆する請求項1〜4いずれか記載の複合化粒子の製造方法。   The composite particle according to any one of claims 1 to 4, wherein the surface of the particle A is coated with an aqueous liquid in advance and then the particle B is added to coat the particle B with the aqueous liquid as a medium. Production method. 粒子Bが、疎水性又は撥水性である請求項1〜5いずれか記載の複合化粒子の製造方法。   The method for producing composite particles according to any one of claims 1 to 5, wherein the particles B are hydrophobic or water-repellent. 粒子Bが、表面を疎水処理又は撥水処理を施された粒子である請求項1〜6いずれか記載の複合化粒子の製造方法。   The method for producing composite particles according to any one of claims 1 to 6, wherein the particles B are particles whose surfaces have been subjected to a hydrophobic treatment or a water repellent treatment.
JP2006281521A 2006-10-16 2006-10-16 Method for producing composite particles Expired - Fee Related JP4911762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006281521A JP4911762B2 (en) 2006-10-16 2006-10-16 Method for producing composite particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006281521A JP4911762B2 (en) 2006-10-16 2006-10-16 Method for producing composite particles

Publications (2)

Publication Number Publication Date
JP2008093629A true JP2008093629A (en) 2008-04-24
JP4911762B2 JP4911762B2 (en) 2012-04-04

Family

ID=39377043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006281521A Expired - Fee Related JP4911762B2 (en) 2006-10-16 2006-10-16 Method for producing composite particles

Country Status (1)

Country Link
JP (1) JP4911762B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010099577A (en) * 2008-10-22 2010-05-06 Kao Corp Method for preparing composite particle
JP2010285422A (en) * 2009-05-11 2010-12-24 Kose Corp Emulsified-type cosmetic
JP2012516235A (en) * 2009-01-29 2012-07-19 ビー・エイ・エス・エフ、コーポレーション Mechanically fused materials for pollution reduction in mobile and stationary sources
WO2014003120A1 (en) * 2012-06-28 2014-01-03 独立行政法人物質・材料研究機構 Granulated substance, and production method therefor
JP2018194681A (en) * 2017-05-17 2018-12-06 コニカミノルタ株式会社 Fixing member, fixing device, and irregular-shape particles

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164326A (en) * 1984-09-06 1986-04-02 Japan Synthetic Rubber Co Ltd Preparation of composite particle
JPS61234921A (en) * 1985-04-10 1986-10-20 Shiseido Co Ltd Production of hydrophobic powdery material
JPH02137715A (en) * 1988-11-19 1990-05-28 Mitsubishi Kasei Corp Siliceous coating fine particle
JPH02277544A (en) * 1989-04-18 1990-11-14 Shinagawa Refract Co Ltd Production of refractory hollow sphere
JPH05103971A (en) * 1991-03-19 1993-04-27 Glatt Gmbh Device and method for producing granule by coating fine particle with powder
JPH06305810A (en) * 1993-04-22 1994-11-01 Inax Corp Production of water-permeable pavement material
JPH0959015A (en) * 1995-08-22 1997-03-04 Kunimine Kogyo Kk Electroconductive complex body and its production
JP2000072531A (en) * 1998-09-02 2000-03-07 Ishizuka Glass Co Ltd Glass having photocatalytic function and its production
JP2002155237A (en) * 2000-11-20 2002-05-28 Ohashi Kagaku Kogyo Kk Lubricating powder coating composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164326A (en) * 1984-09-06 1986-04-02 Japan Synthetic Rubber Co Ltd Preparation of composite particle
JPS61234921A (en) * 1985-04-10 1986-10-20 Shiseido Co Ltd Production of hydrophobic powdery material
JPH02137715A (en) * 1988-11-19 1990-05-28 Mitsubishi Kasei Corp Siliceous coating fine particle
JPH02277544A (en) * 1989-04-18 1990-11-14 Shinagawa Refract Co Ltd Production of refractory hollow sphere
JPH05103971A (en) * 1991-03-19 1993-04-27 Glatt Gmbh Device and method for producing granule by coating fine particle with powder
JPH06305810A (en) * 1993-04-22 1994-11-01 Inax Corp Production of water-permeable pavement material
JPH0959015A (en) * 1995-08-22 1997-03-04 Kunimine Kogyo Kk Electroconductive complex body and its production
JP2000072531A (en) * 1998-09-02 2000-03-07 Ishizuka Glass Co Ltd Glass having photocatalytic function and its production
JP2002155237A (en) * 2000-11-20 2002-05-28 Ohashi Kagaku Kogyo Kk Lubricating powder coating composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010099577A (en) * 2008-10-22 2010-05-06 Kao Corp Method for preparing composite particle
JP2012516235A (en) * 2009-01-29 2012-07-19 ビー・エイ・エス・エフ、コーポレーション Mechanically fused materials for pollution reduction in mobile and stationary sources
JP2015062898A (en) * 2009-01-29 2015-04-09 ビーエーエスエフ コーポレーション Mechanically fused materials for pollution abatement in mobile and stationary sources
JP2010285422A (en) * 2009-05-11 2010-12-24 Kose Corp Emulsified-type cosmetic
JP2010285609A (en) * 2009-05-11 2010-12-24 Kose Corp Shape-anisotropic tabular particle, method for producing the same, and cosmetic obtained by formulating shape-anisotropic tabular particle
JP2010285610A (en) * 2009-05-11 2010-12-24 Kose Corp Tabular particle having hydrophilic and hydrophobic anisotropy, method for producing the same, and emulsifier comprising the same
WO2014003120A1 (en) * 2012-06-28 2014-01-03 独立行政法人物質・材料研究機構 Granulated substance, and production method therefor
JPWO2014003120A1 (en) * 2012-06-28 2016-06-02 国立研究開発法人物質・材料研究機構 Granulated product and production method thereof
JP2018194681A (en) * 2017-05-17 2018-12-06 コニカミノルタ株式会社 Fixing member, fixing device, and irregular-shape particles

Also Published As

Publication number Publication date
JP4911762B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP4911762B2 (en) Method for producing composite particles
Davies et al. Engineered particle surfaces
JP6511059B2 (en) Composite material comprising a polymer matrix and nanoparticles, method of making and use thereof
CN108300009A (en) The method for postponing to freeze
WO2004007594A1 (en) Fluidization additives to fine powders
CN102643584A (en) Diffusively light reflective paint composition, method for making paint composition, and diffusively light reflective articles
US20070053846A1 (en) Dry coating and downstream processing of cohesive powders
SA516380357B1 (en) Method for Preparing A Dry Titanium Dioxide Product
JP5667562B2 (en) Method for dry dispersion of nanoparticles and production of hierarchical structures and coatings
Zhang et al. Hollow casein-based polymeric nanospheres for opaque coatings
Boddula et al. Polymers Coatings: Technology and Applications
Matsubayashi et al. A facile method of synthesizing size-controlled hollow cyanoacrylate nanoparticles for transparent superhydrophobic/oleophobic surfaces
JP2008093579A (en) Manufacturing method of laminated composite particle
CN109554112A (en) Resistance to 600 DEG C of high temperature hot spraying coating sealing reagents of one kind and preparation method thereof
JP6442281B2 (en) Silica-coated organic particles, method for producing the same, and resin composition
JP2018188614A (en) Nano reinforcement filler material for epoxy resin, and method for producing the same
JP5055043B2 (en) Method for producing mixed particles and matte paint
Gera et al. Mechanical methods for dry particle coating processes and their applications in drug delivery and development
JP6584213B2 (en) Hollow particles, method for producing the hollow particles, and friction material containing the hollow particles
KR100665042B1 (en) Polymer macroparticle of which surface is modified by mesoparticle and nanoparticle, nanoparticle-polymer composite using the same, and preparation thereof
JP5017363B2 (en) Polymer giant particle surface-modified with nanoparticles and mesoparticles, nanoparticle-polymer composite material using the same, and production method thereof
KR20120009519A (en) Composite pigment for cosmetic compositions and manufacturing method and manufacturing apparatus thereof
CN112805083A (en) Preparation of JANUS particles by two-phase interface assembly
Yu et al. Preparation of doughnut-like nanocomposite colloidal crystal particles with enhanced light diffraction using drying self-assembly method
JP4975275B2 (en) Method for producing composite particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120116

R151 Written notification of patent or utility model registration

Ref document number: 4911762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees