JPH0560980B2 - - Google Patents

Info

Publication number
JPH0560980B2
JPH0560980B2 JP1096219A JP9621989A JPH0560980B2 JP H0560980 B2 JPH0560980 B2 JP H0560980B2 JP 1096219 A JP1096219 A JP 1096219A JP 9621989 A JP9621989 A JP 9621989A JP H0560980 B2 JPH0560980 B2 JP H0560980B2
Authority
JP
Japan
Prior art keywords
refractory
raw material
core material
material powder
refractory raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1096219A
Other languages
Japanese (ja)
Other versions
JPH02277544A (en
Inventor
Hajime Asami
Hiroshi Takenaka
Hideo Motai
Shunsuke Shirohige
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Refractories Co Ltd
Original Assignee
Shinagawa Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Refractories Co Ltd filed Critical Shinagawa Refractories Co Ltd
Priority to JP1096219A priority Critical patent/JPH02277544A/en
Publication of JPH02277544A publication Critical patent/JPH02277544A/en
Publication of JPH0560980B2 publication Critical patent/JPH0560980B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/009Porous or hollow ceramic granular materials, e.g. microballoons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glanulating (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は軽量コンクリート、耐火軽量構造材
料、海洋開発の浮力材料、飛翔物体用構造材料、
触媒担体、過材料、水素(H2)ガスの吸着分
離材、捕集吸油材、建築用吸音部材、複合材料、
レーザ核融合燃料の容器、溶融金属の保温材等に
使用される耐火中空球の製造方法の改良に関す
る。 [従来の技術] 中空球の製造方法として従来下記のような方法
が使用されていた: 原料を溶融した後に炉より流出させ、その流
出液に向かつて高圧ガスを吹付け、液を中空状
小球として飛散させ、微小中空球を得る方法
(溶融吹付法); 発泡材を添加した原料あるいはもともと水分
や揮発分を含有している原料を使用し、一定粒
度に揃えた後、短時間の焼成を行い粒子を発泡
させ、内部が空孔の微小中空球体を得る方法
(加熱分解法); 発泡ポリスチレン球などの融点の低い物質を
心として、これに目的とする原料粉末を被覆す
る。乾燥後、これを焼成して芯材を溶融あるい
は分解させて内部を空孔とし、更に高温処理し
て外殻部分を焼結あるいは溶融させてガラス相
を生成させて中空球体を得る方法(芯材分解
法)。 これらの方法の中で中空球を製造するために芯
材分解法がよく使用されている。 この方法を使用する中空球の例として、例えば
特開昭61−215238号公報にはプラスチツクの粒子
の表面にバインダーを適用し、このバインダーに
より粒子の表面に耐火物の粉末を付着させて殻を
形成し、焼成してプラスチツクの粒子を除去する
ことにより、ほぼ中心に1個の空洞を有する耐火
物の中空球を得ることからなる耐火断熱材の製造
方法が開示されている。 また、特開昭62−230455号公報には、断熱用中
空粒材の殻の厚さ、通気率等を特定することによ
り、金属の表面の遮蔽、保温材として繰返し長期
に使用できる中空粒材を開示しており、該公報の
実施例におては芯材分解法による中空球材の製造
例が記載されている。 更に、特開昭63−149306号公報には、核部が発
泡ポリマーから成る金属化軽量球状粒子の表面に
別の層を塗布して壁体の強度を高めた中空球また
は中空球複合体を製造する方法において、金属壁
厚5〜20μmの金属化軽量粒状粒子を、金属、金
属酸化物、セラミツク材料及び耐火物のいずれか
1種の微細分散液で処理して被覆し、被覆層の厚
さを15〜500μmとした前記軽量球状粒子を乾燥
し、乾燥した前記粒子を約400℃の温度に加熱し
てポリマー核部を熱分解し、続いて900〜1400℃
の温度で焼結することを特徴とする方法が開示さ
れている。 [発明が解決しようとする課題] 上述のような芯材分解法による中空球の製造の
際の課題を解決するために一番重要な点は造粒工
程にある。即ち、芯材の外側にいかに上手に原料
粉末を被覆し、真球度の高い粒球を行うかにあ
る。そのためには、原料粉末の粒度、原料に適し
たバインダーの選択と配合率、造粒機の種類、造
粒条件及び造粒後の乾燥方法などのフアクターを
充分に制御しなければならない。 しかし、上述の芯材分解法により製造された中
空球はいずれも強度的に問題があり、形状も真球
状で無く、安息角が大きく、流動性が悪く、更
に、収率が悪く、コスト高となる等の課題があ
る。 従つて、本発明の目的は上述の課題を簡便に解
消することができる改良された芯材分解法による
耐火中空球の製造方法を提供することにある。 [課題を解決するための手段] 即ち、本発明は可燃性物質を芯材として、該芯
材表面に耐火粉末を被覆し、次に、被覆済芯材を
加熱して熱分解せしめて中空化することからなる
芯材分解法による耐火中空球の製造方法におい
て、(a)可燃性物質の芯材表面にバインダーを被覆
し、(b)工程(a)で得られた芯材に耐火原料粉末を付
着させ、(c)工程(b)で得られた芯材と残存する耐火
原料粉末を底板回転式造粒機に装入し、バインダ
ーを添加しながら整形することを特徴とする耐火
中空球の製造方法に係る。 [作用] 本発明方法に使用する可燃性物質の芯材は通常
の芯材分解法に使用されるものであればいずれの
ものでも使用することができ、例えば発泡スチロ
ール球、有機繊維球状物、中実ポリエチレン球等
を使用することができるが、コスト面より発泡ス
チロール球の使用が好ましい。なお、芯材の球径
は1〜10mmの範囲内が好ましい。球径が1mm未満
であつたり、10mmを超えると、耐火原料粉末を好
適な状態で被覆できないために好ましくない。 本発明方法に使用する耐火粉末原料としては、
慣用の耐火中空球に使用されているものであれば
いずれのものでも使用することができ、例えばジ
ルコニア、マグネシア、アルミナ、シリカ、炭化
珪素、シヤモツト等を使用することができる。な
お、耐火原料粉末の粒度は全て0.3mm以下であり、
74μm以下の粒子が30%以上含まれていることが
必要である。耐火原料粉末の粒度が0.3mmを超え
る場合には、耐火原料粉末の芯材への被覆をうま
く行うことができず、また、74μm以下の粒子が
30%未満であると、工程(c)において整形する際
に、耐火原料粉末被覆の剥離が生ずることがある
ために好ましくない。 耐火原料粉末の配合を数例記載すると、耐火中
空球として例えばマグネシア質のものを製造する
場合には、例えばマグネシアを80重量部以上含
み、残部がアルミナセメント、シヤモツト、粘土
類、カルシア、炭酸マグネシウム、炭酸カルシウ
ム、シリカ及びアルミナ等からなる群から選択さ
れた1種または2種以上を含んでなる耐火原料粉
末を使用することができる。 また、コージエライト質またはジルコニア質の
耐火中空球を製造する場合には、マグネシアをコ
ージエライトまたはジルコニアに置換した配合を
もつ耐火原料粉末を使用することができる。 本発明方法の工程(a)において、可燃性物質の芯
材の表面に被覆するバインダーは、該芯材として
発泡スチロールを使用する場合には、発泡スチロ
ールとの濡れ性の観点からポリビニルアルコール
水溶液が好適である。有機溶剤溶解品は作業環
境、危険性等の面から使用することは好ましくな
い。ポリビニルアルコール水溶液の粘度は104
イズ〜102ポイズの範囲内のものが好ましい。ポ
リビニルアルコール水溶液の粘度が104ポイズを
超えると、芯材の表面に均一に該水溶液が付着せ
ず且つ固まりを生ずるために好ましくなく、ま
た、該粘度が102ポイズ未満であると、工程(b)に
おいて、耐火原料粉末の付着量が少なくなり、耐
火原料粉末の殻厚が薄くなり、強度も低くなるた
めに好ましくない。 本発明方法の工程(c)において使用するバインダ
ーは水溶性有機バインダー及び無機バインダーを
使用することができる。水溶性有機バインダーと
しては例えばメチルセルローズ、カルボキシメチ
ルセルローズ、ポリビニルアルコール、糖密、リ
グニンスルホン酸等を挙げることができる。ま
た、無機バインダーとしてはコロイダルシリカ、
コロイダルアルミナ、アミンシリケート、水ガラ
ス等を使用することができる。使用するバインダ
ーの粘度は1000〜5センチポイズの範囲内である
ことが必要である。バインダーの粘度が1000セン
チポイズを超える場合には、工程(C)における整形
時に球と球とが付着し易く、真球が得られにく
い。また、5センチポイズ未満の場合には、工程
(c)における整形時に耐火原料粉末層が剥離するこ
とがあるために好ましくない。 以下、本発明方法を工程を追つて説明する。 まず、工程(a)においては、可燃性物質の芯材と
バインダーをモルタルミキサー、ハイスピードミ
キサー、ヘンシエルミキサー等の既知のミキサー
へ装入し、混練することにより芯材表面をバイン
ダーで被覆する。 次に、工程(b)において、工程(a)で得られた芯材
を所定の配合をもつ耐火原料粉末と共に別個のミ
キサー例えばモルタルミキサー、ハイスピードミ
キサー、ヘンシエルミキサー等に装入し、混練す
ることにより前記芯材表面に耐火原料粉末を付着
させる。 更に、工程(c)において、工程(b)で得られた耐火
原料粉末被覆済芯材及び工程(b)において余つた耐
火原料粉末を、造粒性能を有する造粒機へ装入
し、回転造粒しながらバインダーを投入し(10〜
100c.c./秒の速度で徐々に投入)、余剰耐火原料粉
末を付着させながら整形する。この工程(c)の処理
により被覆層が整形され且つ緻密となる。工程(c)
において使用する造粒機としては例えば底板回転
式造粒機を使用することができ、底板回転式造粒
機としては例えばマルメライザー[不二パウダル
(株)社製]等を使用することが好ましい。 工程(c)で得られた整形済芯材は次に常法に従つ
て50〜80℃で12〜24時間乾燥した後、炉例えばロ
ータリーキルン等で1000〜1800℃程度の温度で焼
成することにより耐火中空球とすることができ
る。 上述の操作に従つて得られた中空球は強度、形
状、収率等が向上し、例えば軽量コンクリート、
耐火軽量構造材料、海洋開発の浮力材料、飛翔物
体用構造材料、触媒担体、過材料、水素(H2
ガスの吸着分離材、捕集吸油材、建築用吸音部
材、複合材料、レーザ核融合燃料の容器、溶融金
属の保温材等として好適に使用できる。 なお、可燃性物質の芯材を100重量部とした時
の工程(a)におけるバインダーの添加量は100〜
1000重量部の範囲内であり、工程(b)における耐火
原料粉末の添加量は100〜10000重量部の範囲内で
あり、工程(c)におけるバインダーの添加量は10〜
700重量部の範囲内である。 [実施例] 以下に、実施例を挙げて本発明方法による耐火
中空球の製造方法を更に説明する。 実施例 1 マグネシア質耐火中空球 直径3mmの発泡スチロール球100重量部とポリ
ビニルアルコールの15%水溶液(粘度103ポイズ)
300重量部をモルタルミキサーに装入し、混練し
て発泡スチロール球をポリビニルアルコール水溶
液で被覆した。 次に、得られた発泡スチロール球と粒度が0.3
mm以下で且つ74μm以下の粒子を50%以上含むマ
グネシア85重量部、アルミナセメント(0.3mm以
下)10重量部、ベントナイト5重量部よりなる耐
火原料粉末2500重量部とを別のモルタルミキサー
へ装入し、混練することにより発泡スチロール球
に耐火原料粉末を付着させた。 次に、耐火原料粉末付着済発泡スチロール球と
前記工程で余つた耐火原料粉末をマルメライザー
へ装入し、ポリビニルアルコールの1%水溶液
(粘度100センチポイズ)400重量部を添加しなが
ら(20c.c./の速度)耐火原料粉末を付着させ且つ
整形を行つた。 得られた球状物を70℃で10時間にわたり乾燥
し、次に、ローターリーキルン中1400℃で4時間
焼成することによりマグネシア質耐火中空球を得
た。 得られたマグネシア質耐火中空球の諸特性を以
下の第1表に記載する。 実施例 2 コージエライト質耐火中空球 直径3mmの発泡スチロール球100重量部とポリ
ビニルアルコールの10%水溶液(粘度102ポイズ)
280重量部をモルタルミキサーに装入し、混練し
て発泡スチロール球をポリビニルアルコール水溶
液で被覆した。 次に、得られた発泡スチロール球と粒度が0.3
mm以下で且つ74μm以下の粒子を70%以上含むコ
ージエライト90重量部、カオリン10重量部よりな
る耐火原料粉末4000重量部とを別のモルタルミキ
サーへ装入し、混練することにより発泡スチロー
ル球に耐火原料粉末を付着させた。 次に、耐火原料粉末付着済発泡スチロール球と
前記工程で余つた耐火原料粉末をマルメライザー
へ装入し、カルボキシメチルセルローズの3%水
溶液(粘度150センチポイズ)300重量部を添加し
ながら(80c.c./秒の速度で)耐火原料粉末を付着
させ且つ整形を行つた。 得られた球状物を60℃で8時間にわたり乾燥
し、次に、ローターリーキルン中1380℃で4時間
焼成することによりコージエライト質耐火中空球
を得た。 得られたコージエライト質耐火中空球の諸特性
を以下の第1表に記載する。 実施例 3 ジルコニア質耐火中空球 直径3mmの発泡スチロール球100重量部とポリ
ビニルアルコールの15%水溶液(粘度103ポイズ)
300重量部をモルタルミキサーに装入し、混練し
て発泡スチロール球をポリビニルアルコール水溶
液で被覆した。 次に、得られた発泡スチロール球と粒度が0.3
mm以下で且つ74μm以下の粒子を90%以上含む
MgO安定化ジルコニア(ZrO296:MgO4)より
なる耐火原料粉末4000重量部とを別のモルタルミ
キサーへ装入し、混練することにより発泡スチロ
ール球に耐火原料粉末を付着させた。 次に、耐火原料粉末付着済発泡スチロール球と
前記工程で余つた耐火原料粉末をマルメライザー
へ装入し、ポリビニルアルコールの1%水溶液
(粘度100センチポイズ)450重量部を添加しなが
ら(90c.c./秒の速度で)耐火原料粉末を付着させ
且つ整形を行つた。 得られた球状物を70℃で10時間にわたり乾燥
し、次に、ローターリーキルン中1800℃で5時間
焼成することによりジルコニア質耐火中空球を得
た。 得られたジルコニア質耐火中空球の諸特性を以
下の第1表に記載する。 比較例 上述の実施例1〜3において、マルメライザー
による余剰耐火原料粉末を付着し且つ球状物を整
形する工程を行わない以外は実施例1〜3と同様
の操作でマグネシア質中空球(比較品1)、コー
ジエライト質中空球(比較品2)及びジルコニア
質中空球(比較品3)を得た。 比較品1〜3の諸特性を第1表に併記する。
[Industrial Application Fields] The present invention is applicable to lightweight concrete, fireproof lightweight structural materials, buoyancy materials for marine development, structural materials for flying objects,
Catalyst carriers, filter materials, hydrogen (H 2 ) gas adsorption/separation materials, oil collection and absorption materials, sound-absorbing materials for construction, composite materials,
This invention relates to improvements in the manufacturing method of fireproof hollow spheres used for containers for laser fusion fuel, heat insulators for molten metal, etc. [Prior art] The following method has been used in the past to produce hollow spheres: After melting the raw material, it is flowed out of a furnace, and high-pressure gas is blown toward the flowed liquid to blow the liquid into hollow spheres. A method of obtaining microscopic hollow spheres by scattering them as spheres (melt spraying method); using raw materials to which a foaming agent has been added or raw materials that originally contain water and volatile matter, and after adjusting the particle size to a certain level, firing for a short time. A method of foaming the particles to obtain microscopic hollow spheres with holes inside (thermal decomposition method); A material with a low melting point, such as a foamed polystyrene sphere, is coated with the desired raw material powder. After drying, this is fired to melt or decompose the core material to create pores inside, and is then treated at high temperatures to sinter or melt the outer shell to generate a glass phase to obtain a hollow sphere. material decomposition method). Among these methods, the core decomposition method is often used to produce hollow spheres. As an example of a hollow sphere using this method, for example, Japanese Patent Application Laid-open No. 61-215238 discloses a method in which a binder is applied to the surface of plastic particles, and the binder causes refractory powder to adhere to the surface of the particles to form a shell. A method of making a refractory insulation material is disclosed which comprises forming and firing to remove plastic particles to obtain a hollow sphere of refractory material having a cavity approximately in the center. In addition, Japanese Patent Application Laid-Open No. 62-230455 discloses that by specifying the shell thickness, air permeability, etc. of hollow granules for heat insulation, hollow granules can be used repeatedly over a long period of time as shielding for metal surfaces and heat insulating materials. This publication discloses an example of manufacturing a hollow spherical material by a core material decomposition method. Furthermore, JP-A-63-149306 discloses a hollow sphere or a hollow sphere composite in which the strength of the wall is increased by applying another layer to the surface of the metallized lightweight spherical particles whose core portion is made of a foamed polymer. In the manufacturing method, metallized lightweight granular particles with a metal wall thickness of 5 to 20 μm are treated and coated with a fine dispersion of any one of metals, metal oxides, ceramic materials, and refractories, and the thickness of the coating layer is The lightweight spherical particles with a diameter of 15 to 500 μm are dried, the dried particles are heated to a temperature of about 400°C to thermally decompose the polymer core, and then heated to a temperature of 900 to 1400°C.
A method is disclosed, characterized in that the sintering is carried out at a temperature of . [Problems to be Solved by the Invention] The most important point in solving the problems in manufacturing hollow spheres by the core decomposition method as described above lies in the granulation process. That is, how well the outside of the core material is coated with the raw material powder to form granules with high sphericity. For this purpose, factors such as the particle size of the raw material powder, selection and blending ratio of a binder suitable for the raw material, type of granulator, granulation conditions, and drying method after granulation must be sufficiently controlled. However, the hollow spheres produced by the above-mentioned core material decomposition method all have problems in strength, are not perfectly spherical, have a large angle of repose, have poor fluidity, and furthermore have poor yields and high costs. There are issues such as: SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for manufacturing fireproof hollow spheres using an improved core decomposition method that can easily solve the above-mentioned problems. [Means for Solving the Problems] That is, the present invention uses a combustible material as a core material, coats the surface of the core material with refractory powder, and then heats the coated core material to thermally decompose it to form a hollow material. In the method for producing a fire-resistant hollow sphere using a core material decomposition method, the method comprises: (a) coating the surface of the core material of a flammable substance with a binder; and (b) applying refractory raw material powder to the core material obtained in step (a). (c) The core material obtained in step (b) and the remaining refractory raw material powder are charged into a bottom plate rotary granulator and shaped while adding a binder. Relating to the manufacturing method. [Function] The core material of the combustible substance used in the method of the present invention can be any material used in a normal core material decomposition method, such as expanded polystyrene balls, organic fiber spheres, medium Although real polyethylene balls or the like can be used, it is preferable to use expanded polystyrene balls from a cost standpoint. In addition, the spherical diameter of the core material is preferably within the range of 1 to 10 mm. If the sphere diameter is less than 1 mm or exceeds 10 mm, it is not preferable because the refractory raw material powder cannot be coated in a suitable state. The refractory powder raw materials used in the method of the present invention include:
Any material used in conventional fire-resistant hollow spheres can be used, such as zirconia, magnesia, alumina, silica, silicon carbide, and siyamoto. In addition, the particle size of all refractory raw material powders is 0.3 mm or less,
It is necessary that at least 30% of particles with a diameter of 74 μm or less are contained. If the particle size of the refractory raw material powder exceeds 0.3 mm, it will not be possible to coat the core material with the refractory raw material powder, and particles of 74 μm or less will
If it is less than 30%, it is not preferable because the refractory raw material powder coating may peel off during shaping in step (c). To give some examples of the composition of the refractory raw material powder, when manufacturing magnesia-based refractory hollow spheres, for example, it contains 80 parts by weight or more of magnesia, and the balance is alumina cement, siyamoto, clay, calcia, and magnesium carbonate. A refractory raw material powder containing one or more selected from the group consisting of , calcium carbonate, silica, alumina, etc. can be used. Furthermore, when producing cordierite or zirconia refractory hollow spheres, a refractory raw material powder having a composition in which magnesia is replaced with cordierite or zirconia can be used. In step (a) of the method of the present invention, when Styrofoam is used as the core material, the binder coated on the surface of the core material of the combustible material is preferably an aqueous polyvinyl alcohol solution from the viewpoint of wettability with Styrofoam. be. It is not preferable to use products dissolved in organic solvents due to the working environment and danger. The viscosity of the polyvinyl alcohol aqueous solution is preferably within the range of 10 4 poise to 10 2 poise. If the viscosity of the polyvinyl alcohol aqueous solution exceeds 10 4 poise, the aqueous solution will not adhere uniformly to the surface of the core material and will form a lump, which is undesirable. If the viscosity is less than 10 2 poise, the process ( In b), the amount of adhesion of the refractory raw material powder decreases, the shell thickness of the refractory raw material powder becomes thinner, and the strength also decreases, which is not preferable. The binder used in step (c) of the method of the present invention can be a water-soluble organic binder or an inorganic binder. Examples of the water-soluble organic binder include methylcellulose, carboxymethylcellulose, polyvinyl alcohol, molasses, and ligninsulfonic acid. In addition, as an inorganic binder, colloidal silica,
Colloidal alumina, amine silicate, water glass, etc. can be used. The viscosity of the binder used must be within the range of 1000 to 5 centipoise. If the viscosity of the binder exceeds 1000 centipoise, the balls tend to stick together during shaping in step (C), making it difficult to obtain true spheres. In addition, if it is less than 5 centipoise, the process
This is not preferable because the refractory raw material powder layer may peel off during shaping in (c). Hereinafter, the method of the present invention will be explained step by step. First, in step (a), the combustible core material and binder are charged into a known mixer such as a mortar mixer, high-speed mixer, Henschel mixer, etc., and kneaded to coat the surface of the core material with the binder. . Next, in step (b), the core material obtained in step (a) is charged into a separate mixer such as a mortar mixer, high-speed mixer, Henschel mixer, etc. together with the refractory raw material powder having a predetermined composition, and kneaded. By doing so, the refractory raw material powder is attached to the surface of the core material. Furthermore, in step (c), the core material coated with the refractory raw material powder obtained in step (b) and the refractory raw material powder left over in step (b) are charged into a granulator having granulation performance, and rotated. Add binder while granulating (10~
Gradually add the powder at a rate of 100c.c./sec) and shape it while adhering the excess refractory raw material powder. The coating layer is shaped and made dense by the treatment in step (c). Process (c)
For example, a bottom plate rotary granulator can be used as the granulator used in the granulator, and examples of the bottom plate rotary granulator include Marmerizer
Co., Ltd.] etc. are preferably used. The shaped core material obtained in step (c) is then dried at 50 to 80°C for 12 to 24 hours according to a conventional method, and then fired at a temperature of about 1000 to 1800°C in a furnace such as a rotary kiln. It can be a fireproof hollow sphere. The hollow spheres obtained according to the above procedure have improved strength, shape, yield, etc., and can be used for example in lightweight concrete,
Fire-resistant lightweight structural materials, buoyancy materials for offshore development, structural materials for flying objects, catalyst supports, supermaterials, hydrogen (H 2 )
It can be suitably used as a gas adsorption/separation material, an oil collecting material, a sound absorbing member for construction, a composite material, a container for laser fusion fuel, a heat insulating material for molten metal, etc. In addition, when the core material of the combustible material is 100 parts by weight, the amount of binder added in step (a) is 100 to 100 parts by weight.
The amount of refractory raw material powder added in step (b) is within the range of 100 to 10,000 parts by weight, and the amount of binder added in step (c) is within the range of 10 to 10,000 parts by weight.
Within the range of 700 parts by weight. [Example] Hereinafter, the method for producing a refractory hollow sphere according to the method of the present invention will be further explained with reference to Examples. Example 1 Magnesia fireproof hollow sphere 100 parts by weight of expanded polystyrene spheres with a diameter of 3 mm and a 15% aqueous solution of polyvinyl alcohol (viscosity 103 poise)
300 parts by weight was charged into a mortar mixer and kneaded to coat expanded polystyrene balls with an aqueous polyvinyl alcohol solution. Next, the obtained Styrofoam spheres and particle size of 0.3
Charge 2500 parts by weight of refractory raw material powder consisting of 85 parts by weight of magnesia containing 50% or more of particles of 0.3 mm or less and 74 μm or less, 10 parts by weight of alumina cement (0.3 mm or less), and 5 parts by weight of bentonite into a separate mortar mixer. Then, by kneading, the refractory raw material powder was attached to the expanded polystyrene balls. Next, the foamed polystyrene spheres with refractory raw material powder attached and the refractory raw material powder left over from the above process are charged into a marmerizer, and 400 parts by weight of a 1% aqueous solution of polyvinyl alcohol (viscosity 100 centipoise) is added (20 c.c. / speed) refractory raw material powder was deposited and shaped. The obtained spheres were dried at 70°C for 10 hours, and then fired in a rotary kiln at 1400°C for 4 hours to obtain magnesia refractory hollow spheres. Various properties of the obtained magnesia refractory hollow spheres are listed in Table 1 below. Example 2 Cordierite fireproof hollow sphere 100 parts by weight of expanded polystyrene spheres with a diameter of 3 mm and a 10% aqueous solution of polyvinyl alcohol (viscosity 10.2 poise)
280 parts by weight was charged into a mortar mixer and kneaded to coat expanded polystyrene balls with an aqueous polyvinyl alcohol solution. Next, the obtained Styrofoam sphere and particle size of 0.3
90 parts by weight of cordierite containing 70% or more of particles of 74 μm or less and 4000 parts by weight of refractory raw material powder made of 10 parts by weight of kaolin are charged into a separate mortar mixer and kneaded to form refractory raw material into styrofoam balls. Powder was applied. Next, the foamed polystyrene spheres with refractory raw material powder attached and the refractory raw material powder left over from the previous step were charged into a marmerizer, and while 300 parts by weight of a 3% aqueous solution of carboxymethyl cellulose (viscosity 150 centipoise) was added (80 c.c. The refractory raw material powder was deposited and shaped (at a speed of ./sec). The obtained spheres were dried at 60°C for 8 hours and then fired in a rotary kiln at 1380°C for 4 hours to obtain cordierite refractory hollow spheres. Various properties of the obtained cordierite refractory hollow spheres are listed in Table 1 below. Example 3 Zirconia fireproof hollow sphere 100 parts by weight of styrofoam spheres with a diameter of 3 mm and a 15% aqueous solution of polyvinyl alcohol (viscosity 103 poise)
300 parts by weight was charged into a mortar mixer and kneaded to coat expanded polystyrene balls with an aqueous polyvinyl alcohol solution. Next, the obtained Styrofoam sphere and particle size of 0.3
Contains 90% or more of particles of mm or less and 74μm or less
4000 parts by weight of a refractory raw material powder made of MgO-stabilized zirconia (ZrO 2 96:MgO4) was charged into a separate mortar mixer and kneaded to adhere the refractory raw material powder to the expanded polystyrene balls. Next, the foamed polystyrene spheres with refractory raw material powder attached and the refractory raw material powder left over from the above process are charged into a marmerizer, and 450 parts by weight of a 1% aqueous solution of polyvinyl alcohol (viscosity 100 centipoise) is added (90 c.c. refractory raw material powder was deposited and shaped. The obtained spheres were dried at 70°C for 10 hours, and then fired in a rotary kiln at 1800°C for 5 hours to obtain zirconia refractory hollow spheres. Various properties of the obtained zirconia refractory hollow spheres are listed in Table 1 below. Comparative Example In the above Examples 1 to 3, magnesia hollow spheres (comparative product 1) Cordierite hollow spheres (comparative product 2) and zirconia hollow spheres (comparative product 3) were obtained. The characteristics of Comparative Products 1 to 3 are also listed in Table 1.

【表】 [発明の効果] 上述の実施例から明らかなように、比較的簡便
な操作である本発明方法に従つて、強度、形状、
収率ともに優れた耐火中空球を得ることができ
る。
[Table] [Effects of the Invention] As is clear from the above examples, strength, shape,
Refractory hollow spheres with excellent yield can be obtained.

Claims (1)

【特許請求の範囲】 1 可燃性物質を芯材として、該芯材表面に耐火
粉末を被覆し、次に、被覆済芯材を加熱して熱分
解せしめて中空化することからなる芯材分解法に
よる耐火中空球の製造方法において、(a)可燃性物
質の芯材表面にバインダーを被覆し、(b)工程(a)で
得られた芯材に耐火原料粉末を付着させ、(c)工程
(b)で得られた芯材を残存する耐火原料粉末を底板
回転式造粒機に装入し、バインダーを添加しなが
ら整形することを特徴とする耐火中空球の製造方
法。 2 耐火原料粉末がマグネシアを80重量部以上含
み、残部がアルミナセメント、シヤモツト、粘土
類、カルシア、炭酸マグネシウム、炭酸カルシウ
ム、シリカ及びアルミナからなる群から選択され
た1種または2種以上の成分である請求項1記載
の耐火中空球の製造方法。 3 耐火原料粉末がコージエライトを80重量部以
上含み、残部がアルミナセメント、シヤモツト、
粘土類、カルシア、炭酸マグネシウム、炭酸カル
シウム、シリカ及びアルミナからなる群から選択
された1種または2種以上の成分である請求項1
記載の耐火中空球の製造方法。 4 耐火原料粉末がジルコニアを80重量部以上含
み、残部がアルミナセメント、シヤモツト、粘土
類、カルシア、炭酸マグネシウム、炭酸カルシウ
ム、シリカ及びアルミナからなる群から選択され
た1種または2種以上の成分である請求項1記載
の耐火中空球の製造方法。
[Claims] 1. Core material decomposition, which consists of using a combustible substance as a core material, coating the surface of the core material with refractory powder, and then heating and thermally decomposing the coated core material to make it hollow. In the method for manufacturing refractory hollow spheres by the method, (a) the surface of the core material of a flammable substance is coated with a binder, (b) the refractory raw material powder is attached to the core material obtained in step (a), and (c) process
A method for producing a refractory hollow sphere, characterized in that the refractory raw material powder obtained in step (b) with remaining core material is charged into a bottom plate rotary granulator and shaped while adding a binder. 2. The refractory raw material powder contains 80 parts by weight or more of magnesia, and the remainder is one or more components selected from the group consisting of alumina cement, siyamoto, clays, calcia, magnesium carbonate, calcium carbonate, silica, and alumina. A method for manufacturing a refractory hollow sphere according to claim 1. 3. The refractory raw material powder contains 80 parts by weight or more of cordierite, and the remainder is alumina cement, siyamoto,
Claim 1: One or more components selected from the group consisting of clays, calcia, magnesium carbonate, calcium carbonate, silica, and alumina.
The method for manufacturing the refractory hollow sphere described. 4. The refractory raw material powder contains 80 parts by weight or more of zirconia, and the remainder is one or more components selected from the group consisting of alumina cement, siyamoto, clays, calcia, magnesium carbonate, calcium carbonate, silica, and alumina. A method for manufacturing a refractory hollow sphere according to claim 1.
JP1096219A 1989-04-18 1989-04-18 Production of refractory hollow sphere Granted JPH02277544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1096219A JPH02277544A (en) 1989-04-18 1989-04-18 Production of refractory hollow sphere

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1096219A JPH02277544A (en) 1989-04-18 1989-04-18 Production of refractory hollow sphere

Publications (2)

Publication Number Publication Date
JPH02277544A JPH02277544A (en) 1990-11-14
JPH0560980B2 true JPH0560980B2 (en) 1993-09-03

Family

ID=14159126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1096219A Granted JPH02277544A (en) 1989-04-18 1989-04-18 Production of refractory hollow sphere

Country Status (1)

Country Link
JP (1) JPH02277544A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0897745A4 (en) * 1996-02-20 2003-05-14 Mikuni Kogyo Kk Method for producing granulated material
JP4911762B2 (en) * 2006-10-16 2012-04-04 花王株式会社 Method for producing composite particles
JP5876235B2 (en) * 2010-06-09 2016-03-02 Agcセラミックス株式会社 Lightweight fireproof aggregate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945773A (en) * 1972-09-04 1974-05-01 Seiko Instr & Electronics Denkidokei no hatsuteikiko
JPS55109258A (en) * 1979-02-10 1980-08-22 Kautsuzu Refurakutoriizu Ltd Improved refractory composition
JPS5921651A (en) * 1982-07-28 1984-02-03 Chisso Corp Ester derivative of 4'-fluorophenyl 2-chloro-4- hydroxybenzoate
JPS59209455A (en) * 1983-05-11 1984-11-28 Nagao Soda Kk Heat insulating material for molten metal
JPS6025182A (en) * 1983-07-20 1985-02-07 松下電器産業株式会社 Electromagnetic cooking device
JPS6055176A (en) * 1983-09-06 1985-03-30 日本鋼管株式会社 Construction of composite structural storage tank
JPS61215238A (en) * 1985-03-19 1986-09-25 大同特殊鋼株式会社 Refractory heat insulator and manufacture

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945773A (en) * 1972-09-04 1974-05-01 Seiko Instr & Electronics Denkidokei no hatsuteikiko
JPS55109258A (en) * 1979-02-10 1980-08-22 Kautsuzu Refurakutoriizu Ltd Improved refractory composition
JPS5921651A (en) * 1982-07-28 1984-02-03 Chisso Corp Ester derivative of 4'-fluorophenyl 2-chloro-4- hydroxybenzoate
JPS59209455A (en) * 1983-05-11 1984-11-28 Nagao Soda Kk Heat insulating material for molten metal
JPS6025182A (en) * 1983-07-20 1985-02-07 松下電器産業株式会社 Electromagnetic cooking device
JPS6055176A (en) * 1983-09-06 1985-03-30 日本鋼管株式会社 Construction of composite structural storage tank
JPS61215238A (en) * 1985-03-19 1986-09-25 大同特殊鋼株式会社 Refractory heat insulator and manufacture

Also Published As

Publication number Publication date
JPH02277544A (en) 1990-11-14

Similar Documents

Publication Publication Date Title
US4278544A (en) Filter medium for fluid
US4698317A (en) Porous cordierite ceramics, a process for producing same and use of the porous cordierite ceramics
US4039480A (en) Hollow ceramic balls as automotive catalysts supports
US4255197A (en) Process for obtaining refractory materials with controlled characteristics of porosity and density
JP7414528B2 (en) Methods for producing insulation materials or insulation products for the refractory industry, corresponding insulation materials and products, and uses
KR20050058478A (en) Synthetic hollow microspheres
KR20060024378A (en) Methods for producing low density products
CN108602113B (en) Refractory composite particles and feeder elements and corresponding methods and applications
US9181136B2 (en) Method for producing hollow bodies having enclosed freely displaceable particles
WO1999065842A1 (en) Insulating refractory material
CN110891917B (en) Method for preparing composite particles and for preparing insulating material for insulating products of the building material industry and corresponding uses
JP2021183871A (en) Heat insulating material containing spherical and hollow inorganic particles
JPH0151455B2 (en)
KR19980703345A (en) Lightweight sprayable tundish lining composition
JPH04124073A (en) Zirconia-based complex refractory and heat-insulating material
EP1443031A1 (en) Thermally insulating coating material for refractory containing carbon
JPH0560980B2 (en)
JPS6131315A (en) Production of alumina balloon
JPH0292880A (en) Production of heat resistant and porous acoustical material
JPH0661603B2 (en) Method for manufacturing molten metal heat insulating material
JPH02243753A (en) Thermal spraying material and its production
Sodeyama et al. Preparation and utilization of fine expanded perlite
JPH0417900B2 (en)
TW380127B (en) A kind of manufacturing method for light foam ceramics
JPH01126281A (en) Molded body made of lightweight heat-insulating pottery