JPH0227614A - Laminated structure of oxide superconductive thin film - Google Patents

Laminated structure of oxide superconductive thin film

Info

Publication number
JPH0227614A
JPH0227614A JP63177544A JP17754488A JPH0227614A JP H0227614 A JPH0227614 A JP H0227614A JP 63177544 A JP63177544 A JP 63177544A JP 17754488 A JP17754488 A JP 17754488A JP H0227614 A JPH0227614 A JP H0227614A
Authority
JP
Japan
Prior art keywords
oxide
thin film
superconducting thin
intermediate layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63177544A
Other languages
Japanese (ja)
Inventor
Kozo Fujino
耕三 藤野
Takeshi Kobayashi
猛 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP63177544A priority Critical patent/JPH0227614A/en
Publication of JPH0227614A publication Critical patent/JPH0227614A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain stably superconducting characteristics by forming an intermediate layer of an oxide that has an excellent adhesion with both of a substrate and an oxide superconducting thin film. CONSTITUTION:The intermediate layer 4 is formed with such an oxide that has an excellent adhesion with both of the substrate 2 and the oxide superconducting thin film 6 as ITO, tin oxide and zinc oxide. Since the intermediate layer 4 is formed with ITO, tin oxide and the zinc oxide in such a manner, the intermediate layer 4 thereof may be closely stuck in an excellent state not only to the oxide superconducting thin film 6 but also to the substrate 1. Further, a stability of characteristics of the oxide superconducting thin film 6 may be maintained by an oxygen composition in the oxide forming the intermediate layer 4.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、酸化物超伝導体の薄膜(超伝導薄膜)の積層
構造に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a stacked structure of oxide superconductor thin films (superconducting thin films).

(従来の技術) 一般に、酸化物超伝導体にあっては、その優れた超伝導
特性を得る上で単結晶構造であることが好ましいことと
、単結晶構造である方が、エピタキシャル成長の促進に
優れていることから、基板上にエピタキシャル成長させ
てなる酸化物超伝導薄膜の構造のものが知られている。
(Prior art) In general, for oxide superconductors, it is preferable to have a single crystal structure in order to obtain excellent superconducting properties, and a single crystal structure is better for promoting epitaxial growth. Due to its excellent properties, a structure of an oxide superconducting thin film formed by epitaxial growth on a substrate is known.

ところで、酸化物超伝導薄膜をエピタキシャル成長させ
るために用いられる基板の材料としては、超伝導体と同
じような結晶構造を持つチタン酸ストロンチウム(5r
TiOs)とか酸化マグネシウム(MgO)などがある
が、これらの基板材料は高価であるという問題があり、
量産には適していないといえる。
By the way, the substrate material used for epitaxial growth of oxide superconducting thin films is strontium titanate (5r), which has a crystal structure similar to that of superconductors.
TiOs) and magnesium oxide (MgO), but these substrate materials have the problem of being expensive.
It can be said that it is not suitable for mass production.

一方、酸化物超伝導薄膜のエピタキシャル成長の基板材
料としては半導体技術分野で多用される安価なシリコン
系のものを用いることが考えられるが、単にシリコン系
基板の上に直接、酸化物超伝導薄膜をエピタキシャル成
長させたのでは、6゜0℃〜900℃といった高温熱処
理過程において、その基板と酸化物超伝導薄膜との両者
間の線膨張率の相違による熱歪みの問題と、またその両
者間の化学反応による相互拡散が発生するなどの不具合
があって採用することができない。このことは、超伝導
薄膜が変色しているという外観上からも明らかである。
On the other hand, it is conceivable to use an inexpensive silicon-based material that is often used in the semiconductor technology field as a substrate material for epitaxial growth of an oxide superconducting thin film, but it is possible to simply grow an oxide superconducting thin film directly on a silicon-based substrate. With epitaxial growth, there are problems of thermal distortion due to the difference in coefficient of linear expansion between the substrate and the oxide superconducting thin film during the high temperature heat treatment process of 6°0°C to 900°C, and chemical problems between the two. It cannot be used because of problems such as mutual diffusion due to reaction. This is also clear from the appearance that the superconducting thin film is discolored.

そこで、従来技術の1つとして、そのシリコン系基板上
に結晶性を問わない白金膜を中間層としてスパッタリン
グ法で形成し、その白金膜の上に酸化物超伝導薄膜をエ
ピタキシャル成長させることで前記熱歪みとか相互拡散
などの不具合のない安価な積層構造のものとした技術も
提案されている。
Therefore, as one of the conventional techniques, a platinum film of any crystallinity is formed as an intermediate layer on the silicon substrate by sputtering, and an oxide superconducting thin film is epitaxially grown on the platinum film. Techniques have also been proposed that use an inexpensive laminated structure free from defects such as distortion and interdiffusion.

(発明が解決しようとする課題) ところで、上記のような従来の酸化物超伝導薄膜の積層
構造にあっては、第1に中間層である白金膜は酸化物超
伝導薄膜に対する密着性に優れてはいるものの、シリコ
ン系基板に対する密着性に劣るという問題と、第2に白
金膜では安定した酸化物超伝導特性が得られないという
問題とがあることが判明した。
(Problems to be Solved by the Invention) In the conventional laminated structure of oxide superconducting thin films as described above, firstly, the platinum film serving as the intermediate layer has excellent adhesion to the oxide superconducting thin film. However, it has been found that there are two problems: the adhesion to silicon-based substrates is poor, and the second problem is that stable oxide superconducting properties cannot be obtained with platinum films.

そこで、本発明者は上記問題点に鑑みて種々の検討を重
ねた結果、酸化インジウム・スズ(ITO)、酸化スズ
、酸化亜鉛等の酸化物が酸化物超伝導薄膜のみならず基
板のいずれに対しても密着性に優れていること、かつそ
れらが酸素成分を含むことにより安定した超伝導特性が
得られるという事実を知見した。
Therefore, as a result of various studies in view of the above problems, the present inventors found that oxides such as indium tin oxide (ITO), tin oxide, and zinc oxide can be used not only in oxide superconducting thin films but also in substrates. It was discovered that they have excellent adhesion to other materials, and that stable superconducting properties can be obtained because they contain an oxygen component.

本発明は、上記知見に基づいて上記課題を解決した安価
な酸化物超伝導薄膜の積層構造を提供することを目的と
している。
An object of the present invention is to provide an inexpensive laminated structure of oxide superconducting thin films that solves the above problems based on the above findings.

(課題を解決するための手段) このような目的を達成するために、本発明の酸化物超伝
導薄膜の積層構造においては、中間層をITO,酸化ス
ズ、酸化亜鉛等のように、基板と酸化物超伝導薄膜との
いずれに対しても密着性に優れた酸化物で構成したこと
を特徴としている。
(Means for Solving the Problems) In order to achieve such an object, in the laminated structure of the oxide superconducting thin film of the present invention, the intermediate layer is made of ITO, tin oxide, zinc oxide, etc., with the substrate. It is characterized by being made of an oxide that has excellent adhesion to both oxide superconducting thin films.

(作用) 中間層がrTO1酸化スズ、酸化亜鉛等の酸化物で構成
されているから、酸化物超伝導薄膜のみならず基板に対
してもその中間層が良好に密着し、かつ、その中間層を
構成する酸化物中の酸素成分により酸化物超伝導薄膜の
超伝導特性が安定化する。
(Function) Since the intermediate layer is composed of oxides such as rTO1 tin oxide and zinc oxide, the intermediate layer adheres well not only to the oxide superconducting thin film but also to the substrate. The superconducting properties of the oxide superconducting thin film are stabilized by the oxygen component in the oxide that constitutes the oxide.

(実施例) 以下、本発明の実施例を図面を参照して詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の実施例に係る酸化物超伝導薄膜の積層
構造の断面図である。第1図において、符号2はガラス
基板、4はガラス基板2の上に設けられたITOによる
中間層、6はその中間層4上にエピタキシャル成長され
たY−Ba−Cu−0等の酸化物超伝導薄膜である。
FIG. 1 is a cross-sectional view of a laminated structure of an oxide superconducting thin film according to an embodiment of the present invention. In FIG. 1, reference numeral 2 denotes a glass substrate, 4 an intermediate layer made of ITO provided on the glass substrate 2, and 6 an oxide superstructure such as Y-Ba-Cu-0 epitaxially grown on the intermediate layer 4. It is a conductive thin film.

上記構造の製造手順について説明する。まずガラス基板
2の上に透明導電性酸化物であるfTOを、例えばガラ
ス基板2を300℃の高温で加熱しながら真空蒸着法で
堆積する。次いで、これにより、膜厚3000オングス
トロームで約80%の可視光の透過率を有するITOの
中間層4を得る。その中間層4の上にRFマグネトロン
スパッター法でもって高温酸化物超伝導体であるY−B
a −Cu−0を積層させることで、酸化物超伝導薄膜
6が得られる。このとき、熱歪みの影響で超伝導膜にク
ラックが生じるという報告があるが、ガラス基板として
、酸化物超伝導体と同じ熱膨張率を持つソーダライムガ
ラスを用いるとクラックは全くみられなかった。
The manufacturing procedure of the above structure will be explained. First, fTO, which is a transparent conductive oxide, is deposited on the glass substrate 2 by vacuum evaporation while heating the glass substrate 2 at a high temperature of 300° C., for example. This then yields an ITO intermediate layer 4 having a thickness of 3000 angstroms and a visible light transmittance of about 80%. A high temperature oxide superconductor Y-B is formed on the intermediate layer 4 by RF magnetron sputtering.
By stacking a-Cu-0, an oxide superconducting thin film 6 is obtained. At this time, there are reports that cracks occur in the superconducting film due to the effects of thermal strain, but when soda lime glass, which has the same coefficient of thermal expansion as the oxide superconductor, was used as the glass substrate, no cracks were observed at all. .

上記構造においては、中間層4がITOで構成されてい
るから、ガラス基板2と酸化物超伝導薄膜6とのいずれ
に対してもその中間層4が良好に密着させられ、かつ、
その酸素成分により酸化物超伝導薄膜6の超伝導特性が
安定化する。
In the above structure, since the intermediate layer 4 is made of ITO, the intermediate layer 4 can be brought into good contact with both the glass substrate 2 and the oxide superconducting thin film 6, and
The oxygen component stabilizes the superconducting properties of the oxide superconducting thin film 6.

本実施例におけるY−Ba−Cu−0/I To/ガラ
ス構造でY −B a −Cu −0の酸化物超伝導薄
膜もが超伝導転移した実例を第3図の電気抵抗変化曲線
に示す。第3図において縦軸は電気抵抗値、横軸は絶対
温度をそれぞれ示しているとともに、Telは熱伝導転
移の始まり、Tc2は熱伝導転移の終わりを示している
An example of the superconducting transition of the Y-Ba-Cu-0 oxide superconducting thin film in the Y-Ba-Cu-0/I To/glass structure in this example is shown in the electrical resistance change curve in Figure 3. . In FIG. 3, the vertical axis indicates the electrical resistance value, and the horizontal axis indicates the absolute temperature, and Tel indicates the beginning of the thermal conduction transition, and Tc2 indicates the end of the thermal conduction transition.

また、中間層4として透明性を有するITOを用いたか
ら、酸化物超伝導薄膜6からの発光の検出が可能である
Furthermore, since transparent ITO is used as the intermediate layer 4, it is possible to detect light emission from the oxide superconducting thin film 6.

なお、その酸化物超伝導薄膜6の上に第2図に示すよう
に、さらにITOでもって保護・中間層8を形成した場
合は、酸化物超伝導薄膜4からの発光は中間層4からも
保護・中間層8からのいずれからも検出可能となって、
この発光現象を利用して例えばこの酸化物超伝導薄膜の
積層構造を論理素子として用いることができる。また、
上記実施例では中間層4の材料としてITOを選定した
が、ITOではなく酸化スズ、酸化亜鉛等の他の酸化物
材料であってもよい。さらに、上記実施例では基板材料
としてそのガラスを用いたが、シリコン系とか鉄、ステ
ンレス等の他の材料で基板を構成してもよい。
Note that if a protective/intermediate layer 8 is further formed using ITO on the oxide superconducting thin film 6 as shown in FIG. It can be detected from either the protection/intermediate layer 8,
By utilizing this light-emitting phenomenon, for example, the laminated structure of this oxide superconducting thin film can be used as a logic element. Also,
In the above embodiment, ITO was selected as the material for the intermediate layer 4, but other oxide materials such as tin oxide and zinc oxide may be used instead of ITO. Further, although glass is used as the substrate material in the above embodiments, the substrate may be made of other materials such as silicon, iron, stainless steel, etc.

(発明の効果) 以上説明したことから明らかなように本発明によれば、
中間層を基板と酸化物超伝導薄膜とのいずれに対しても
密着性に優れた酸化物で構成したから、基板材料として
は安価なガラス基板とかシリコン系基板を用いることが
可能となり、その結果、基板と中間層との密着性が良好
でかつ安定した超伝導特性が得られる酸化物超伝導薄膜
の積層構造を安価に提供することができる。
(Effects of the Invention) As is clear from the above explanation, according to the present invention,
Since the intermediate layer is made of an oxide that has excellent adhesion to both the substrate and the oxide superconducting thin film, it is possible to use an inexpensive glass substrate or silicon-based substrate as the substrate material, and as a result, , a laminated structure of oxide superconducting thin films that has good adhesion between the substrate and the intermediate layer and provides stable superconducting properties can be provided at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る酸化物超伝導薄膜の積層
構造の断面図、第2図は他の実施例に係る酸化物超伝導
薄膜の積層構造の断面図、第3図は実施例における電気
抵抗変化曲線である。 2・・・ガラス基板、4・・・中間層、6・・・酸化物
超伝導薄膜。
FIG. 1 is a cross-sectional view of a laminated structure of an oxide superconducting thin film according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a laminated structure of an oxide superconducting thin film according to another embodiment, and FIG. 3 is a cross-sectional view of a laminated structure of an oxide superconducting thin film according to another embodiment. It is an electrical resistance change curve in an example. 2... Glass substrate, 4... Intermediate layer, 6... Oxide superconducting thin film.

Claims (4)

【特許請求の範囲】[Claims] (1)基板上に中間層を介して酸化物超伝導薄膜を形成
させてなるものであって、 その中間層として前記基板と酸化物超伝導薄膜とのいず
れに対しても密着性に優れた酸化物で構成したことを特
徴とする酸化物超伝導薄膜の積層構造。
(1) An oxide superconducting thin film is formed on a substrate via an intermediate layer, and the intermediate layer has excellent adhesion to both the substrate and the oxide superconducting thin film. A laminated structure of oxide superconducting thin films characterized by being composed of oxides.
(2)前記基板をガラス基板で構成した請求項(1)に
記載の酸化物超伝導薄膜の積層構造。
(2) The laminated structure of the oxide superconducting thin film according to claim (1), wherein the substrate is a glass substrate.
(3)前記基板をシリコン系基板で構成した請求項(1
)に記載の酸化物超伝導薄膜の積層構造。
(3) Claim (1) wherein the substrate is made of a silicon-based substrate.
) Laminated structure of oxide superconducting thin films.
(4)前記酸化物が酸化インジウム・スズ、酸化スズ、
あるいは酸化亜鉛である請求項(1)、(2)または(
3)に記載の酸化物超伝導薄膜の積層構造。
(4) The oxide is indium tin oxide, tin oxide,
or claim (1), (2) or (
3) Laminated structure of the oxide superconducting thin film.
JP63177544A 1988-07-15 1988-07-15 Laminated structure of oxide superconductive thin film Pending JPH0227614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63177544A JPH0227614A (en) 1988-07-15 1988-07-15 Laminated structure of oxide superconductive thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63177544A JPH0227614A (en) 1988-07-15 1988-07-15 Laminated structure of oxide superconductive thin film

Publications (1)

Publication Number Publication Date
JPH0227614A true JPH0227614A (en) 1990-01-30

Family

ID=16032806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63177544A Pending JPH0227614A (en) 1988-07-15 1988-07-15 Laminated structure of oxide superconductive thin film

Country Status (1)

Country Link
JP (1) JPH0227614A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309767B1 (en) 1997-10-29 2001-10-30 Siemens Aktiengesellschaft Superconductor structure with glass substrate and high-temperature superconductor deposited thereon, current limiter device having the superconductor structure and process for producing the structure
JP2008303082A (en) * 2007-06-05 2008-12-18 Kagoshima Univ Interlayer of orientational substrate for forming epitaxial film and orientational substrate for forming epitaxial film
CN110291597A (en) * 2017-02-14 2019-09-27 住友电气工业株式会社 Superconducting wire and superconducting coil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6309767B1 (en) 1997-10-29 2001-10-30 Siemens Aktiengesellschaft Superconductor structure with glass substrate and high-temperature superconductor deposited thereon, current limiter device having the superconductor structure and process for producing the structure
JP2008303082A (en) * 2007-06-05 2008-12-18 Kagoshima Univ Interlayer of orientational substrate for forming epitaxial film and orientational substrate for forming epitaxial film
EP2000566A3 (en) * 2007-06-05 2012-01-18 Chubu Electric Power Co., Inc. Interlayer of orientational substrate and orientational substrate for forming epitaxial film
CN110291597A (en) * 2017-02-14 2019-09-27 住友电气工业株式会社 Superconducting wire and superconducting coil
CN110291597B (en) * 2017-02-14 2021-04-30 住友电气工业株式会社 Superconducting wire and superconducting coil

Similar Documents

Publication Publication Date Title
JPS62122011A (en) Transparent conducting film and manufacture of the same
JPH03150218A (en) Production of superconductive thin film
CN111785440A (en) Preparation method of ITO thin film and ITO transparent conductive glass
JPH056766B2 (en)
JPH1083719A (en) Transparent conductive film
JPH0227614A (en) Laminated structure of oxide superconductive thin film
JP2000108244A (en) Transparent conductive film, its manufacture, and base having transparent conductive film
JPS63283086A (en) Manufacture of superconducting thin film
Case A novel deposition technique for switchable vanadium sesquioxide (V2O3) thin films
KR101816972B1 (en) Transparent electrode with TiO2/Ag/TiO2 multilayered structure and method for preparing the same
JPS6463297A (en) El element
JPH01152770A (en) Substrate with superconducting thin-film
JPH0244782A (en) Superconductive element and manufacture thereof
JPH05290635A (en) Transparent conductive electrode and manufacture thereof
JPH03166776A (en) Tunnel junction element and manufacture thereof
JPH0539644Y2 (en)
JPH0199268A (en) Manufacture of anisotropic oxide superconductor thin film
JPS63274190A (en) Superconducting thin film
CA2065625A1 (en) Process for patterning layered thin films including a superconductor layer
JPS63236794A (en) Production of superconductive thin film of oxide
Kaneko et al. Single domain epitaxial growth of yttria-stabilized zirconia on Si (1 1 1) substrate
JP2983685B2 (en) Method for manufacturing superconducting device
JPH06150724A (en) Transparent conductive film and manufacture thereof
JP2913653B2 (en) Oxide superconducting thin film structure
JPH03257100A (en) Orientation property crystal film