JPH02274876A - Formation of thin hard carbon film - Google Patents

Formation of thin hard carbon film

Info

Publication number
JPH02274876A
JPH02274876A JP9576189A JP9576189A JPH02274876A JP H02274876 A JPH02274876 A JP H02274876A JP 9576189 A JP9576189 A JP 9576189A JP 9576189 A JP9576189 A JP 9576189A JP H02274876 A JPH02274876 A JP H02274876A
Authority
JP
Japan
Prior art keywords
film
film formation
acceleration voltage
substrate
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9576189A
Other languages
Japanese (ja)
Other versions
JP2676903B2 (en
Inventor
Yuichi Nakagami
裕一 中上
Hideo Kurokawa
英雄 黒川
Tsutomu Mitani
力 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9576189A priority Critical patent/JP2676903B2/en
Publication of JPH02274876A publication Critical patent/JPH02274876A/en
Application granted granted Critical
Publication of JP2676903B2 publication Critical patent/JP2676903B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a thin hard carbon film having adhesion to the material of a substrate by reducing ion acceleration voltage in accordance with the increase of the thickness of a film during film formation. CONSTITUTION:Gaseous methane or benzene as gaseous starting material is introduced into an ionization chamber 3 from gas inlets 1. Molecules of the gaseous starting material repeat collision with thermoelectrons emitted from a hot filament 2 and separation to generate carbon ions. These carbon ions are accelerated with ion acceleration voltage dependent on negative voltage impressed on a substrate 5. The ion acceleration voltage is reduced in accordance with the increase of the thickness of a film during film formation and a thin hard carbon film is formed. The ion acceleration voltage is preferably regulated to about >=3,000V in the early stage of film formation and to about 100 to 1,000V at the end of film formation.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は硬質炭素薄膜の形成法に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a method of forming a hard carbon thin film.

従来の技術 従来より、工具等の耐摩耗表面保護にはSICやTIN
等の炭化物、窒化物をはじめとして多くの硬質薄膜が用
いられてきた。しかし、最近、さらに耐摩耗性を有する
ダイヤモンド状炭素薄膜(旧amond口ke Car
bon:D L C+以下DLC膜という)が注目をあ
びている。DLC膜は非晶質であるが、物性がダイヤモ
ンドに近いため、電気的や光学的にも多方面への応用展
開の可能性を有している。DLC膜の硬度が条件により
ヌープ硬度で5000Kg/am”以上にもなることや
、酸等の薬品に対する化学的安定性、耐腐食性も備わっ
ていることから保護膜としてはもっとも適した材料であ
る。
Conventional technology Traditionally, SIC and TIN have been used to protect the wear-resistant surfaces of tools, etc.
Many hard thin films including carbides and nitrides have been used. However, recently, diamond-like carbon thin films (formerly known as diamond-like carbon films), which have even more wear resistance, have been developed.
bon:DLC+ (hereinafter referred to as DLC film) is attracting attention. Although the DLC film is amorphous, its physical properties are close to those of diamond, so it has the potential to be applied in many electrical and optical fields. It is the most suitable material for a protective film because the hardness of the DLC film can exceed 5,000 Kg/am on the Knoop hardness depending on the conditions, and it also has chemical stability against chemicals such as acids and corrosion resistance. .

DLC膜の代表的な形成法にイオンのもつ運動エネルギ
ーを膜形成に利用したイオンビーム法がある。これは、
真空中で炭素源をイオン化して、電界で加速し、基体に
成膜するものである。この方法によると、低温でも容易
にDLCが成膜できるのが特徴である。ところが、DL
C膜は一般に基体との付着性が弱いためその実用化も遅
れている。これはダイヤモンド結合を有するDLC膜が
基体との界面で化学結合あるいは原子の拡散が行なわれ
にクク、そのために基体界面における結合力が弱いとい
うDLC自身の欠点がある。特に、工具等、局部に負荷
のかかるようなものの表面に被覆した場合には、容易に
基体からの剥離を生ずる。
A typical method for forming a DLC film is an ion beam method that utilizes the kinetic energy of ions for film formation. this is,
A carbon source is ionized in a vacuum, accelerated by an electric field, and then deposited on a substrate. This method is characterized in that DLC can be easily formed even at low temperatures. However, DL
Since C films generally have weak adhesion to substrates, their practical application has been delayed. This is because the DLC film having diamond bonds does not undergo chemical bonding or atomic diffusion at the interface with the substrate, and as a result, the bonding force at the substrate interface is weak, which is a drawback of DLC itself. Particularly, when the coating is applied to the surface of an object such as a tool that is subjected to local loads, it easily peels off from the substrate.

そこで、基体との付着強度を強化する方法として多くの
試みがなされている。たとえば、特開昭82−4148
0公報では基体と保護層の間に中間層を設ける等多層膜
形成することで膜の付着力を向上している。しかし、こ
のような方法は実用化を考慮した場合、成膜プロセスの
複雑化につながるため、あまり望ましいものとはいえな
い。
Therefore, many attempts have been made to improve the adhesive strength with the substrate. For example, JP-A-82-4148
In Publication No. 0, the adhesion of the film is improved by forming a multilayer film such as providing an intermediate layer between the substrate and the protective layer. However, such a method is not very desirable when considering practical use because it leads to a complicated film formation process.

発明が解決しようとする課題 DLC膜の内部には成膜中に内部応力が存在しており、
基体界面の付着強度の弱さもあいまって、膜の剥離ある
いはクラックを生じさせる原因となる。また、膜厚の増
加によって、内部応力も増大するので、膜が厚くできな
いといった問題がある。
Problems to be Solved by the Invention Internal stress exists inside the DLC film during film formation.
Combined with the weak adhesion strength at the substrate interface, this causes peeling or cracking of the film. Furthermore, as the film thickness increases, internal stress also increases, so there is a problem that the film cannot be made thicker.

したがって、簡単なプロヤスで内部応力を低減し、膜の
付着性を向上し、かつ厚いDLC膜を実現することか困
難であった。
Therefore, it has been difficult to reduce internal stress, improve film adhesion, and realize a thick DLC film using a simple process.

本発明は、このような従来技術の課題を解決することを
目的とする。
The present invention aims to solve the problems of the prior art.

課題を解決するための手段 本発明は、成膜初期にはイオンの加速電圧を高い状態に
して成膜を行い、その後、成膜しながら電圧を連続的に
減少させ、再び電圧を一定に保持して成膜するものであ
る。
Means for Solving the Problems The present invention performs film formation with a high ion accelerating voltage in the initial stage of film formation, then continuously decreases the voltage while forming the film, and then holds the voltage constant again. The film is formed by

作用 成膜されるDLC膜の膜質(内部応力、硬度)はイオン
の加速電圧に強く依存する。イオンは自身がもつ電荷と
反応系内の電極との間に生じるクーロン力によって加速
される。加速されたイオンはその電圧が大きいほど高エ
ネルギーをもって基板に衝突する。したがって、これら
のイオンは基板表面に到達し、マイグレーシロンによっ
て膜が形成されるとともにに膜に損傷を与えることにな
る。本発明においては膜硬度はイオンの加速電圧に対し
ては数百ボルトの低電圧で最大となっており、高電圧で
は硬度は低下する。内部応力は高電圧はど低減されて基
板との付着性が向上するという傾向がある。DLC膜の
硬度と内部応力はイオンの加速電圧に対して相反する性
質があり、成膜中にこの加速電圧を適時制御することに
よって、基体界面近傍と表面近傍でおのおのを最適な条
件を溝たして成膜すればよい。
The film quality (internal stress, hardness) of the DLC film that is formed depends strongly on the ion accelerating voltage. Ions are accelerated by the Coulomb force generated between their own charges and the electrodes in the reaction system. The accelerated ions collide with the substrate with higher energy as the voltage increases. Therefore, these ions reach the substrate surface, form a film due to migration, and damage the film. In the present invention, the film hardness is maximum at a low voltage of several hundred volts with respect to the ion accelerating voltage, and the hardness decreases at a high voltage. Internal stresses tend to be reduced at high voltages and adhesion to the substrate is improved. The hardness and internal stress of the DLC film have contradictory properties with respect to the ion accelerating voltage, and by controlling this accelerating voltage appropriately during film formation, it is possible to achieve the optimum conditions for each near the substrate interface and near the surface. The film may be formed by

すなわち、DLC膜の界面から膜厚方向に内部応力を低
減した膜層を成膜することによりもっとも剥離が生じや
すい界面付近で、基板との付着性を強くすることができ
る。′内部応力低減のためのイオンの加速電圧は300
0V以上の高電圧が望ましい。
That is, by forming a film layer with reduced internal stress in the film thickness direction from the interface of the DLC film, it is possible to strengthen the adhesion with the substrate near the interface where peeling is most likely to occur. 'Ion acceleration voltage to reduce internal stress is 300
A high voltage of 0V or higher is desirable.

その後、加速電圧を連続的に徐々に減少していき膜内部
の内部応力、硬度を膜厚方向に微視的な範囲で徐徐に変
化させつつ、成膜を続行する。成膜終了段階で所定の加
速電圧に到達して、表面近傍に硬質膜層を形成し、成膜
を終了する。硬質膜層を形成するための加速電圧は望ま
しくは100〜tooovの低い電圧の範囲あるのがよ
い。このように連続的にイオンの加速電圧を制御するプ
ロセスを導入することにより、基板とDLC膜の付着性
を保ちつつ、膜の硬質化を実現することができる。
Thereafter, the accelerating voltage is continuously and gradually reduced to gradually change the internal stress and hardness inside the film in a microscopic range in the film thickness direction, and film formation is continued. At the end stage of film formation, a predetermined acceleration voltage is reached, a hard film layer is formed near the surface, and film formation is completed. The accelerating voltage for forming the hard film layer is preferably in the low voltage range of 100 to tooov. By introducing a process of continuously controlling the ion accelerating voltage in this way, it is possible to harden the film while maintaining the adhesion between the substrate and the DLC film.

実施例 以下に、本発明の実施例について図面を参照しながら説
明する。
Examples Examples of the present invention will be described below with reference to the drawings.

第1図は本発明に用いたDLC膜形成装置の概略を示す
構造図である。炭素薄膜の成膜はガス導入口1から原料
ガスのメタンあるいはベンゼンを導入し、管内圧力0.
005Torrに保つ。内証のフィラメント2から放出
される熱電子と衝突分解電離を繰り返した原料ガス分子
が炭素イオンを生成する。
FIG. 1 is a structural diagram schematically showing a DLC film forming apparatus used in the present invention. To form a carbon thin film, methane or benzene as a raw material gas is introduced from the gas inlet 1, and the pressure inside the tube is 0.
Maintain at 0.005 Torr. Raw material gas molecules that undergo repeated collision decomposition and ionization with thermoelectrons emitted from the internal filament 2 generate carbon ions.

イオン化室3の外周にはコイル4を設置して、磁場によ
りイオン化率を高めた。本発明で述べているイオンの加
速電圧は基板5に印加する負電圧により決定される。ま
た、成膜速度はイオンの加速電圧に無関係に一定である
ことから、成膜膜厚は成膜時間によってモニターできる
。基板にはシリコンを用いた。
A coil 4 was installed around the outer periphery of the ionization chamber 3, and the ionization rate was increased by a magnetic field. The ion acceleration voltage described in the present invention is determined by the negative voltage applied to the substrate 5. Furthermore, since the film formation rate is constant regardless of the ion accelerating voltage, the film thickness can be monitored by the film formation time. Silicon was used for the substrate.

第2図は前記方法において成膜したDLC膜のヌープ硬
度とイオンの加速電圧の関係を示したグラフである。原
料ガスをメタンにした場合。イオ7(7)加速電圧20
0〜3QOVT!最高硬度3000〜4000Kg/■
2を示す。印加電圧の増加によって膜硬度は軟質化した
。これはイオンのもつ運動エネルギーが大きい程膜内部
にダイヤモンド結合の生成が困難になると考えられる。
FIG. 2 is a graph showing the relationship between the Knoop hardness of the DLC film formed by the method described above and the ion acceleration voltage. When the raw material gas is methane. Io7 (7) acceleration voltage 20
0~3QOVT! Maximum hardness 3000-4000Kg/■
2 is shown. The film hardness softened as the applied voltage increased. This is thought to be because the greater the kinetic energy of the ions, the more difficult it is to form diamond bonds within the film.

ベンゼンを原料にもちいた場合も700V付近で硬度が
5000−8000Kg/am”の最大値を示し、電圧
の増加によって硬度は低下する傾向を示す。ただし、ベ
ンゼンの場合、1分子あたり含有する炭素数がメタンに
比べて多いため、1炭素原子がもつエネルギーは小さく
、膜自体におよぼす損傷も小さくてすむ。したがって、
ベンゼンのほうが硬質のDLC膜が実現できる。これら
の試料の膜厚はすべて約1μmとした。
Even when benzene is used as a raw material, the hardness shows a maximum value of 5000-8000 Kg/am'' around 700V, and the hardness tends to decrease as the voltage increases.However, in the case of benzene, the number of carbons contained per molecule Since there are more carbon atoms than methane, each carbon atom has less energy and less damage to the film itself.Therefore,
Benzene can produce a harder DLC film. The film thickness of all of these samples was approximately 1 μm.

第3図はDLC膜の内部応力とイオンの加速電圧の関係
を示したグラフである。原料の種類によらずイオンの加
速電圧tooov以下で約500にgems2の内部応
力が膜内部に生ずる。加速電圧の増加によって内部応力
は減少し、4000Vで100Kg/am”以下にまで
低減される。
FIG. 3 is a graph showing the relationship between the internal stress of the DLC film and the ion acceleration voltage. Regardless of the type of raw material, an internal stress of about 500 gems2 is generated inside the film when the ion acceleration voltage is tooov or less. The internal stress is reduced by increasing the accelerating voltage, and is reduced to less than 100 Kg/am'' at 4000V.

以下の実施例では、成膜中に、DLC膜の硬質化に適す
る加速電圧と内部応力低減に適する加速電圧を組合せ、
基板と付着性の良い硬質DLC膜を得たものを述べる。
In the following examples, during film formation, an accelerating voltage suitable for hardening the DLC film and an accelerating voltage suitable for reducing internal stress are combined,
A hard DLC film with good adhesion to the substrate will be described.

まず、第1の実施例として原料ガスにメタンを用いた場
合について述べる。第4図(イ)〜(ニ)は成膜時、イ
オンの加速電圧を減少する操作を成膜時間に対して示し
た成膜プロセスを示す図である。前述のように、管内圧
力を一定に保ち、以下に示す4通りの条件で加速電圧を
変えDLC膜を成膜した。
First, a case where methane is used as the raw material gas will be described as a first example. FIGS. 4(A) to 4(D) are diagrams showing a film forming process in which the operation of reducing the ion accelerating voltage during film forming is shown with respect to the film forming time. As described above, the DLC film was formed by keeping the pressure inside the tube constant and changing the accelerating voltage under the following four conditions.

(イ)成膜中、加速電圧300vの一定で30分行なっ
た場合である((イ)図参照)。
(A) This is the case where film formation was carried out for 30 minutes at a constant acceleration voltage of 300 V (see figure (A)).

(ロ)成膜中、加速電圧3000Vの一定で30分行な
った場合である((ロ)図参照)。
(B) This is the case where film formation was carried out for 30 minutes at a constant acceleration voltage of 3000 V (see figure (B)).

(ハ)成膜開始10分間(膜厚的0.34μmまで)3
000Vの一定とし、その後10分間(膜厚的0.68
μmまで)で徐々に減少して300Vとし、10分間こ
れを保持して終了する((ハ)図参照)。
(c) 10 minutes from the start of film formation (up to 0.34 μm in film thickness) 3
000V for 10 minutes (film thickness: 0.68
(up to μm) gradually decrease to 300V, hold this for 10 minutes, and finish (see figure (c)).

(ニ)成膜開始10分間(膜厚的0.34μmまで)3
000Vの一定とし、その後100分間(膜厚的3.7
μmまで)で徐々に減少して300Vとし10分間これ
を保持しトータルの成膜時間2時間で終了する((ニ)
図参照)。
(d) 10 minutes from the start of film formation (up to 0.34 μm in film thickness) 3
000V for 100 minutes (film thickness: 3.7
μm) gradually decreases to 300V and holds it for 10 minutes, completing the film formation in 2 hours ((d)
(see figure).

これらの条件で得た膜について、試料をヌープ硬度計で
評価した結果を第1表に示す。
Table 1 shows the results of evaluating the samples using a Knoop hardness tester for the films obtained under these conditions.

第1表 (イ)、(ロ)、(ハ)の条件で得た膜厚は、いずれも
約1μmであった。 (イ)の条件で成膜した場合、膜
の一部に剥離を生じ、表面には多くのクラックがみられ
硬度の測定は不可能であった。
The film thicknesses obtained under the conditions shown in Table 1 (a), (b), and (c) were all approximately 1 μm. When the film was formed under the conditions (a), part of the film peeled off and many cracks were observed on the surface, making it impossible to measure the hardness.

また、 (ロ)の方法ではヌープ硬度が2000Kg/
gm”であり、DLC膜の硬度としては低い。これらに
くらべて、 (ハ)の条件によると、硬度は3G(10
〜4000Kg/v++”を示し、付着性の良い硬質の
DLC膜が得られた。さらに、これらの試料をエメリー
ペーパーで擦ると(イ)は完全に剥離し、 (ロ)には
傷がついた。−(ハ)に異常はなかった。また、(ニ)
の条件で得た膜については、ヌープ硬度は3000〜4
000Kg/as’と(ハ)のものと同等であるが、内
部応力が低減されて、膜厚的4μmのものでも剥離はな
かった。
In addition, in method (b), the Knoop hardness is 2000 kg/
gm”, which is low as the hardness of DLC film.Compared to these, according to the condition (c), the hardness is 3G (10
〜4000Kg/v++'', and a hard DLC film with good adhesion was obtained.Furthermore, when these samples were rubbed with emery paper, (a) was completely peeled off, and (b) was scratched. - There was no abnormality in (c).Also, (d)
For the film obtained under the conditions, the Knoop hardness is 3000-4
000 Kg/as', which is equivalent to (c), but the internal stress was reduced and there was no peeling even with a film thickness of 4 μm.

次に第2の実施例として原料ガスにベンゼンを用いた場
合を示す。第5図には成膜時間に対する加速電圧の変化
を示す。第1の実施例の場合と同様条件を以下の4通り
に設定した。
Next, as a second example, a case where benzene is used as the raw material gas will be shown. FIG. 5 shows changes in accelerating voltage with respect to film formation time. Similar to the case of the first example, the following four conditions were set.

(イ)成膜中加速電圧は700vの一定で30分行なう
((イ)図参照)。
(a) During film formation, the acceleration voltage was kept constant at 700 V for 30 minutes (see figure (a)).

(ロ)成膜中加速電圧は3000Vの一定で30分行な
う((ロ)図参照)。
(B) During film formation, the acceleration voltage was kept constant at 3000 V for 30 minutes (see figure (B)).

(ハ)成膜開始10分間(M厚約0.5μmまで)30
00vの一定とし、その後10分間で(膜厚的1.0μ
mまで)徐々に減少して700vとじ10分間これを保
持して終了する((ハ)図参照)。
(c) 10 minutes from the start of film formation (up to M thickness of approximately 0.5 μm) 30
00V constant, then for 10 minutes (film thickness 1.0μ
m) gradually decrease to 700V and hold this for 10 minutes to finish (see figure (C)).

(ニ)成膜開始10分間(膜厚的0.5μmまで)30
00vの一定とし、その後100分間で(膜厚的5.5
μmまで)徐々に減少して700vとし10分間これを
保持してトータルの成膜時間2時間で終了する((ニ)
図参照)。結果を第2表に示す。
(d) 10 minutes from the start of film formation (up to 0.5 μm in film thickness) 30 minutes
00v constant, then for 100 minutes (film thickness 5.5
μm) gradually decrease to 700V and hold it for 10 minutes, completing the film formation in 2 hours ((d)
(see figure). The results are shown in Table 2.

第2表 (ホ)の条件では膜が剥離し、硬度の測定は不可能であ
った。 (へ)の条件では、ヌープ硬度3000〜40
00にg/mm2でありメタンの場合と同等の硬い膜が
得られている。 (ト)の条件ではヌープ硬度は500
0〜B000にg/em”と非常に硬い膜が得られてお
り、しかも基板との付着性もよい。 (チ)の条件で成
膜時間を延長して、膜厚6μmのDLCを成膜したが剥
離も見られず、硬度も5000〜ff000Kg/II
m”を示した。
Under the conditions shown in Table 2 (e), the film peeled off, making it impossible to measure the hardness. Under the conditions (to), Knoop hardness is 3000 to 40
00g/mm2, and a hard film equivalent to that of methane was obtained. Under the conditions (g), the Knoop hardness is 500
A very hard film of 0 to B000 g/em" was obtained, and the adhesion to the substrate was also good. The film forming time was extended under the condition (H) to form a DLC film with a thickness of 6 μm. However, no peeling was observed, and the hardness was 5000 to ff000Kg/II.
m” was shown.

発明の効果 本発明は、成膜中に、成膜膜厚に応じてイオンの加速電
圧を減少していくことにより、基板材料と付着性を保ち
つつ、硬質の炭素薄膜が形成できる。また、初期の加速
電圧を少なくとも3000v以上にすることにより、さ
らに膜内部の応力を低減して基体との付着性を向上し、
膜を厚く成膜できる。
Effects of the Invention According to the present invention, a hard carbon thin film can be formed while maintaining adhesion to the substrate material by decreasing the ion accelerating voltage according to the film thickness during film formation. In addition, by setting the initial accelerating voltage to at least 3000 V, the stress inside the film is further reduced and the adhesion to the substrate is improved.
A thick film can be formed.

このようなことから、本発明は耐摩耗性DLC膜被覆方
法としての工業的価値の高いものである。
For these reasons, the present invention has high industrial value as a method for coating a wear-resistant DLC film.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の硬質炭素薄膜の形成法に用
いた炭素薄膜の成膜装置の概略構造図、第2図は同実施
例におけるイオンの加速電圧と膜硬度の関係を示すグラ
フ、第3図は同実施例におけるイオンの加速電圧と膜の
内部応力の関係を示すグラフ、第4図は同実施例を行な
った成膜条件のプロセスを示すグラフ、第6図は第2の
実施例を行なった成膜条件のプロセスを示す図である。 1・・・ガス導入口、2・・・フィラメント、3・・・
イオン化室、 4・・・コイル、5・・・基板。 代理人の氏名 弁理士 粟野重孝はか1名第1図 第 図 第 因 イオンのP遭ノ1工fl/1 イオンのJff遣電、LCv+ 第 図 へ噴2時り■(分) 第 図 へ侯ff間(分) へ*vf間(分) へ暁時間(分) 六喚吟間(分)
Fig. 1 is a schematic structural diagram of a carbon thin film forming apparatus used in the method of forming a hard carbon thin film according to an embodiment of the present invention, and Fig. 2 shows the relationship between ion acceleration voltage and film hardness in the same embodiment. Graphs, Figure 3 is a graph showing the relationship between ion acceleration voltage and internal stress of the film in the same example, Figure 4 is a graph showing the process of film formation conditions under which the same example was carried out, and Figure 6 is a graph showing the relationship between the ion acceleration voltage and the internal stress of the film in the same example. FIG. 3 is a diagram showing the process of film forming conditions under which the example was carried out. 1... Gas inlet, 2... Filament, 3...
Ionization chamber, 4... Coil, 5... Substrate. Name of agent: Patent attorney Shigetaka Awano (1 person) Figure 1 Figure Figure 1 Ion's P encounter 1 engineering fl/1 Ion's Jff power dispatch, LCv+ Figure 2 2 o'clock ■ (minutes) Figure 1 Hou ff interval (minutes) To*Vf interval (minutes) To Akatsuki time (minutes) Rokukangin interval (minutes)

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも炭素を構成元素として含むガスを、1
0^−^2〜10^−^4Torrの減圧でイオン化し
、前記イオンを基板方向に加速しつつ、膜厚に応じて、
前記イオンの加速電圧を減少させながら成膜することを
特徴とする硬質炭素薄膜の形成法。
(1) A gas containing at least carbon as a constituent element is
Ionize under reduced pressure of 0^-^2 to 10^-^4 Torr, and while accelerating the ions toward the substrate, depending on the film thickness,
A method for forming a hard carbon thin film, characterized in that the film is formed while decreasing the acceleration voltage of the ions.
(2)成膜初期のイオンの加速電圧が3000V以上で
あることを特徴とする請求項1記載の硬質炭素薄膜の形
成法。
(2) The method for forming a hard carbon thin film according to claim 1, wherein the ion acceleration voltage at the initial stage of film formation is 3000 V or more.
(3)成膜終了時のイオンの加速電圧が100〜100
0Vの範囲にあることを特徴とする請求項1記載の硬質
炭素薄膜の形成法。
(3) Ion acceleration voltage at the end of film formation is 100 to 100
2. The method of forming a hard carbon thin film according to claim 1, wherein the voltage is in the range of 0V.
JP9576189A 1989-04-14 1989-04-14 Method of forming hard carbon thin film Expired - Fee Related JP2676903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9576189A JP2676903B2 (en) 1989-04-14 1989-04-14 Method of forming hard carbon thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9576189A JP2676903B2 (en) 1989-04-14 1989-04-14 Method of forming hard carbon thin film

Publications (2)

Publication Number Publication Date
JPH02274876A true JPH02274876A (en) 1990-11-09
JP2676903B2 JP2676903B2 (en) 1997-11-17

Family

ID=14146472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9576189A Expired - Fee Related JP2676903B2 (en) 1989-04-14 1989-04-14 Method of forming hard carbon thin film

Country Status (1)

Country Link
JP (1) JP2676903B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5370292A (en) * 1990-08-29 1994-12-06 Matsushita Electric Industrial Co., Ltd. Magnetic tape driving mechanism having a capstan with a surface made of carbon film including diamond-bonded carbons
US5378285A (en) * 1993-02-10 1995-01-03 Matsushita Electric Industrial Co., Ltd. Apparatus for forming a diamond-like thin film
US5455081A (en) * 1990-09-25 1995-10-03 Nippon Steel Corporation Process for coating diamond-like carbon film and coated thin strip

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5370292A (en) * 1990-08-29 1994-12-06 Matsushita Electric Industrial Co., Ltd. Magnetic tape driving mechanism having a capstan with a surface made of carbon film including diamond-bonded carbons
US5455081A (en) * 1990-09-25 1995-10-03 Nippon Steel Corporation Process for coating diamond-like carbon film and coated thin strip
US5378285A (en) * 1993-02-10 1995-01-03 Matsushita Electric Industrial Co., Ltd. Apparatus for forming a diamond-like thin film

Also Published As

Publication number Publication date
JP2676903B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
US5314652A (en) Method for making free-standing diamond film
JP2002541604A (en) Method and apparatus for depositing a diamond-like carbon coating from a Hall current ion source
EP2383366B1 (en) Method for producing diamond-like carbon membrane
CA2846434C (en) Stripping process for hard carbon coatings
JPH04374A (en) Production of hardened protective film on surface of plastic substrate
JPH02274876A (en) Formation of thin hard carbon film
JP3187487B2 (en) Article with diamond-like thin film protective film
JP3034241B1 (en) Method of forming high hardness and high adhesion DLC film
JP3355892B2 (en) Method of forming carbon film
JPH0784642B2 (en) Method for forming a film on the surface of an object to be treated
JP3205363B2 (en) Mold with diamond-like protective film
US5869390A (en) Method for forming electrode on diamond for electronic devices
JP2008174790A (en) Surface treatment method for metal fiber textile, and article obtained thereby
JP3130094B2 (en) Mold with diamond-like protective film
JP2852380B2 (en) Method for forming carbon or carbon-based coating
EP0651385A2 (en) Method for producing diamond-like carbon film and tape driving apparatus
JPH10265955A (en) Formation of carbonaceous highly functional material thin film by electron beam-excited plasma cvd
JP3056827B2 (en) Article having a diamond-like carbon protective film and method for producing the same
Ugolini et al. Direct ion beam deposition of polymeric styrene films and in situ characterization by electron spectroscopy
JPH08309100A (en) Iron and its production
WO2023105894A1 (en) Silicon nitride film forming method, film forming device, and silicon nitride film
JP2001107246A (en) Deposition of carbon film or film composed essentially of carbon
JP2775263B2 (en) Member covered with carbon film
JP2752225B2 (en) Method for synthesizing hard carbon film
US20140224768A1 (en) Method for removing hard carbon layers

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070725

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees