JP2752225B2 - Method for synthesizing hard carbon film - Google Patents

Method for synthesizing hard carbon film

Info

Publication number
JP2752225B2
JP2752225B2 JP2075214A JP7521490A JP2752225B2 JP 2752225 B2 JP2752225 B2 JP 2752225B2 JP 2075214 A JP2075214 A JP 2075214A JP 7521490 A JP7521490 A JP 7521490A JP 2752225 B2 JP2752225 B2 JP 2752225B2
Authority
JP
Japan
Prior art keywords
film
plasma
substrate
potential
synthesizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2075214A
Other languages
Japanese (ja)
Other versions
JPH03274270A (en
Inventor
裕一 中上
英雄 黒川
力 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2075214A priority Critical patent/JP2752225B2/en
Publication of JPH03274270A publication Critical patent/JPH03274270A/en
Application granted granted Critical
Publication of JP2752225B2 publication Critical patent/JP2752225B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は硬質炭素薄膜の合成方法に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to a method for synthesizing a hard carbon thin film.

従来の技術 従来より、工具等の耐摩耗表面保護にはSiCやTiN等の
炭化物、窒化物をはじめとして多くの硬質薄膜が用いら
れてきた。しかし、最近、さらに耐摩耗性の優れたダイ
ヤモンド状炭素薄膜(Diamond Like Carbon:DLC,以下DL
C膜)が注目をあびている。
2. Description of the Related Art Conventionally, many hard thin films including carbides and nitrides such as SiC and TiN have been used for wear-resistant surface protection of tools and the like. However, recently, diamond-like carbon (DLC)
C film) is drawing attention.

DLC膜は非晶質であるが、物性がダイヤモンドに近い
ため、電気的や光学的な特性を応用した多方面への展開
も期待されている。DLC膜の硬度が条件によりヌープ硬
度で5000kg/mm2以上にもなることや、薬品に対する科学
的安定性、耐腐食性も備わっていることから保護膜とし
てはもっとも適した材料の一つである。
Although the DLC film is amorphous, its physical properties are close to those of diamond, so it is expected to be applied to various fields using electrical and optical characteristics. It is one of the most suitable materials for a protective film because the hardness of the DLC film can reach 5000 kg / mm 2 or more in Knoop hardness depending on the conditions, and it has chemical stability against chemicals and corrosion resistance. .

第3図に従来のDLC膜の代表的な合成装置の概略を示
す。成膜は内部の熱フィラメント2からの熱電子により
原料ガス分子をイオン化し、さらに、外周コイル4での
磁場を利用して電子の運動を加速し高密度プラズマを発
生させ、基板5に負電圧を印加することでプラズマ中の
イオンを引出し、合成を行っている。
FIG. 3 shows an outline of a typical conventional apparatus for synthesizing a DLC film. In the film formation, raw material gas molecules are ionized by thermoelectrons from the internal hot filament 2, and the motion of electrons is accelerated by using a magnetic field in the outer peripheral coil 4 to generate high-density plasma. Is applied to extract ions in the plasma to perform synthesis.

発明が解決しようとする課題 上記のようなイオンを主体としたDLC膜の合成方法に
は以下のような課題があった。すなわち、DLC膜は絶縁
性であるため、膜の堆積にともなって、イオンの電荷が
蓄積され、膜表面がチャージアップする。
Problems to be Solved by the Invention The method for synthesizing a DLC film mainly composed of ions as described above has the following problems. That is, since the DLC film is insulative, ionic charges are accumulated and the film surface is charged up as the film is deposited.

合成したDLC膜に蓄積する単位時間当り単位面積あた
り電荷をQ、膜の誘電率ε、膜厚dとすると膜の表面電
位Vは次式によって表される。
Assuming that the charge per unit time per unit area accumulated in the synthesized DLC film is Q, the dielectric constant ε of the film and the film thickness d, the surface potential V of the film is expressed by the following equation.

V=Qd/ε 基板上に堆積したDLC膜はコンデンサの役割をして時
間と共に蓄積電荷が増え、表面電位も上昇する。第4図
は、第3図の装置構成により、DLC膜の合成を行った場
合、製膜時間に対する膜の表面電位の変化の一例を示す
図である。
V = Qd / ε The DLC film deposited on the substrate acts as a capacitor, and the accumulated charge increases with time, and the surface potential also increases. FIG. 4 is a diagram showing an example of a change in surface potential of a film with respect to a film forming time when a DLC film is synthesized by the apparatus configuration of FIG.

このDLC膜の表面電位の上昇によって、実質的にイオ
ンに作用する加速電圧が減少してくる。これは、製膜時
間が長くなるほど顕著になり、この状態で製膜を続行す
ると、膜厚方向に膜質の不均一な膜が形成され、再現性
に乏しく、膜質を精密に制御することが困難であった。
Due to the increase in the surface potential of the DLC film, the acceleration voltage substantially acting on the ions decreases. This becomes more remarkable as the film formation time becomes longer. If the film formation is continued in this state, a film having a non-uniform film quality is formed in the film thickness direction, and the reproducibility is poor, and it is difficult to precisely control the film quality. Met.

課題を解決するための手段 本発明は、少なくとも炭素を構成元素として含むガス
を10-2〜10-4Torrの減圧下でプラズマ化し、そのプラズ
マ中から、イオンを引き出し、プラズマから隔てられた
基板上にイオンを加速して堆積する硬質炭素膜の合成方
法において、前記膜の表面に膜の表面電位をモニタする
検出部を設け、合成中の膜の表面電位の増加に伴って、
前記基板への印加電圧を増加させるように調整し、前記
膜の表面電位とプラズマ電位との電位差を常に一定に制
御しながら合成することを特徴とする硬質膜の合成方法
である。
Means for Solving the Problems The present invention converts a gas containing at least carbon as a constituent element into a plasma under a reduced pressure of 10 -2 to 10 -4 Torr, extracts ions from the plasma, and separates the substrate from the plasma. In the method for synthesizing a hard carbon film in which ions are accelerated and deposited thereon, a detection unit for monitoring the surface potential of the film is provided on the surface of the film, and with the increase in the surface potential of the film being synthesized,
A method for synthesizing a hard film, comprising adjusting the voltage applied to the substrate to increase and synthesizing the film while constantly controlling the potential difference between the surface potential of the film and the plasma potential to be constant.

作用 本発明においては、DLC膜の合成中における表面電位
の増加は、常にリアルタイムでモニタされ、これによっ
て、基板への印加電圧も増加させて、プラズマ電位と膜
の表面電位の電位差を一定にするように調整できるの
で、プラズマ中のイオンの加速電圧も一定となり、膜厚
方向に膜質が均一なDLC膜が合成できる。これにより、
膜質の精密な制御が可能となる。
In the present invention, the increase in the surface potential during the synthesis of the DLC film is constantly monitored in real time, whereby the voltage applied to the substrate is also increased, and the potential difference between the plasma potential and the surface potential of the film is kept constant. Therefore, the acceleration voltage of the ions in the plasma becomes constant, and a DLC film having a uniform film quality in the film thickness direction can be synthesized. This allows
Precise control of film quality becomes possible.

実施例 以下に本発明の実施例を図面に基づいて説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例に用いたDLC膜の合成装置
の概略を示す断面図である。
FIG. 1 is a sectional view schematically showing a DLC film synthesizing apparatus used in one embodiment of the present invention.

原料ガスとしてベンゼンをガス導入口1より導入し、
内部の圧力を0.005Torrに保った。プラズマ室3内に設
置している熱フィラメント2を通電加熱することによ
り、熱電子を放出させ、さらに、外部コイル4の磁場を
印加して電子を加速し、プラズマを発生させた。
Benzene is introduced as a raw material gas through the gas inlet 1,
The internal pressure was kept at 0.005 Torr. The hot filament 2 installed in the plasma chamber 3 was heated by energization to emit thermoelectrons, and the magnetic field of the external coil 4 was applied to accelerate the electrons to generate plasma.

これを正電圧を印加したメッシュ状電極10でプラズマ
室内に閉じこめるとともに、プラズマから隔てられ設置
された基板ホルダー6に100〜10000Vの負電圧を印加
し、プラズマ内のイオンを引出し、シリコン基板5上に
DLC膜を合成した。そこで、プラズマ電位は、熱フィラ
メント2の電流、メッシュ状電極10の電圧、コイル4の
印加電圧などを一定に維持しておく。
This is confined in the plasma chamber by the mesh-shaped electrode 10 to which a positive voltage is applied, and a negative voltage of 100 to 10,000 V is applied to the substrate holder 6 which is set apart from the plasma to extract ions in the plasma. To
DLC film was synthesized. Therefore, as for the plasma potential, the current of the hot filament 2, the voltage of the mesh electrode 10, the applied voltage of the coil 4, and the like are kept constant.

他方、表面電位は変動していくので、表面電位を測定
するための端子7を基板5上の膜表面に近接させて設置
し、外部で接続した電圧計9でモニターしながら、基板
電圧の印加用電源8に直結して、常に、プラズマ電位と
膜の表面電位の電位差が常に一定になるように調整し
た。
On the other hand, since the surface potential fluctuates, a terminal 7 for measuring the surface potential is placed close to the film surface on the substrate 5 and the substrate voltage is applied while monitoring with an externally connected voltmeter 9. It was directly connected to the power supply 8 for use, and was adjusted so that the potential difference between the plasma potential and the surface potential of the film was always constant.

第1の実施例として、イオンの加速電圧が一定となる
ように、基板5への印加電圧を調整して、DLC膜の合成
を行った。このDLC膜のヌーブ硬度および内部応力と加
速電圧の関係を第2図に示す。
As a first example, the DLC film was synthesized by adjusting the voltage applied to the substrate 5 so that the ion acceleration voltage was constant. FIG. 2 shows the relationship between the Nuev hardness and internal stress of the DLC film and the acceleration voltage.

DLC膜の硬度と、内部応力はイオンの加速電圧に大き
く依存する。この加速電圧を変化することで、膜の硬度
および内部応力を制御し、膜厚方向にも均一な膜質が得
られた。
The hardness and internal stress of the DLC film largely depend on the ion acceleration voltage. By changing the acceleration voltage, the hardness and internal stress of the film were controlled, and uniform film quality was obtained in the film thickness direction.

第1の比較例として初期の基板電位を3000Vに設定
し、(イ)基板電圧を調整しながら合成、(ロ)基板電
圧を調整せずに合成の2通りの条件でDLC膜を30分合成
し、膜硬度および内部応力を調べた。その結果を第1表
に示す。
As a first comparative example, the initial substrate potential was set to 3000 V, and a DLC film was synthesized for 30 minutes under two conditions of (a) synthesis while adjusting the substrate voltage, and (b) synthesis without adjusting the substrate voltage. Then, the film hardness and internal stress were examined. Table 1 shows the results.

表から明らかなように、基板電圧を調整しない場合に
は、実質的なイオンの加速電圧が小さくなって来るため
に、内部応力が増大してくる。
As is clear from the table, when the substrate voltage is not adjusted, the internal stress increases because the substantial ion acceleration voltage decreases.

第2の比較例として、さらに、硬質のDLC膜を合成す
るために、基板電圧の初期設定値を700Vとして、第1の
実施例と同様、基板電圧の調整有無でDLC膜を30分合成
に行った。その結果を第2表に示す。表から明らかなよ
うに、基板電圧調整をしない場合には、内部応力が増大
し、膜の硬度も低下し、明らかに膜質が低下している。
As a second comparative example, in order to further synthesize a hard DLC film, the initial setting value of the substrate voltage was set to 700 V, and as in the first embodiment, the DLC film was synthesized for 30 minutes with or without the adjustment of the substrate voltage. went. Table 2 shows the results. As is clear from the table, when the substrate voltage is not adjusted, the internal stress increases, the hardness of the film decreases, and the film quality clearly decreases.

第3の比較例として、第2の比較例と同じ条件で、製
膜時間を90分にしてDLC膜の合成をおこなった。その結
果を第3表に示す。表からあきらかなように、基板電圧
を調整しない場合には、合成を長時間行うことによって
膜の内部応力が増大して剥離を生じた。
As a third comparative example, a DLC film was synthesized under the same conditions as in the second comparative example with a deposition time of 90 minutes. Table 3 shows the results. As is apparent from the table, when the substrate voltage was not adjusted, the internal stress of the film was increased by performing the synthesis for a long time, and peeling occurred.

以上の比較例から明らかなように、DLC膜の合成中に
基板電圧を調整しない場合には、合成初期の条件が変動
するために、精密な膜の制御ができず所望の膜質が得ら
れにくい。膜の表面電位とプラズマの電位との電位差が
常に一定となるよう基板電圧を調整して印加することで
精密な膜質の制御が可能となる。
As is clear from the above comparative examples, when the substrate voltage is not adjusted during the synthesis of the DLC film, the initial conditions of the synthesis fluctuate, so that precise film control cannot be performed and a desired film quality is hardly obtained. . By adjusting and applying the substrate voltage so that the potential difference between the surface potential of the film and the plasma potential is always constant, precise control of the film quality becomes possible.

また、望ましくは加速電圧が100V〜10000Vの範囲の電
圧がよい。加速電圧が100V以下の場合にはイオンの持つ
加速エネルギーが小さすぎるために、軟質で有機的な膜
となる。また、10000Vを越えると、加速エネルギーが大
きすぎるため、合成した膜を同時にスパッタして損傷
し、グラファイト状で膜質として十分なものは得られな
いからである。
Preferably, the acceleration voltage is in the range of 100V to 10,000V. When the accelerating voltage is 100 V or less, the ion has too small an accelerating energy, so that a soft organic film is formed. On the other hand, if it exceeds 10,000 V, the acceleration energy is too large, so that the synthesized film is sputtered and damaged at the same time, and a graphite-like film having a sufficient film quality cannot be obtained.

発明の効果 以上延べたところから明らかなように、本発明は、イ
オン主体の硬質炭素膜の合成方法において、合成中の膜
のチャージアップ分を補正し、イオンの加速エネルギー
が常に一定となるように制御しながら合成するので、硬
質炭素膜の膜質の精密な制御が実現でき、種々基体への
耐摩耗保護膜合成の点から工業的価値が高いものであ
る。
Advantageous Effects of the Invention As is apparent from the above description, the present invention corrects a charge-up amount of a film being synthesized in a method of synthesizing a hard carbon film mainly composed of ions so that acceleration energy of ions is always constant. Therefore, precise control of the film quality of the hard carbon film can be realized, and the industrial value is high in terms of synthesizing a wear-resistant protective film on various substrates.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例にかかる硬質炭素膜の合成方
法に使用される合成装置の概略断面図、第2図は同実施
例における、膜硬度、内部応力とイオンの加速電圧の関
係を示すグラフ、第3図は従来の合成装置を示す概略断
面図、第4図は従来の膜の表面電位の製膜時間に対する
変化の一例を示すグラフである。 1……ガス導入口、2……熱フィラメント、3……プラ
ズマ室、4……コイル、5……基板、6……基板ホルダ
ー、7……表面電位測定端子、8……基板電圧の印加用
電源、9……電位計、10……メッシュ状電極。
FIG. 1 is a schematic cross-sectional view of a synthesizing apparatus used for a method of synthesizing a hard carbon film according to one embodiment of the present invention, and FIG. 2 is a relation between film hardness, internal stress and ion accelerating voltage in the embodiment. FIG. 3 is a schematic sectional view showing a conventional synthesizing apparatus, and FIG. 4 is a graph showing an example of a change in a surface potential of a conventional film with respect to a film forming time. DESCRIPTION OF SYMBOLS 1 ... Gas inlet, 2 ... Hot filament, 3 ... Plasma chamber, 4 ... Coil, 5 ... Substrate, 6 ... Substrate holder, 7 ... Surface potential measuring terminal, 8 ... Application of substrate voltage Power supply, 9: Electrometer, 10: Mesh electrode.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−25570(JP,A) 特開 昭63−190162(JP,A) (58)調査した分野(Int.Cl.6,DB名) C23C 16/00 - 16/56 C23C 14/54 H01L 21/205,21/31 C30B 29/04────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-2-25570 (JP, A) JP-A-63-190162 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C23C 16/00-16/56 C23C 14/54 H01L 21 / 205,21 / 31 C30B 29/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも炭素を構成元素として含むガス
を10-2〜10-4Torrの減圧下でプラズマ化し、そのプラズ
マ中から、イオンを引き出し、プラズマから隔てられた
基板上にイオンを加速して堆積する硬質炭素膜の合成方
法において、 前記膜の表面に膜の表面電位をモニタする検出部を設
け、合成中の膜の表面電位の増加に伴って、前記基板へ
の印加電圧を増加させるように調整し、前記膜の表面電
位とプラズマ電位との電位差を常に一定に制御しながら
合成することを特徴とする硬質膜の合成方法。
A gas containing at least carbon as a constituent element is converted into a plasma under a reduced pressure of 10 -2 to 10 -4 Torr, ions are extracted from the plasma, and the ions are accelerated onto a substrate separated from the plasma. In the method for synthesizing a hard carbon film to be deposited by depositing, a detection unit for monitoring a surface potential of the film is provided on a surface of the film, and a voltage applied to the substrate is increased with an increase in a surface potential of the film being synthesized. Wherein the potential difference between the surface potential of the film and the plasma potential is controlled so as to be constantly constant.
JP2075214A 1990-03-22 1990-03-22 Method for synthesizing hard carbon film Expired - Fee Related JP2752225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2075214A JP2752225B2 (en) 1990-03-22 1990-03-22 Method for synthesizing hard carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2075214A JP2752225B2 (en) 1990-03-22 1990-03-22 Method for synthesizing hard carbon film

Publications (2)

Publication Number Publication Date
JPH03274270A JPH03274270A (en) 1991-12-05
JP2752225B2 true JP2752225B2 (en) 1998-05-18

Family

ID=13569737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2075214A Expired - Fee Related JP2752225B2 (en) 1990-03-22 1990-03-22 Method for synthesizing hard carbon film

Country Status (1)

Country Link
JP (1) JP2752225B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100413036C (en) * 2002-04-22 2008-08-20 佳能安内华株式会社 Silicon nitride film producing method and apparatus for producing silicon nitride film

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5378285A (en) * 1993-02-10 1995-01-03 Matsushita Electric Industrial Co., Ltd. Apparatus for forming a diamond-like thin film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627336B2 (en) * 1985-09-25 1994-04-13 株式会社島津製作所 RF plasma CVD equipment
JPH078456B2 (en) * 1987-07-03 1995-02-01 三菱電機株式会社 Electric discharge machine
JPS63190162A (en) * 1987-11-20 1988-08-05 Hitachi Ltd Plasma treatment device
JPH0225570A (en) * 1988-07-13 1990-01-29 Kawasaki Steel Corp Method for synthesizing hard-carbon film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100413036C (en) * 2002-04-22 2008-08-20 佳能安内华株式会社 Silicon nitride film producing method and apparatus for producing silicon nitride film

Also Published As

Publication number Publication date
JPH03274270A (en) 1991-12-05

Similar Documents

Publication Publication Date Title
US4039416A (en) Gasless ion plating
US4170662A (en) Plasma plating
Savvides et al. Unbalanced magnetron ion‐assisted deposition and property modification of thin films
KR960002632B1 (en) The method and the equipment for plasma-energized magnetron sputtering vapor deposition
US6678143B2 (en) Electrostatic chuck and method of manufacturing the same
JPS60195094A (en) Production of diamond thin film
JPS624313A (en) Double ion beam precipitation high density film
USRE30401E (en) Gasless ion plating
US3395089A (en) Method of depositing films of controlled specific resistivity and temperature coefficient of resistance using cathode sputtering
JPH07224379A (en) Sputtering method and device therefor
US7279078B2 (en) Thin-film coating for wheel rims
JP2752225B2 (en) Method for synthesizing hard carbon film
Stowell Ion-plated titanium carbide coatings
Dachuan et al. Effects of applied bias voltage on the properties of aC: H films
GB2090291A (en) Sputter ion plating of refractory metal/metal compounds
JPS59136479A (en) Composite layer growing process
US3516915A (en) Sputtering technique
JPH02280310A (en) Manufacture of electrode material for electrolytic capacitor
EP0423996B1 (en) Coated filaments for composites
US3736242A (en) Sputtering technique
JPH04103754A (en) Ceramic-coated material and its production
JP2676903B2 (en) Method of forming hard carbon thin film
JPS63195260A (en) Coating material and its production
US3589994A (en) Sputtering technique
Ugolini et al. Direct ion beam deposition of polymeric styrene films and in situ characterization by electron spectroscopy

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees