JPH04374A - Production of hardened protective film on surface of plastic substrate - Google Patents

Production of hardened protective film on surface of plastic substrate

Info

Publication number
JPH04374A
JPH04374A JP9773490A JP9773490A JPH04374A JP H04374 A JPH04374 A JP H04374A JP 9773490 A JP9773490 A JP 9773490A JP 9773490 A JP9773490 A JP 9773490A JP H04374 A JPH04374 A JP H04374A
Authority
JP
Japan
Prior art keywords
plastic substrate
plasma
inert gas
film
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9773490A
Other languages
Japanese (ja)
Inventor
Masayoshi Murata
正義 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9773490A priority Critical patent/JPH04374A/en
Publication of JPH04374A publication Critical patent/JPH04374A/en
Pending legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a hardened protective film on the surface of a plastic substrate with satisfactory bonding strength by forming an active layer on the surface of the substrate by plasma treatment. CONSTITUTION:At least one kind of inert gas selected among He, Ne, Xe, Kr and Ar, SiH4, N2O and CH4 are used as reactive gases and an active layer is first formed on the surface of a plastic substrate 10 with plasma of the inert gas. A CVD reaction is then caused with a gaseous mixture of SiH4 with N2O and CH4 to form an SiO2-SiC-SiN film having high adhesive strength to the plastic substrate and high hardness.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はビルディング及び家屋などの窓材、航空機・船
舶・自動車などの窓材及び電子材料・光学材料・表示材
料など、表面の性質として高硬度、耐摩耗性及び耐擦傷
性などが要求されるプラスチック基板表面の硬化保護膜
の製造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to window materials for buildings and houses, window materials for aircraft, ships, automobiles, etc., as well as electronic materials, optical materials, display materials, etc. The present invention relates to a method for manufacturing a hardened protective film on the surface of a plastic substrate that requires hardness, wear resistance, scratch resistance, etc.

〔従来の技術〕[Conventional technology]

従来、プラスチック表面を高硬度化して、耐摩耗性及び
耐擦傷性を改良する技術として、以下に述べるようなプ
ラズマ重合法が試用されている。第7図において、有機
ケイ素化合物モノマー01はモノマー流量調整弁02を
介して真空容器03に導入される。真空容器03には高
周波電極04とアース電極05が平行に設置され、該ア
ース電極05の上にはプラスチック基板06が配置され
ている。高周波電極04には、マツチングボックス07
を介して、電源08より電力が供給される。なお、真空
容器03はバルブ09を介して真空ポンプ010によっ
て真空引きされる。
Conventionally, a plasma polymerization method as described below has been used on a trial basis as a technique for increasing the hardness of a plastic surface and improving wear resistance and scratch resistance. In FIG. 7, an organosilicon compound monomer 01 is introduced into a vacuum container 03 via a monomer flow rate regulating valve 02. A high frequency electrode 04 and a ground electrode 05 are installed in parallel in the vacuum container 03, and a plastic substrate 06 is placed on the ground electrode 05. The high frequency electrode 04 has a matching box 07.
Power is supplied from a power source 08 via the power source 08. Note that the vacuum container 03 is evacuated by a vacuum pump 010 via a valve 09.

さて、第7図において、プラスチック基板06に硬化保
護膜を形成するには、真空容器03を真空ポンプ010
で減圧し、例えば圧力を0. OI Torr程度に設
定する。次にモノマー流量調整弁02を開いて、有機ケ
イ素化金子ツマ−01例えばオクタメチルシクロテトラ
シロキサンを真空容器03内に導入して、その圧力を約
5. OX 10−2Torrにする。次に例えば周波
数13.56M)IzO高周波電源04より出力を約1
00Wとして、プラズマを発生させ5,0ないし8.0
分間、高硬度膜を上記プラスチック基板06に堆積する
Now, in FIG. 7, in order to form a cured protective film on the plastic substrate 06, the vacuum container 03 is moved to the vacuum pump 010.
For example, reduce the pressure to 0. Set to about OI Torr. Next, the monomer flow rate adjustment valve 02 is opened, and organosiliconized Kaneko Tsumer 01, such as octamethylcyclotetrasiloxane, is introduced into the vacuum container 03, and the pressure is increased to about 5. Set to OX 10-2 Torr. Next, for example, the output from the IzO high frequency power supply 04 (frequency 13.56M) is approximately 1
00W, generate plasma and power from 5.0 to 8.0
A high hardness film is deposited on the plastic substrate 06 for a few minutes.

以上のようにして得られる膜は、ケイ素、酸素、炭素を
組成にした高硬度の膜である。
The film obtained as described above is a highly hard film whose composition is silicon, oxygen, and carbon.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記した従来の方法では、2枚の電極04゜05間にプ
ラスチック基板06を設置し、成膜していることから次
の問題が生じる。
In the conventional method described above, the following problem arises because the plastic substrate 06 is placed between the two electrodes 04 and 05 to form a film.

(1)電極間に誘電体であるプラスチック基板を設置す
るので、プラズマ発生用電源には高周波電源例えば13
.56MHzの電源が必要である。なお、直流及び低周
波の電源では、電極間にプラスチック基板があると、そ
れにより電極からの電子供給が制約されるため、−様な
強さのプラズマ発生が困難である。高周波電力が上記2
枚の電極に供給される場合、表皮効果による電圧降下に
より、均一なプラズマが発生する領域は小さい。したが
って、従来装置ではプラスチック基板の面積は、約50
cmX50cmが限界であり、それ以上の大面積化は非
常に困難である。
(1) Since a dielectric plastic substrate is installed between the electrodes, a high frequency power source such as 13
.. A 56MHz power supply is required. Note that with DC and low frequency power supplies, if there is a plastic substrate between the electrodes, this restricts the supply of electrons from the electrodes, making it difficult to generate plasma with -like intensity. The high frequency power is 2 above.
When supplied to a single electrode, the area in which uniform plasma is generated is small due to the voltage drop due to the skin effect. Therefore, in the conventional device, the area of the plastic substrate is approximately 50
cm x 50 cm is the limit, and it is very difficult to increase the area beyond that.

(2)成膜されたSiC系薄膜は高硬度の膜であるが、
プラスチック基板と該高硬度膜の結合力が十分強くない
ので、剥離し易いという欠点がある。
(2) Although the deposited SiC-based thin film is a highly hard film,
Since the bonding force between the plastic substrate and the high hardness film is not strong enough, there is a drawback that it is easy to peel off.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは上記従来法の欠点を解消するため鋭意研究
した結果、基板表面にプラズマ処理による活性層を形成
することが効果的であることを発見し本発明に到達した
。すなわち、本発明は、(1)  反応ガスとして先ず
少なくとも一つの不活性ガスプラズマを用いてプラスチ
ック基板表面に活性層を形成させ、次にSiH,とN、
Oおよび/またはC1,との混合ガスプラズマにより該
プラスチック基板表面に 3102および/またはSi
C膜を形成させることを特徴とするプラスチック基板表
面の硬化保護膜製造方法および反応ガスとして先ず少な
くとも一つの不活性ガスプラズマを用いてプラスチック
基板表面に活性層を形成させ、次に5IH4とNH,と
の混合ガスプラズマにより該プラスチック基板表面にS
iN膜を形成させることを特徴とするプラスチック基板
表面の硬化保護膜製造方法に関する。
The inventors of the present invention have conducted extensive research to overcome the drawbacks of the conventional methods described above, and have discovered that it is effective to form an active layer on the surface of a substrate by plasma treatment, and have arrived at the present invention. That is, the present invention provides (1) first forming an active layer on the surface of a plastic substrate using at least one inert gas plasma as a reactive gas, and then forming an active layer on the surface of a plastic substrate;
3102 and/or Si on the surface of the plastic substrate by mixed gas plasma with O and/or C1.
A method for producing a cured protective film on the surface of a plastic substrate, characterized by forming a C film, and first forming an active layer on the surface of the plastic substrate using at least one inert gas plasma as a reactive gas, and then forming an active layer on the surface of the plastic substrate using 5IH4 and NH, S is applied to the surface of the plastic substrate by mixed gas plasma with
The present invention relates to a method for manufacturing a hardened protective film on the surface of a plastic substrate, which is characterized by forming an iN film.

本発明は、特に次のような実施態様で行なうのが好まし
い。
The present invention is particularly preferably carried out in the following embodiments.

(1)プラズマ発生用電極として、従来の対向平板電極
2枚の一方の電極に代えて、表面形状が凹凸をした電極
を用いることで、強いグロー放電が発生しやすいように
した。
(1) As the plasma generation electrode, an electrode with an uneven surface is used in place of one of two conventional opposed flat plate electrodes to facilitate generation of strong glow discharge.

(2) プラズマ発生電界に対して直角方向に磁界を印
加し、かつ、その磁界の強さを正弦波的あるいは矩形波
的に変化させるのと同時にその方向を正、負に変化させ
ることにより、プラズマ密度の空間的分布及び時間的変
化を平均化できるようにした。
(2) By applying a magnetic field in a direction perpendicular to the plasma generation electric field, and changing the strength of the magnetic field in a sinusoidal or rectangular wave manner, simultaneously changing the direction to positive or negative, The spatial distribution and temporal changes in plasma density can be averaged.

上記により、反応容器及び電極を大型化しても製品にム
ラがなく、3mX5m級の大面積のプラズマCV D 
(Chemical Vapour Dep−osit
ion)膜が得られるようになった。
As a result of the above, even if the reaction vessel and electrodes are increased in size, the product will not be uneven, and large-area plasma CVD of 3m x 5m class can be achieved.
(Chemical Vapor Dep-osit
ion) film can now be obtained.

(3)反応ガスとして、He 、 Ne 、 Xe 、
Kr″J3よび^rから選ばれる少なくとも1つの不活
性ガス(以下該不活性ガスという) 、  5IH1,
N20を用い、かつ成膜手順として、先ず、該不活性ガ
スのプラズマによるプラスチック基板表面の活性層を形
成させ、次いで、SiH4とN20の混合ガスのプラズ
マでCV D (Chemi−cal Vapour 
Deposition)反応を起こし、5il12膜を
形成させることにより、プラスチック基板に対する付着
力が強固で、かつ、高硬度のSiO□膜が得られるよう
になった。
(3) As a reaction gas, He, Ne, Xe,
At least one inert gas selected from Kr''J3 and ^r (hereinafter referred to as the inert gas), 5IH1,
Using N20, the film forming procedure is as follows: First, an active layer is formed on the surface of the plastic substrate by plasma of the inert gas, and then CV D (Chemical Vapor) is formed by plasma of a mixed gas of SiH4 and N20.
By causing a reaction (deposition) and forming a 5il12 film, a SiO□ film with strong adhesion to the plastic substrate and high hardness was obtained.

反応ガスが該不活性ガス、SiH,及びCH。The reaction gas is the inert gas, SiH, and CH.

の場合も、上記同様成膜手順として先ず該不活性ガスの
プラズマによるプラスチック基板表面の活性層を形成さ
せ、次いで、5IH4とCH,の混合ガスのプラズマで
CVD反応を起こしSiC膜を形成させる。
In this case, the film forming procedure is the same as described above: first, an active layer is formed on the surface of the plastic substrate using plasma of the inert gas, and then a CVD reaction is caused using plasma of a mixed gas of 5IH4 and CH to form a SiC film.

さらに反応ガスが該不活性ガス、5i)1.及びNH8
の場合も成膜手順として先ず該不活性ガスプラズマによ
るプラスチック基板表面の活性層を形成させ、次いで、
5IH4とNH3の混合ガスのプラズマでCVD反応を
起こしSiN膜を形成させる。
Furthermore, the reaction gas is the inert gas, 5i)1. and NH8
In this case, the film forming procedure is to first form an active layer on the surface of the plastic substrate using the inert gas plasma, and then
A CVD reaction is caused by plasma of a mixed gas of 5IH4 and NH3 to form a SiN film.

本発明は一般に次のような条件で行なう:(イ)プラズ
マ発生のだめの出力電圧の範囲・数10Vないし数10
0V、例外的には数V0 (ロ)磁界の強さの範囲 ・数10ガウスないし200ガウス程度、例外的には8
00〜900ガウス。
The present invention is generally carried out under the following conditions: (a) Range of output voltage of the plasma generation reservoir: several tens of volts to several tens of volts
0V, in exceptional cases several V0 (b) Range of magnetic field strength: several tens of gauss to 200 gauss, in exceptional cases 8
00-900 Gauss.

(ハ)活性層形成時の圧力範囲 ・0.01 Torrないし100 Tarr程度(ニ
) 5iO−及びSiC形成時の圧力範囲(反応容器内
) ・0. I Torrないし100 Torr程度(ホ
) SiN形成時の圧力範囲 ・0.ITorrないし100 Torr程度〔実施例
〕 以下、本発明を第1図に示す一実施例の装置に基づき説
明する。
(c) Pressure range during active layer formation - approximately 0.01 Torr to 100 Tarr (d) Pressure range during formation of 5iO- and SiC (inside reaction vessel) - 0. I Torr to about 100 Torr (e) Pressure range during SiN formation: 0. Approximately ITorr to 100 Torr [Example] The present invention will be described below based on an apparatus of an example shown in FIG.

1は反応容器で、その中にプラスチック基板10、並び
にプラズマを発生させる陰極2と陽極3が設置されてい
る。2は陰極が、その構造としては第2図(a)、ら)
、(C)、(6)および(e)に図示しているように、
平板に格子もしくは類似物を付けた形になっている。な
お、陽極3と対向して設置される。3は陽極で、構造と
しては平板の形をしている。4はプラズマ発生電源で、
直流電源を用いている。なお、直流電源に代えて、交流
あるいは高周波電源でもよい。5は磁界発生電源で、任
意の周波数を設定できる交流電源である。6はコイルで
、上記反応容器1を囲繞するもので、磁界発生電源5よ
り電力を供給される。7は圧力計で、圧力検出孔21を
介して、上記反応容器1の圧力を検出し、後述の圧力調
整器8に信号を伝達する。8は圧力調整器で、上記圧力
計7と後述の真空ポンプ9と連動して用いられる。9は
真空ポンプで、上記反応容器1の真空度を、上記の圧力
調整器8を介して所定の設定値に真空引きする。13は
該不活性ガス供給源で、16は該不活性ガスのマスフロ
ーコントローラである。14及び15はそれぞれ、Si
H,ガス供給源及びN20供給源である。17及び18
はそれぞれ、5IH4及びN、Oのマスフローコントロ
ーラである。19及び20は、第1及び第2のバルブで
、それぞれ、該不活性ガス。
1 is a reaction vessel in which a plastic substrate 10 and a cathode 2 and an anode 3 for generating plasma are installed. 2 is the cathode, whose structure is shown in Figure 2 (a), et al.
, (C), (6) and (e),
It takes the form of a flat plate with a grid or similar structure. Note that it is installed facing the anode 3. 3 is the anode, which has a flat plate structure. 4 is a plasma generation power supply,
It uses a DC power supply. Note that an alternating current or high frequency power source may be used instead of the direct current power source. 5 is a magnetic field generating power source, which is an AC power source that can set an arbitrary frequency. A coil 6 surrounds the reaction vessel 1 and is supplied with electric power from the magnetic field generating power source 5. A pressure gauge 7 detects the pressure in the reaction vessel 1 through a pressure detection hole 21, and transmits a signal to a pressure regulator 8, which will be described later. A pressure regulator 8 is used in conjunction with the pressure gauge 7 and a vacuum pump 9, which will be described later. Reference numeral 9 denotes a vacuum pump which evacuates the degree of vacuum in the reaction vessel 1 to a predetermined set value via the pressure regulator 8 mentioned above. 13 is the inert gas supply source, and 16 is a mass flow controller for the inert gas. 14 and 15 are Si
H, gas supply source and N20 supply source. 17 and 18
are 5IH4, N, and O mass flow controllers, respectively. 19 and 20 are first and second valves, respectively, for the inert gas.

及びSiH,とN、Oのガスの流路を開閉する。and opens and closes flow paths for SiH, N, and O gases.

22は、排気孔で、それぞれ、上記真空ポンプ9につな
がっている。
Reference numerals 22 denote exhaust holes, each of which is connected to the vacuum pump 9.

24は反応ガス導入孔で、該不活性ガス。24 is a reaction gas introduction hole for the inert gas.

SiH,及びN、Oガスが導入される。SiH, N, and O gases are introduced.

第1図において、プラスチック基板1oを図示のように
、陽極3と陰極20間に設置した。
In FIG. 1, a plastic substrate 1o was placed between an anode 3 and a cathode 20 as shown.

真空ポンプ9を駆動して、反応容器1内を排気し、次に
、第1のバルブ20を開にして、該不活性カスのマスフ
ローコントローラ16を用いて、該不活性ガス供給源1
3より該不活性ガスを反応ガス導入孔24を介して反応
容器1へ約50cc/分の流量で供給した。なお、反応
容器1内圧力は、圧力検出孔21を介して圧力計7で検
知し、その情報を電気信号として、圧力調整器8へ伝送
し、その圧力調整器8と真空ポンプ9を連動させて稼動
させることで、約0,05ないし0.5 Torrの範
囲の任意の値に設定した。
The inside of the reaction vessel 1 is evacuated by driving the vacuum pump 9, and then the first valve 20 is opened and the mass flow controller 16 of the inert gas is used to exhaust the inside of the inert gas supply source 1.
3, the inert gas was supplied to the reaction vessel 1 through the reaction gas introduction hole 24 at a flow rate of about 50 cc/min. Note that the pressure inside the reaction vessel 1 is detected by the pressure gauge 7 through the pressure detection hole 21, and the information is transmitted as an electric signal to the pressure regulator 8, and the pressure regulator 8 and the vacuum pump 9 are linked. The pressure was set to an arbitrary value in the range of about 0.05 to 0.5 Torr by operating the motor at a certain temperature.

次にプラズマ発生電源4から、陽極3と陰極2に電力を
供給すると、該不活性ガスのグロー放電プラズマが上記
電極2.3間に発生した。
Next, when power was supplied from the plasma generation power source 4 to the anode 3 and cathode 2, glow discharge plasma of the inert gas was generated between the electrodes 2 and 3.

この場合、陰極2の構造は第2図図示のように、平板に
格子を組み合わせた形(a)又は蛸壷状(6)等をして
いるので、第3図に示すように、陰極近傍に強い発光を
ともなう負グローが発生する。
In this case, as shown in Figure 2, the structure of the cathode 2 is a combination of a flat plate and a grid (a) or an octopus pot (6), so as shown in Figure 3, the structure of the cathode 2 is Negative glow accompanied by strong light emission occurs.

なあ、陽光柱はプラスチック基板10を囲んだ形で発生
している。プラズマ発生電源4の出力電圧を一定にして
おき、上記反応容器1内該不活性ガス圧力を0. I 
Torrから約I Torrまで変化させると、第4図
に示すように0.3 Torr附近まで、プラズマ電流
が著しく増大し、それを越えると安定化することが判っ
た。すなわち、陰極2の構造がホローカソードと呼ばれ
るものになっている。したがって、プラズマ密度の高い
該不活性ガスプラズマが得られている。さらに、コイル
6と磁界発生電源5により電極2,3間に発生する電界
圧と直交する方向の磁界Bを発生させる。そうすると、
第5図に示すように、従来は磁界の強さが零(第5図A
印)であるため、プラズマ電流は小さい値であった。と
ころが磁界の強さが80ガウス程度以上になると、プラ
ズマ電流は著しく増大する。そして、上記コイル6で発
生の磁界Bの方向を第6図図示のように(第6図紙面に
垂直方向で下向きの場合:◎印、上向きの場合二〇印)
、正、負交互に変化させると、電界Eと磁界Bの作用に
より、プラズマはEXEドリフトと呼ばれる力で、電極
2.3に平行方向にゆり動かされる。すなわち、上記磁
界B印加による作用は、プラズマ密度を向上させる働き
と、プラズマをゆり動かすことによるプラズマ密度の空
間的、時間的な平均化がなされることである。
By the way, the positive column is generated surrounding the plastic substrate 10. The output voltage of the plasma generation power source 4 is kept constant, and the inert gas pressure in the reaction vessel 1 is set to 0. I
It was found that when the plasma current was varied from Torr to about I Torr, the plasma current increased significantly up to around 0.3 Torr, as shown in FIG. 4, and stabilized above that point. That is, the structure of the cathode 2 is called a hollow cathode. Therefore, the inert gas plasma with high plasma density is obtained. Further, the coil 6 and the magnetic field generating power supply 5 generate a magnetic field B in a direction perpendicular to the electric field pressure generated between the electrodes 2 and 3. Then,
As shown in Figure 5, in the past, the strength of the magnetic field was zero (Figure 5A).
), the plasma current was a small value. However, when the strength of the magnetic field exceeds about 80 Gauss, the plasma current increases significantly. Then, the direction of the magnetic field B generated by the coil 6 is as shown in Fig. 6 (in the case of downward direction perpendicular to the paper surface of Fig. 6: mark ◎; in the case of upward direction, mark 20).
, positive and negative alternately, the action of the electric field E and the magnetic field B causes the plasma to be swayed in a direction parallel to the electrode 2.3 by a force called EXE drift. That is, the effects of applying the magnetic field B are to improve the plasma density and to average the plasma density spatially and temporally by shaking the plasma.

したがって、プラスチック基板10の表面は、プラズマ
密度の高い該不活性ガスのプラズマによって化学反応を
受けて、表面下数10人〜数1000人程度の深さまで
化学組成の変化が起きる。赤外線分光分析や電子スピン
共鳴分析装置を用いて調査した結果、プラスチック表面
はCH、−C’H2といった官能基が導入されて、化学
的に活性な層が形成されていることが判った。
Therefore, the surface of the plastic substrate 10 undergoes a chemical reaction due to the plasma of the inert gas having a high plasma density, and the chemical composition changes to a depth of about 10 to 1000 layers below the surface. As a result of investigation using infrared spectroscopy and electron spin resonance spectroscopy, it was found that functional groups such as CH and -C'H2 were introduced into the plastic surface to form a chemically active layer.

上記該不活性ガスプラズマによるプラスチック基板10
0表面活性層形成を約30秒ないし約10分間行ったあ
と、プラズマ発生電源4の電圧を零にした。そして、第
1のバルブ19を閉にして、反応容器の中の該不活性ガ
スを排気した。
Plastic substrate 10 formed by the above-mentioned inert gas plasma
After forming the surface active layer for about 30 seconds to about 10 minutes, the voltage of the plasma generation power source 4 was reduced to zero. Then, the first valve 19 was closed to exhaust the inert gas in the reaction vessel.

次に、シランSiH,ガス供給源14及び亜酸化窒素N
2Oガス供給源15より、それぞれ、5IH4マスフロ
ーコントローラ17 RU N207 x 7 C1−
コントローラ18を介して、第2のバルブ20を開にし
て5IH4ガス及びN2Oガスを反応ガス導入孔24に
より反応容器1内に例えばそれぞれ約25cc/分の流
量で供給した。なお、反応容器1内圧力は、圧力検出孔
21を介して圧力計7で検知し、圧力調整器8の真空ポ
ンプ9を連動して稼動させ約0.05ないし0.5 T
orrの範囲の任意の値に設定した。
Next, silane SiH, gas source 14 and nitrous oxide N
From 2O gas supply source 15, 5IH4 mass flow controller 17 RU N207 x 7 C1-
The second valve 20 was opened via the controller 18, and 5IH4 gas and N2O gas were supplied into the reaction vessel 1 through the reaction gas introduction hole 24 at a flow rate of about 25 cc/min, respectively. The internal pressure of the reaction vessel 1 is detected by the pressure gauge 7 through the pressure detection hole 21, and the vacuum pump 9 of the pressure regulator 8 is operated in conjunction with the pressure to approximately 0.05 to 0.5 T.
It was set to an arbitrary value within the range of orr.

プラズマ発生電源4から、陽極3と陰極2に電力を供給
すると、5i)1.とN20のグロー放電プラズマが上
記電極2,3間に発生した。この場合、前述の如<、陰
極2近傍に強い発光を伴なう負グローが発生する。さら
に、コイル6と磁界発生電源5により、電極2.3間に
発生する電界Eと直交する方向の磁界Bを発生させ、前
述の如く、磁界Bを正、負交互に変化させると、EXE
ドリフトでプラズマはゆり動かされた。
When power is supplied from the plasma generation power source 4 to the anode 3 and cathode 2, 5i)1. A glow discharge plasma of N20 and N20 was generated between the electrodes 2 and 3. In this case, as described above, a negative glow accompanied by strong light emission occurs near the cathode 2. Furthermore, the coil 6 and the magnetic field generating power source 5 generate a magnetic field B in a direction perpendicular to the electric field E generated between the electrodes 2.3, and as described above, when the magnetic field B is alternately changed between positive and negative, EXE
The plasma was shaken by the drift.

これにより、プラズマ密度の空間的、時間的な平均化が
行なわれた。
As a result, the plasma density was averaged spatially and temporally.

このようにして、5IH4及びN2[+混合ガスのプラ
ズマを発生しておくと、プラズマCVD(Chemic
al Vapour Deposition)反応によ
り、Sin、膜がプラスチック基板10に堆積する。成
膜時間は約1ないし2時間行なった。
If a plasma of 5IH4 and N2[+ mixed gas is generated in this way, plasma CVD (Chemical
A film of Sin is deposited on the plastic substrate 10 by the vapor deposition reaction. The film formation time was about 1 to 2 hours.

最後に上記プラズマ発生電源4及び磁界発生電源5の出
力電力を零にし、反応容器1内の5it1.とN2Oガ
スの排気を行った。なお、図示していないが、プラスチ
ック基板10を反応容器1より取出す場合、Arあるい
はN2ガスを反応容器1に導入して、SiH4ガスをほ
ぼ完全に排気した状態にしたあと、ドアを開いて取り出
した。
Finally, the output power of the plasma generation power source 4 and the magnetic field generation power source 5 is reduced to zero, and the 5it1. and exhaust the N2O gas. Although not shown, when taking out the plastic substrate 10 from the reaction vessel 1, Ar or N2 gas is introduced into the reaction vessel 1 to almost completely exhaust SiH4 gas, and then the door is opened and taken out. Ta.

本実施例では、上記方法により、面積lmX2mのポリ
カーボネート板及びアクリル板表面にSiO2膜を堆積
させた。厚みは約5μm1硬度はビッカース硬度で2.
 OOOないし3,000程度であった。付着強度は、
接着テープ貼付による引きはがし方法で調べた結果、十
分に強いことが判った。
In this example, a SiO2 film was deposited on the surface of a polycarbonate plate and an acrylic plate with an area of 1 m x 2 m by the above method. Thickness is approximately 5 μm 1 hardness is Vickers hardness 2.
It was about OOO to 3,000. Adhesion strength is
As a result of testing by applying adhesive tape and peeling it off, it was found to be sufficiently strong.

上記実施例は、反応ガスとして、該不活性ガス、 5i
n4及びN20を用いた場合であるが、下記の反応ガス
の場合も上記と同様にすることでそれぞれ、SiC膜及
びSiN膜を得た。
In the above embodiment, the inert gas, 5i
Although n4 and N20 were used, SiC films and SiN films were obtained in the same manner as above in the case of the following reaction gases, respectively.

(イ)該不活性ガス、 5IH4、CH−(ロ)該不活
性ガス、 SiH,、NH=上記(イ)(ロ)の該不活
性ガスは上記同様該不活性ガス供給源13から、SiH
,は14のガス供給源から、CH4,NH5は15のガ
ス供給源から供給して上記と同様の手順で硬化膜を形成
した。
(a) The inert gas, 5IH4, CH- (b) The inert gas, SiH,, NH = The inert gas in (a) and (b) above is from the inert gas supply source 13 as above,
, were supplied from 14 gas supply sources, and CH4 and NH5 were supplied from 15 gas supply sources to form a cured film in the same manner as above.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、ビルディング及び家屋などの窓材、
航空機・船舶・自動車などの窓材及び電子材料・光学材
料・表示材料など、表面の性質として高硬度、耐摩耗性
及び耐擦傷性などが要求されるプラスチック表面処理方
法において、大面積でかつ、該プラスチック基板との結
合力が強力な5102 、 SiC及びSiNなど表面
硬化保護膜が製造可能となった。このことは、産業上著
しく価値がある。
According to this invention, window materials for buildings and houses, etc.
In plastic surface treatment methods that require high hardness, abrasion resistance, and scratch resistance as surface properties, such as window materials for aircraft, ships, and automobiles, and electronic materials, optical materials, and display materials, large areas and It has become possible to manufacture surface-hardened protective films made of materials such as 5102, SiC, and SiN, which have strong bonding strength with the plastic substrate. This is of significant industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の第1実施例に係る装置構成の模式図
、第2図(a)、 (b)、 (C)、(6)および(
e)は夫々本発明の電極構造を示す概念図、第2図(a
′)及び必は夫々第2図(a)及びら)の断面図、第3
図は本発明の電極によるグロー放電プラズマを示す概念
図、第4図は本発明の電極によるグロー放電プラズマの
電流と反応容器内圧力の関係を示すグラフ、第5図は本
発明の電極を用いた場合の、印加磁界の強さとプラズマ
電流の関係を示すグラフ、第6図(a)及びら)は夫々
本発明において、印加される磁界Bと電界Eによって発
生するE X Eドリフトの説明図、そして第7図は、
従来の装置を示す構成図である。
FIG. 1 is a schematic diagram of the device configuration according to the first embodiment of the present invention, and FIG. 2 (a), (b), (C), (6) and (
e) is a conceptual diagram showing the electrode structure of the present invention, and Fig. 2(a) is a conceptual diagram showing the electrode structure of the present invention.
') and are the cross-sectional views of Figures 2(a) and 3), respectively.
The figure is a conceptual diagram showing the glow discharge plasma generated by the electrode of the present invention, Figure 4 is a graph showing the relationship between the current of the glow discharge plasma generated by the electrode of the present invention and the pressure inside the reaction vessel, and Figure 5 is a graph showing the relationship between the glow discharge plasma generated by the electrode of the present invention and the pressure inside the reaction vessel. Graphs showing the relationship between the strength of the applied magnetic field and the plasma current when the magnetic field is , and Figure 7 is
FIG. 1 is a configuration diagram showing a conventional device.

Claims (2)

【特許請求の範囲】[Claims] (1)反応ガスとして先ず少なくとも一つの不活性ガス
プラズマを用いてプラスチック基板表面に活性層を形成
させ、次にSiH_4とN_2Oおよび/またはCH_
4との混合ガスプラズマにより該プラスチック基板表面
にSiO_2および/またはSiC膜を形成させること
を特徴とするプラスチック基板表面の硬化保護膜製造方
法。
(1) Firstly, at least one inert gas plasma is used as a reaction gas to form an active layer on the plastic substrate surface, and then SiH_4, N_2O and/or CH_
4. A method for producing a hardened protective film on a plastic substrate surface, the method comprising forming a SiO_2 and/or SiC film on the plastic substrate surface using mixed gas plasma.
(2)反応ガスとして先ず少なくとも一つの不活性ガス
プラズマを用いてプラスチック基板表面に活性層を形成
させ、次にSiH_4とNH_3との混合ガスプラズマ
により該プラスチック基板表面にSiN膜を形成させる
ことを特徴とするプラスチック基板表面の硬化保護膜製
造方法。
(2) First, at least one inert gas plasma is used as a reactive gas to form an active layer on the surface of the plastic substrate, and then a mixed gas plasma of SiH_4 and NH_3 is used to form a SiN film on the surface of the plastic substrate. A method for producing a cured protective film on the surface of a plastic substrate.
JP9773490A 1990-04-16 1990-04-16 Production of hardened protective film on surface of plastic substrate Pending JPH04374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9773490A JPH04374A (en) 1990-04-16 1990-04-16 Production of hardened protective film on surface of plastic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9773490A JPH04374A (en) 1990-04-16 1990-04-16 Production of hardened protective film on surface of plastic substrate

Publications (1)

Publication Number Publication Date
JPH04374A true JPH04374A (en) 1992-01-06

Family

ID=14200126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9773490A Pending JPH04374A (en) 1990-04-16 1990-04-16 Production of hardened protective film on surface of plastic substrate

Country Status (1)

Country Link
JP (1) JPH04374A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0790592A (en) * 1993-09-23 1995-04-04 Becton Dickinson & Co Method for barrier coating of plastic product
US5523124A (en) * 1992-06-17 1996-06-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'expoloitation Des Procedes Georges Claude Process for producing a silicon oxide deposit on the surface of a metallic or metallized polymer substrate using corona discharge at pressures up to approximately atmospheric
JP2000212312A (en) * 1999-01-19 2000-08-02 Leybold Syst Gmbh Coating of substrate comprising synthetic resin
US7985188B2 (en) 2009-05-13 2011-07-26 Cv Holdings Llc Vessel, coating, inspection and processing apparatus
US8834954B2 (en) 2009-05-13 2014-09-16 Sio2 Medical Products, Inc. Vessel inspection apparatus and methods
JP2015098617A (en) * 2013-11-18 2015-05-28 株式会社島津製作所 Film deposition apparatus
US9664626B2 (en) 2012-11-01 2017-05-30 Sio2 Medical Products, Inc. Coating inspection method
US9662450B2 (en) 2013-03-01 2017-05-30 Sio2 Medical Products, Inc. Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US9863042B2 (en) 2013-03-15 2018-01-09 Sio2 Medical Products, Inc. PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9903782B2 (en) 2012-11-16 2018-02-27 Sio2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
US10016338B2 (en) 2013-03-11 2018-07-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
US10189603B2 (en) 2011-11-11 2019-01-29 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US10201660B2 (en) 2012-11-30 2019-02-12 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like
US11077233B2 (en) 2015-08-18 2021-08-03 Sio2 Medical Products, Inc. Pharmaceutical and other packaging with low oxygen transmission rate
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5523124A (en) * 1992-06-17 1996-06-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'expoloitation Des Procedes Georges Claude Process for producing a silicon oxide deposit on the surface of a metallic or metallized polymer substrate using corona discharge at pressures up to approximately atmospheric
JPH0790592A (en) * 1993-09-23 1995-04-04 Becton Dickinson & Co Method for barrier coating of plastic product
JP2000212312A (en) * 1999-01-19 2000-08-02 Leybold Syst Gmbh Coating of substrate comprising synthetic resin
US8834954B2 (en) 2009-05-13 2014-09-16 Sio2 Medical Products, Inc. Vessel inspection apparatus and methods
US7985188B2 (en) 2009-05-13 2011-07-26 Cv Holdings Llc Vessel, coating, inspection and processing apparatus
US10537273B2 (en) 2009-05-13 2020-01-21 Sio2 Medical Products, Inc. Syringe with PECVD lubricity layer
US10390744B2 (en) 2009-05-13 2019-08-27 Sio2 Medical Products, Inc. Syringe with PECVD lubricity layer, apparatus and method for transporting a vessel to and from a PECVD processing station, and double wall plastic vessel
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication
US11123491B2 (en) 2010-11-12 2021-09-21 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US11724860B2 (en) 2011-11-11 2023-08-15 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11148856B2 (en) 2011-11-11 2021-10-19 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US10189603B2 (en) 2011-11-11 2019-01-29 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
US11884446B2 (en) 2011-11-11 2024-01-30 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US9664626B2 (en) 2012-11-01 2017-05-30 Sio2 Medical Products, Inc. Coating inspection method
US9903782B2 (en) 2012-11-16 2018-02-27 Sio2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US10201660B2 (en) 2012-11-30 2019-02-12 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition on medical syringes, cartridges, and the like
US10363370B2 (en) 2012-11-30 2019-07-30 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US11406765B2 (en) 2012-11-30 2022-08-09 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
US9662450B2 (en) 2013-03-01 2017-05-30 Sio2 Medical Products, Inc. Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
US10016338B2 (en) 2013-03-11 2018-07-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging
US10537494B2 (en) 2013-03-11 2020-01-21 Sio2 Medical Products, Inc. Trilayer coated blood collection tube with low oxygen transmission rate
US11298293B2 (en) 2013-03-11 2022-04-12 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US11344473B2 (en) 2013-03-11 2022-05-31 SiO2Medical Products, Inc. Coated packaging
US11684546B2 (en) 2013-03-11 2023-06-27 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US10912714B2 (en) 2013-03-11 2021-02-09 Sio2 Medical Products, Inc. PECVD coated pharmaceutical packaging
US9863042B2 (en) 2013-03-15 2018-01-09 Sio2 Medical Products, Inc. PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases
JP2015098617A (en) * 2013-11-18 2015-05-28 株式会社島津製作所 Film deposition apparatus
US11077233B2 (en) 2015-08-18 2021-08-03 Sio2 Medical Products, Inc. Pharmaceutical and other packaging with low oxygen transmission rate

Similar Documents

Publication Publication Date Title
JPH04374A (en) Production of hardened protective film on surface of plastic substrate
JPH04375A (en) Production of hardened protective film on surface of plastic substrate
US6197120B1 (en) Apparatus for coating diamond-like networks onto particles
JPH04373A (en) Production of hardened protective film on surface of plastic substrate
US5364666A (en) Process for barrier coating of plastic objects
CA2147486C (en) Protective film for articles and method
US4572841A (en) Low temperature method of deposition silicon dioxide
US5437895A (en) Plasma CVD process for forming amorphous silicon thin film
JPS593018A (en) Manufacture of silicon-base film by plasma deposition
WO2003095702A2 (en) Method for curing low dielectric constant film by electron beam
WO2004079814B1 (en) Modulated/composited cvd low-k films with improved mechanical and electrical properties for nanoelectronic devices
JP3355892B2 (en) Method of forming carbon film
JPH11256339A (en) Water-repellent coating film, contamination preventing product and production of water-repellent coating film
JPH03236474A (en) Method and device for forming hardened protective film on plastic surface
JPS61238962A (en) Method and apparatus for forming film
US6223686B1 (en) Apparatus for forming a thin film by plasma chemical vapor deposition
WO2003060942A1 (en) Electron emission device
JPH029787A (en) Plasma processing device
JPH06212430A (en) Formation of hardened protective film on surface of plastic substrate
JPH04270736A (en) Method for forming cured protective film
US6060131A (en) Method of forming a thin film by plasma chemical vapor deposition
JPH05124825A (en) Mold having diamondlike thin film protection film
JPS6187870A (en) Coating film and its formation
JP2001176870A (en) Method for forming nitride film
JP2001028120A (en) Device for manufacturing magnetic recording medium