JPH02273985A - Manufacture of three-dimensional wiring circuit board - Google Patents

Manufacture of three-dimensional wiring circuit board

Info

Publication number
JPH02273985A
JPH02273985A JP1096881A JP9688189A JPH02273985A JP H02273985 A JPH02273985 A JP H02273985A JP 1096881 A JP1096881 A JP 1096881A JP 9688189 A JP9688189 A JP 9688189A JP H02273985 A JPH02273985 A JP H02273985A
Authority
JP
Japan
Prior art keywords
insulating substrate
circuit board
dimensional wiring
board
wiring circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1096881A
Other languages
Japanese (ja)
Other versions
JPH0693536B2 (en
Inventor
Yutaka Watanabe
裕 渡辺
Nobumasa Kimura
信正 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Electric Co Ltd
Original Assignee
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Electric Co Ltd filed Critical Aichi Electric Co Ltd
Priority to JP1096881A priority Critical patent/JPH0693536B2/en
Publication of JPH02273985A publication Critical patent/JPH02273985A/en
Publication of JPH0693536B2 publication Critical patent/JPH0693536B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a three dimensional wiring circuit board and contrive manufacturing of thin, small-sized, lightweight, miniaturized electronic apparatuses with its wiring board by crystallizing this wiring board after having a curved face deformed by using required curvature during the manufacture of its board. CONSTITUTION:While applying pressure to shaping molds 13 and 14 under pressure of 10kg/cm<2>, the molds 13 and 14 are allowed to raise a temperature. When the temperature reaches 180 deg.C, pressing pressure is increased further up to 30kg/cm<2> and this state is maintained for about 20min. The molds are cooled up to a normal temperature and then press operation is complete. When its molding comes to an end, a printed wiring board is taken out from the molds 13 and 14 and then, a three dimensional wiring circuit board 12 which is pressed into shaping at a prescribed curvature is obtained. This circuit board 12 is processed by heating and operation work for about 20 min. by the use of a hot press and then its initial weak noncrystal state undergoes a transmission to a completely crystallized state that is superior in hardness. Then, even though a force is applied from the outside so that it may return back to a flattened state shown prior to crystallization, it reverts to a curved state as soon as the outside force is released. Such a property enables this circuit board to have three dimensional wiring and contrives manufacturing of thin, small sized, lightweight, miniaturized electronic apparatuses.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は小型電子計算機1通信、映像機器等各種電子機
器に利用することができる弾力性能を備えた立体配線回
路基板の製造方法に関するもので、その目的とするとこ
ろは、電子機器の軽薄短少化及び小型軽量化に即応し、
かつ、従前のリジット又はフレキシブル配線板の製造設
備をそのまま使用することにより、信頼性が高く、しか
も、量産性に優れた立体配線回路基板の製造方法を提供
することにある。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for manufacturing a three-dimensional wiring circuit board with elasticity that can be used in various electronic devices such as small electronic computers, communications, and video equipment. , its purpose is to respond immediately to the miniaturization and miniaturization of electronic equipment,
Another object of the present invention is to provide a method for manufacturing a three-dimensional wiring circuit board that is highly reliable and can be mass-produced by using existing manufacturing equipment for rigid or flexible wiring boards as is.

C従来の技術〕 近年、例えば、プログラム内蔵方式の小型電子計算機、
所謂パーソナル・コンピュータ等の電子機器においては
、装置の小形化、高性能化、多機能化等各種の要求に伴
い、前記機器に使用するプリント配線板も配線の高密度
化、回路の微細化等の対応が当然必要となってくる。
C. Prior Art] In recent years, for example, small electronic computers with built-in programs,
In electronic devices such as so-called personal computers, with various demands such as miniaturization, higher performance, and multi-functionality of the devices, the printed wiring boards used in the devices are also becoming more densely wired, circuits are becoming finer, etc. Naturally, a response will be necessary.

そして、現在実用化されているプリント配線板の基板は
、主にガラス基材エポキシ樹脂積層板が使用されている
が、この積層板は硬質基板であるため、偏平な状態でし
か使用できず、即ち、湾曲させての立体的な3次元的な
使用が全くできなかった。このため、前記の積層板は機
器のデッドスペースを有効に利用することができないば
かりが、平面的な使用しかはかれないため、電子機器の
軽薄短少化や小形軽量化に寄与させるには限界があった
The substrates of printed wiring boards currently in practical use are mainly glass-based epoxy resin laminates, but since these laminates are hard substrates, they can only be used in a flat state. In other words, it was not possible to use it three-dimensionally by bending it. For this reason, the above-mentioned laminates not only cannot make effective use of the dead space of devices, but also can only be used on a flat surface, so there is a limit to how much they can contribute to making electronic devices lighter, thinner, shorter, smaller, and lighter. there were.

しかるに、最近、硬質基板としての性能を備えながら、
折り曲げ可能な銅張積層板が、例えば、米国のロジャー
ズ社で商品名・ [ベンドフレックスjとして開発され
ている。この積層板は従来の硬質積層板とフレキシブル
積層板との中間的な特性を備えた基板で、その構成はポ
リエステル繊維とガラス繊維とからなる不織布に、エポ
キシ樹脂を含浸硬化させた絶縁部分の片面又は両面に銅
箔をラミネートすることにより、室温で簡単に折り曲げ
ることができるように設けられている。第9図は前記折
り曲げ可能な積層板を使用した実施例を示すもので、1
は小形電子計算機等に使用するキーボード、2は折り曲
げ可能な積層板、3はこのaJi12上に配設したキー
ボードスイッチで、その端子4をキーボードスィッチ3
配設位置の積NFi2の導電部に半田付けにて接続する
。この積層板2においては、室温での折り曲げが容易に
行えるので、第9図のように、キーボードスイッチ3を
、人間工学的に考慮して操作しやすいように湾曲配置さ
せるために、曲成しての使用が可能となり、キーボード
スイッチ3はすべて同種のものを使うことができる利点
がある。
However, recently, while having the performance as a rigid substrate,
A bendable copper-clad laminate, for example, has been developed by Rogers Company in the United States under the trade name Bendflex J. This laminate is a board with characteristics intermediate between conventional rigid laminates and flexible laminates, and its structure consists of a nonwoven fabric made of polyester fibers and glass fibers, with an insulating part on one side that is impregnated and cured with epoxy resin. Alternatively, by laminating copper foil on both sides, it is provided so that it can be easily bent at room temperature. FIG. 9 shows an example using the above-mentioned bendable laminate.
is a keyboard used for small electronic computers, etc., 2 is a bendable laminate, 3 is a keyboard switch installed on this aJi12, and its terminal 4 is connected to the keyboard switch 3.
Connect to the conductive part of the product NFi2 at the installation position by soldering. Since this laminated board 2 can be easily bent at room temperature, as shown in FIG. There is an advantage that all the keyboard switches 3 can be of the same type.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記の折り曲げ可能な積層板2は、不織布にポリエステ
ル繊維とガラス繊維とを使用することによって伸び率の
向上をはかっているが、絶縁部分はマトリンクスとして
熱硬化性の変性エポキシ樹脂を使用している関係上、室
温での折り曲げができるものの、キーボードスイッチ3
の操作を頻繁に繰返した場合、前記室温で曲面成形した
積層板2の湾曲度が次第に崩れて原形(平板状)に近い
状態に回復してしまい、キーボードスイッチ3の配列曲
面を不定型な状態に変形させ、キーボードスイッチ3の
操作性を損う問題があった。
The bendable laminate 2 has an improved elongation rate by using polyester fibers and glass fibers for the nonwoven fabric, but the insulating portion uses a thermosetting modified epoxy resin as a matrix. Although it can be bent at room temperature, the keyboard switch 3
If this operation is repeated frequently, the degree of curvature of the laminated plate 2 formed into a curved surface at room temperature will gradually collapse and return to a state close to its original shape (flat plate shape), causing the curved surface of the keyboard switch 3 to become irregularly shaped. There was a problem in that the keyboard switch 3 was deformed and the operability of the keyboard switch 3 was impaired.

又、前記の問題点に鑑み、第10図で示すように、例え
ば、約0.5m厚の基板上にw4箔をエツジング加工し
たリジット又はフレキシブル配線板6を、あらかじめ、
配線@6のスルーホール部分と同位置に孔あけ加工を行
い、かつ、これら孔明部分に絶縁を施して所要の曲面形
状に湾曲成形したアルミ板等の金属板7を貼着し、この
金属板7上にキーボードスイッチ8を配設し、その端子
9を配線板6の導電部に半田付けにて接続するようにし
たプリント配線板IOも開発されている。
In addition, in view of the above-mentioned problems, as shown in FIG. 10, for example, a rigid or flexible wiring board 6 on which W4 foil is etched on a substrate with a thickness of about 0.5 m is prepared in advance.
A hole is drilled at the same position as the through-hole portion of the wiring @ 6, and a metal plate 7 such as an aluminum plate that is insulated and curved into the required curved shape is attached to the hole, and this metal plate A printed wiring board IO has also been developed in which a keyboard switch 8 is disposed on the wiring board 7 and its terminal 9 is connected to a conductive portion of the wiring board 6 by soldering.

前記金属板7を備えた配線Fi10においては、キーボ
ードスイッチ8の繰返し操作による原形(曲面形状)復
帰には問題は生じないが、これがために、アルミ機等金
属板の使用は、部品点数の増加により製造工程が複雑化
するとともに、重量が増え、電子a器の軽薄短少、小形
軽景化に逆行し、かつ、製造工程の増加により生産性が
阻害され、製造原価を高くする等の問題があった。
In the wiring Fi10 equipped with the metal plate 7, there is no problem in returning to the original shape (curved shape) by repeated operations of the keyboard switch 8, but for this reason, the use of metal plates such as aluminum machines requires an increase in the number of parts. This complicates the manufacturing process and increases weight, which goes against the trend of electronic A devices becoming lighter, thinner, shorter, smaller, and more compact.Additionally, the increased number of manufacturing steps impedes productivity and raises manufacturing costs. there were.

本発明は前記の種々の問題点に鑑み、特殊加工した偏平
な絶縁基板をベースにして導体パターンを形成したあと
、前記絶縁基板を湾曲成形した場合、この絶縁基板に力
を加えても元の偏平状態に復帰することなく湾曲状態を
維持することができる立体配線回路基板の製造方法を提
供することにある。
In view of the above-mentioned problems, the present invention has been developed by forming a conductive pattern on a specially processed flat insulating substrate and then bending the insulating substrate. It is an object of the present invention to provide a method for manufacturing a three-dimensional wiring circuit board that can maintain a curved state without returning to a flat state.

〔課題を解決するための手段及び作用〕本発明は熱可塑
性の高粘度飽和ポリエステル樹脂をベースとして、ガラ
ス繊維及び無機フィラーを充填複合し、これを押し出し
成形した絶縁基板に、その結晶化前、即ち、非結晶の状
態で導体パターンを形成し、このあと、熱変形加工を行
って前記進縁基板を結晶化させることにより、自己復帰
性に優れた配線板の製造を可能とし、この配線板を、そ
の製造途中において所要の曲率で曲面変形させて結晶化
させることにより、ある程度の弾力性に富み、しかも、
前記曲面変形部に力を加えても、元の偏平状態に戻るこ
とが全くなく、曲面変形状態を保持することができる立
体配線回路基板の製造を可能とし、この配線板の使用に
よって電子機器の軽薄短少化及び軽量小形化に寄与でき
るようにしたことを特徴とする。
[Means and effects for solving the problems] The present invention is based on a thermoplastic high viscosity saturated polyester resin, filled with glass fiber and inorganic filler, and extruded to form an insulating substrate, and before crystallization. That is, by forming a conductor pattern in an amorphous state and then performing a thermal deformation process to crystallize the leading edge substrate, it is possible to manufacture a wiring board with excellent self-returnability. By deforming the curved surface with the required curvature during manufacturing and crystallizing it, it has a certain degree of elasticity, and
Even if force is applied to the curved surface deformation part, it does not return to the original flat state at all, and it is possible to manufacture a three-dimensional wiring circuit board that can maintain the curved surface deformation state, and by using this wiring board, it is possible to manufacture electronic devices. It is characterized by being able to contribute to reduction in weight, thickness, and size.

〔実 施 例〕〔Example〕

以下、本発明の実施例を第1図ないし第4図によって説
明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 4.

最初に、本発明の立体配線回路基板に使用する絶縁基板
の製造について説明する。前記絶縁基板は、熱可塑性の
高粘度飽和ポリエステル樹脂に、ガラス繊維と無機フィ
ラーとを充填複合し、これを゛所要の厚さ(約0.5〜
1m)でシート状に押し出して成形することによって得
られ、この絶縁基板は、例えば、ユニチカ株式会社で開
発された電気絶縁材料で、商品名「ユニレートJがこれ
に該当する。この絶縁基板はシート状に押出成形された
時点では非結晶状態にあって弾力性に富み、所要の温度
で加熱すると、結晶化されて所定の形状を恒久的に維持
するとともに、必要以上の外力を加えた場合も偏平状と
ならず、所定形状に自己復帰することができるよう弾力
性を備えて設けられる。
First, manufacturing of the insulating substrate used in the three-dimensional wiring circuit board of the present invention will be explained. The insulating substrate is made by filling a thermoplastic high-viscosity saturated polyester resin with glass fibers and an inorganic filler, and then forming the composite to a desired thickness (approximately 0.5 to
This insulating substrate is an electrically insulating material developed by Unitika Co., Ltd., and the product name ``Unirate J'' falls under this category. When it is extruded into a shape, it is in an amorphous state and has high elasticity, but when heated to the required temperature, it crystallizes and maintains the specified shape permanently, and even when excessive external force is applied. It is provided with elasticity so that it does not become flat and can self-return to a predetermined shape.

次に、前記非結晶状態の絶縁基板を用いて、例えば、第
4図に示す小形電子計算機用のキーボード11に使用す
る立体配線回路基板12を製造する場合の実施例を第1
図ないし第4図によって説明する。
Next, a first embodiment will be described in which a three-dimensional wiring circuit board 12 used for a keyboard 11 for a small electronic computer shown in FIG. 4 is manufactured using the amorphous insulating substrate.
This will be explained with reference to FIGS.

第1図において、前記シート状に押出して所要厚さに積
層して成形した非結晶状態の絶縁基板上に、接着シート
を約50 ’Cの温度により、10kg/dの加圧条件
下で約20分の時間をかけて仮接着し、つづいて、前記
接着シート上に、厚さ35μの銅箔を、熱ロールプレス
にて、約60°C,10kg / cniの条件下で加
熱及び加圧してラミネート処理を行う。次に導体パター
ンを形成するためのエツチングレジストを銅箔上に印刷
して硬化させ、つづいて、エツジンダ液を用いてエツジ
ング処理を行い、更に、この上から、電子部品の実装時
、半田付は作業の必要な部分を除きソルダレジストを、
印刷し、かつ、硬化する。このあと、前記各処理を施し
た絶縁基板をプレス金型によって電子部品実装用の孔部
分と、外形形状を整えるためのプレス打抜き作業を同時
に行って偏平状のプリント配線板を製造を行う。この時
点で前記プリント配線板は弾力性に富むフレキシブルな
非結晶状態下にある。次に、前記プリント配線板を使用
する電子機器に対応すべく所定の曲面形状に成形加工す
る。本実施例ではキーボード11のプリント配線板とし
て使用すべく、第2図に示すような曲面成形用のアルミ
製の雄、雌整形金型13.14を用いる。即ち、前記偏
平状のプリント配線板を所定の曲面形状に形成すべく、
金型13,14間に挟み込み、これら金型13.14を
図示しないホットプレスの加熱板間に挿入し、該加熱板
によって成型金型13.14の温度を約160°Cまで
上昇させ後プレス操作を行い、整形金型13.14を1
0kg/cdで加圧しながら該金型13,14の温度を
約180℃近くまで上昇させ、温度が180°Cに達し
た時点でプレス圧力を更に30 kg / c+1に増
圧してこの状態を約20分間維持する。これを常温まで
冷却してプレス操作を終え、金型13゜14から成形を
終えたプリント配線板を取出すと第3図に示すように、
所定の曲率で押圧成形した立体配線回路基板12を製造
することができる。
In FIG. 1, an adhesive sheet is placed on an amorphous insulating substrate that has been extruded into a sheet shape and laminated to a desired thickness to form a mold, at a temperature of about 50'C and under a pressure of about 10 kg/d. Temporary adhesion was performed for 20 minutes, and then a 35μ thick copper foil was heated and pressed on the adhesive sheet using a hot roll press at approximately 60°C and 10kg/cni. Then perform the laminating process. Next, an etching resist for forming a conductor pattern is printed on the copper foil and cured, followed by etching treatment using an etching agent. Solder mask, except for the areas that require work,
Print and cure. Thereafter, the insulating substrate subjected to the above-mentioned treatments is simultaneously punched using a press mold to form holes for mounting electronic components and to prepare the external shape, thereby manufacturing a flat printed wiring board. At this point, the printed wiring board is in a highly elastic and flexible amorphous state. Next, the printed wiring board is molded into a predetermined curved shape to be compatible with electronic equipment that uses it. In this embodiment, in order to be used as a printed wiring board for the keyboard 11, male and female shaping molds 13 and 14 made of aluminum for forming curved surfaces as shown in FIG. 2 are used. That is, in order to form the flat printed wiring board into a predetermined curved shape,
These molds 13 and 14 are inserted between the heating plates of a hot press (not shown), and the temperature of the molding molds 13 and 14 is raised to about 160°C by the heating plate, and then press is performed. Perform the operation and set the shaping mold 13.14 to 1.
While pressurizing at 0 kg/cd, the temperature of the molds 13 and 14 was raised to approximately 180°C, and when the temperature reached 180°C, the press pressure was further increased to 30 kg/c+1 to maintain this state at approximately 180°C. Hold for 20 minutes. When this is cooled to room temperature and the pressing operation is completed, the printed wiring board that has been molded is taken out from the mold 13 and 14, as shown in Figure 3.
A three-dimensional wiring circuit board 12 that is press-molded with a predetermined curvature can be manufactured.

この回路基板12はホットプレスによる約20分間の加
熱及び加工作業により、軟弱な非結晶の状態から腰が強
い完全に結晶化した状態に進み、結晶化前の偏平化状態
に戻そうとする外力をかけても、その外力を解いた時点
で曲成状態に戻り、その曲率及び形状に全く変化は認め
ら杵なかった。
This circuit board 12 progresses from a soft, amorphous state to a stiff, completely crystalline state by heating and processing work using a hot press for about 20 minutes, and is subjected to an external force that attempts to return it to the flattened state before crystallization. Even when the external force was applied, the pestle returned to its curved state as soon as the external force was released, and no change was observed in its curvature or shape.

次に、前記立体配線回路基板12を使用したキーボード
11の構成を説明すると、第4図において、キーボード
スイッチ15は、前記所定の曲率で曲成した立体配線回
路基板12上に湾曲配置し、端子16を回路基板121
面の導電部に半田付にて接続することにより、第4図で
示すように、キーボードスイッチ15を回路基板12の
曲面に沿って操作しやすい状態に湾曲配置させたカーブ
弐のキーボード11を製作することができる。
Next, the structure of the keyboard 11 using the three-dimensional wiring circuit board 12 will be explained. In FIG. 16 to the circuit board 121
By connecting to the conductive part of the surface by soldering, a curved keyboard 11 is manufactured in which the keyboard switch 15 is arranged in a curved manner so that it can be easily operated along the curved surface of the circuit board 12, as shown in FIG. can do.

なお、立体配線回路基板12には図示しない電子部品が
実装されることは云うまでもない。
It goes without saying that electronic components (not shown) are mounted on the three-dimensional wiring circuit board 12.

次に、本発明の第2実施例として前記非結晶の絶縁基板
とフレキシブルプリント配線板とを組合せた第5図に示
す立体配線回路基板1日の構成を説明する。第6図にお
いて、Bステージ状態の樹脂含浸フィルム上に、厚さ3
5μの銅箔を熱ロールプレスにて、約60°C,10k
g/cdの条件下で約20分の時間をかけて加熱及び加
圧してラミネート処理を行う。次に約70°Cの温度で
3日間のセミキュアーを行い、このあと、更に、約15
0°Cの温度で10時間のアフターキュアーを行ってフ
レキシブルプリント材料を製作する。つづいて、前記基
板に導体パターンを形成するためのエツジングレジスト
を前記銅箔上に印刷(又はフォトレジスト)して硬化さ
せ、引きつづき、エッジンダ液を用いてエツジング処理
を行い、更に、実装時に半田付は作業の必要な部分を除
いてソルダレジストを、印刷し、かつ、硬化させて被覆
する。このあと、前記各処理を行ったフレキシブルプリ
ント基板をブ【/ス金型によって孔明けと外形を整形す
るためのプレス打抜き作業を同時に行ってフレキシブル
プリント配線板の製造を終える。次に非結晶の絶縁基板
上に接着シートを第1実施例で説明したように仮接着し
、第5図で示すように、接着シートのみを仮接着した前
記絶縁基板12aをフレキシブルプリント配線板17の
上に載せ、これらを、約100 ’C,10kg/cd
の条件下で熱ロールプレスにてラミネート処理を行って
立体配線回路基板1日を製造する。このあと、所要の形
状に熱変形加工を行うが、この工程は第1実施例と同様
であるため、その説明を省略する。
Next, as a second embodiment of the present invention, the structure of a three-dimensional wiring circuit board shown in FIG. 5, which is a combination of the amorphous insulating substrate and a flexible printed wiring board, will be explained. In Fig. 6, a thickness of 3
5μ copper foil in a hot roll press at approximately 60°C, 10k
The lamination process is performed by heating and pressurizing the product under conditions of g/cd for about 20 minutes. Next, semi-cure for 3 days at a temperature of approximately 70°C, and then further cure for approximately 15 days.
After-cure for 10 hours at a temperature of 0°C to produce a flexible print material. Next, an etching resist for forming a conductor pattern on the board is printed (or photoresist) on the copper foil and cured, followed by an etching treatment using an edger liquid, and further, during mounting. For soldering, solder resist is printed, cured, and covered except for the areas where work is required. Thereafter, the flexible printed circuit board that has been subjected to each of the above processes is simultaneously subjected to punching operations for punching holes and shaping the outer shape using a bus mold, thereby completing the production of the flexible printed wiring board. Next, an adhesive sheet is temporarily bonded onto the amorphous insulating substrate as described in the first embodiment, and as shown in FIG. Place these on top of the
A three-dimensional wiring circuit board is manufactured by laminating using a hot roll press under these conditions. Thereafter, thermal deformation processing is performed to obtain a desired shape, but since this step is the same as that of the first embodiment, its explanation will be omitted.

つづいて、前記第2実施例にて製造した立体配線回路基
板I8をキーボードIIに使用する例を第5図によって
説明する。即ち、所定の曲率で曲面成形した絶縁基板1
2aとフレキシブルプリント配線板17との接合部分に
、第4図と同様にキーボードスイッチ15を配置し、そ
の端子I6をフレキシブルプリント配線板17真面の導
電部に半田付けにて接続する。一方、絶縁基板12aか
ら延出するフレキシブルプリント配IJ117の延出端
17a (第5図の右側)は、第5図で示すように、U
字状に曲成して補助プリント配線板19に実装した凹型
のコネクタ接触子22に接続する。
Next, an example in which the three-dimensional wiring circuit board I8 manufactured in the second embodiment is used in a keyboard II will be explained with reference to FIG. That is, the insulating substrate 1 is formed into a curved surface with a predetermined curvature.
2a and the flexible printed wiring board 17, a keyboard switch 15 is arranged in the same manner as in FIG. 4, and its terminal I6 is connected to the conductive part directly on the flexible printed wiring board 17 by soldering. On the other hand, as shown in FIG. 5, the extending end 17a (right side in FIG. 5) of the flexible printed wiring IJ 117 extending from the insulating substrate 12a is
It is connected to a concave connector contact 22 which is bent into a letter shape and mounted on the auxiliary printed wiring board 19.

一方、前記コネクタ接触子22を備えた補助プリント配
線板19に去、キーボード11に実装する電子部品、例
えば、LSI等の電子部品21が実装されている。又、
20はコネクタ接触子22とフレキシブルプリント配線
板17とを機械的に固定するためのハウジングで、補助
プリント配線板19上に取付けられている。このように
、熱変形加工を行って結晶化させた絶縁基板12aと導
体パターンを施したフレキシブルプリント配線板17と
を組合せて立体配線回路基板18を形成することにより
、フレキシブルプリント配線板17の可撓性を有効利用
してこれをU字状に曲成して立体配線回路基板18の下
側に潜らせ、この部位で補助プリント配線板19と接続
することにより、キーボード11の電子部品21を立体
的罎配設することができるため、キーボード11の奥行
寸法を大幅に低減することができ、キーボード11の小
形軽量化をはかることができる。
On the other hand, on the auxiliary printed wiring board 19 provided with the connector contacts 22, an electronic component 21, such as an LSI, to be mounted on the keyboard 11 is mounted. or,
20 is a housing for mechanically fixing the connector contactor 22 and the flexible printed wiring board 17, and is mounted on the auxiliary printed wiring board 19. In this way, by forming the three-dimensional wiring circuit board 18 by combining the insulating substrate 12a that has been crystallized by thermal deformation processing and the flexible printed wiring board 17 on which a conductor pattern has been applied, the flexibility of the flexible printed wiring board 17 can be improved. The electronic components 21 of the keyboard 11 can be connected to the auxiliary printed wiring board 19 by effectively utilizing its flexibility and bending it into a U-shape to hide it under the three-dimensional wiring circuit board 18 and connecting it to the auxiliary printed wiring board 19 at this location. Since the keyboard can be arranged three-dimensionally, the depth dimension of the keyboard 11 can be significantly reduced, and the keyboard 11 can be made smaller and lighter.

更に、本発明の第3の実施例を第7図により説明する。Furthermore, a third embodiment of the present invention will be explained with reference to FIG.

第7図及び第8図において、シート状に押出して所要の
厚さで積層して成形した非結晶状態の基板上に、前記第
1.第2実施例で説明したように、接着シートを仮接着
して絶縁基板22を設け、この絶縁基板22上に銅ペー
ストを用いて、例えばスクリーン印刷法にて印刷→硬化
処理を行って銅ペーストによる導電パターン23を形成
する。次いで、前記導電パターン23上に湿式メンキを
行うために活性化パラジュウム24を用いて活性化処理
を行い、このあと、無電解ニッケルーホウ素合金25に
て湿式メッキを行ってから、第1.第2実施例の如く、
ソルダレジスト26を、印刷し、かつ、硬化処理させて
半田付けを行う部分以外を被I′g!する。この状態で
、前記各処理を施した絶縁基板22を前記第1.第2実
施例と同様にホントブレスを用いて所要形状に熱変形加
工を行い結晶化した立体配線回路基板27を型造するも
のである。この場合、無電解ニッケルーホウ素合金によ
るメッキ被膜は、不動態化しに<<、長期保存が可能と
なり、導電部の半田付は性能を低下させることなく使用
することができるとともに、前記のように銅箔を使用し
ないので低価格での製造が可能となる。
In FIGS. 7 and 8, the first. As explained in the second embodiment, an insulating substrate 22 is provided by temporarily adhering an adhesive sheet, and a copper paste is printed on this insulating substrate 22 by, for example, a screen printing method, followed by a curing process to paste the copper paste. A conductive pattern 23 is formed. Next, in order to perform wet plating on the conductive pattern 23, an activation treatment is performed using activated palladium 24, and after that, wet plating is performed with an electroless nickel-boron alloy 25, and then the first. As in the second embodiment,
The solder resist 26 is printed, cured, and soldered except for the areas to be soldered! do. In this state, the insulating substrate 22 which has been subjected to each of the above-mentioned treatments is placed in the first. As in the second embodiment, a crystallized three-dimensional wiring circuit board 27 is molded by thermally deforming it into a desired shape using a real breath. In this case, the electroless nickel-boron alloy plating film can be stored for a long time without passivation, and the soldering of the conductive parts can be used without deteriorating the performance. Since no copper foil is used, it can be manufactured at a low cost.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように、プリント配し!A板を製
造する場合、配線板の素材を構成する絶縁基板の非結晶
状態時に、導電パターンを形成したり、あるいは導電パ
ターンを備えたフレキシブルプリント配線板を接合し、
この状態で、前記絶縁基板を結晶化温度で熱変形加工を
行い、結晶化した所定形状の立体配線回路基板を設ける
ことができるため、本発明の立体配線回路基板は、外力
が加えられる機器の配線板として使用しても、常に外力
が解消されると、3次元的な立体形状に復元することが
できるので、外力による悪影響、弊害を一掃することが
できる。
As explained above, the present invention is printed! When manufacturing board A, a conductive pattern is formed on the insulating substrate that constitutes the material of the wiring board when it is in an amorphous state, or a flexible printed wiring board with a conductive pattern is bonded.
In this state, the insulating substrate is thermally deformed at a crystallization temperature to provide a crystallized three-dimensional wiring circuit board in a predetermined shape. Even when used as a wiring board, it can always be restored to its three-dimensional shape once external forces are removed, thereby eliminating the negative effects and harmful effects of external forces.

又、立体配線が可能なため、本発明の回路基板を使用す
る電子機器の軽薄短少化及び小形軽量化をはかる利点も
ある。
Furthermore, since three-dimensional wiring is possible, there is an advantage that electronic equipment using the circuit board of the present invention can be made lighter, thinner, shorter, smaller, and lighter.

更に、本発明の立体配線回路基板の製造に際しては、従
前のりジント又はフレキシブルプリント配線板の製造工
程をそのまま利用することができるため、短期間に、か
つ、経済的に製造することができる。
Furthermore, when manufacturing the three-dimensional wiring circuit board of the present invention, the manufacturing process for conventional adhesive or flexible printed wiring boards can be used as is, so it can be manufactured in a short period of time and economically.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の立体配線回路基板の製造工程図、第2
図は金型の側面図、第3図は立体配線回路基板を熱変形
加工した状態を示す側面図、第4図及び第5図は本発明
の立体配線回路基板をキーボードの配線板として使用し
た例をそれぞれ示す要部縦断面図、第6図は本発明の第
2実施例を示す+!!造工程図、第7図は本発明の第3
実施例を示す製造工程図、第8図は第3実施例によって
製造した立体配線回路基板の要部縦断面図、第9図及び
第10図は従来の配線板のそれぞれ異なる使用状態を示
す要部縦断面図である。
Fig. 1 is a manufacturing process diagram of the three-dimensional wiring circuit board of the present invention;
The figure is a side view of the mold, Figure 3 is a side view showing the state in which the three-dimensional wiring circuit board has been thermally deformed, and Figures 4 and 5 show the three-dimensional wiring circuit board of the present invention used as a wiring board for a keyboard. FIG. 6 is a longitudinal cross-sectional view of main parts showing each example, and FIG. 6 shows a second embodiment of the present invention.+! ! The manufacturing process diagram, Figure 7, is the third embodiment of the present invention.
FIG. 8 is a longitudinal sectional view of main parts of a three-dimensional wiring circuit board manufactured according to the third embodiment, and FIGS. 9 and 10 are diagrams showing different usage states of a conventional wiring board. FIG.

Claims (3)

【特許請求の範囲】[Claims] (1)熱可塑性の高粘度飽和ポリエステル樹脂に、ガラ
ス繊維と無機フィラーとを充填複合させ、これを押出し
成形してシート状の非結晶状態の絶縁基板を形成し、こ
の絶縁基板上に接着シートあるいは接着剤層を介して銅
箔をラミネートしてこの部位に導電パターンを形成した
あと、前記各処理を施した絶縁基板を結晶化する温度で
熱変形加工を行って絶縁基板を結晶化させるようにした
ことを特徴とする立体配線回路基板の製造方法。
(1) Thermoplastic high-viscosity saturated polyester resin is filled and composited with glass fiber and inorganic filler, and this is extruded to form a sheet-like amorphous insulating substrate, and an adhesive sheet is placed on this insulating substrate. Alternatively, after laminating copper foil through an adhesive layer and forming a conductive pattern in this area, thermal deformation processing is performed at a temperature that crystallizes the insulating substrate subjected to each of the above treatments to crystallize the insulating substrate. A method for manufacturing a three-dimensional wiring circuit board, characterized in that:
(2)熱可塑性の高粘度飽和ポリエステル樹脂に、ガラ
ス繊維と無機フィラーとを充填複合させ、これを押出し
成形してシート状の非結晶状態の絶縁基板を形成し、こ
の絶縁基板を導電パターンを形成したフレキシブルプリ
ント配線板とラミネート処理を行い、かつ、両部材を絶
縁基板が結晶化する温度で熱変形加工を行って絶縁基板
を結晶化させるようにしたことを特徴とする立体配線回
路基板の製造方法。
(2) A thermoplastic high-viscosity saturated polyester resin is filled and composited with glass fiber and inorganic filler, and this is extruded to form a sheet-like amorphous insulating substrate, and this insulating substrate is coated with a conductive pattern. A three-dimensional wiring circuit board characterized in that the formed flexible printed wiring board is laminated, and both members are thermally deformed at a temperature at which the insulating substrate crystallizes, thereby crystallizing the insulating substrate. Production method.
(3)熱可塑性の高粘度飽和ポリエステル樹脂に、ガラ
ス繊維と無機フィラーとを充填複合させ、これを押出し
成形してシート状の非結晶状態の絶縁基板を形成し、こ
の絶縁基板上に導電性ペーストにて所定の導電パターン
を形成したあと、銅あるいはニッケル等の化学メッキ処
理を施し、この状態で前記各処理を施した絶縁基板を結
晶化する温度で熱変形加工を行って絶縁基板を結晶化さ
せるようにしたことを特徴とする立体配線回路基板の製
造方法。
(3) Thermoplastic high viscosity saturated polyester resin is filled and composited with glass fiber and inorganic filler, and this is extruded to form a sheet-like amorphous insulating substrate, and conductive material is formed on this insulating substrate. After forming a predetermined conductive pattern with paste, chemical plating treatment such as copper or nickel is applied, and in this state thermal deformation processing is performed at a temperature that crystallizes the insulating substrate subjected to each of the above treatments to crystallize the insulating substrate. 1. A method for manufacturing a three-dimensional wiring circuit board, characterized in that:
JP1096881A 1989-04-17 1989-04-17 Method for manufacturing three-dimensional wiring circuit board Expired - Lifetime JPH0693536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1096881A JPH0693536B2 (en) 1989-04-17 1989-04-17 Method for manufacturing three-dimensional wiring circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1096881A JPH0693536B2 (en) 1989-04-17 1989-04-17 Method for manufacturing three-dimensional wiring circuit board

Publications (2)

Publication Number Publication Date
JPH02273985A true JPH02273985A (en) 1990-11-08
JPH0693536B2 JPH0693536B2 (en) 1994-11-16

Family

ID=14176754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1096881A Expired - Lifetime JPH0693536B2 (en) 1989-04-17 1989-04-17 Method for manufacturing three-dimensional wiring circuit board

Country Status (1)

Country Link
JP (1) JPH0693536B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283849A (en) * 1992-03-31 1993-10-29 Nitto Boseki Co Ltd Method and apparatus for manufacturing three-dimensional molding circuit board
DE10081175B4 (en) * 1999-03-26 2010-06-02 Mitsubishi Plastics, Inc. Method for producing a three-dimensional printed circuit board
US7841078B2 (en) 2008-01-07 2010-11-30 International Business Machines Corporation Method of optimizing land grid array geometry

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105557076B (en) * 2013-11-15 2017-03-08 株式会社旺得未来 The manufacture method of electric product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108291A (en) * 1980-01-31 1981-08-27 Asahi Purinto Kogyo Kk Printed circuit board by ultraviolet ray machining
JPS5743491A (en) * 1980-08-29 1982-03-11 Toray Industries Printed circuit board
JPS6329598A (en) * 1986-07-22 1988-02-08 松下電工株式会社 Mounting of flexible printed circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108291A (en) * 1980-01-31 1981-08-27 Asahi Purinto Kogyo Kk Printed circuit board by ultraviolet ray machining
JPS5743491A (en) * 1980-08-29 1982-03-11 Toray Industries Printed circuit board
JPS6329598A (en) * 1986-07-22 1988-02-08 松下電工株式会社 Mounting of flexible printed circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05283849A (en) * 1992-03-31 1993-10-29 Nitto Boseki Co Ltd Method and apparatus for manufacturing three-dimensional molding circuit board
DE10081175B4 (en) * 1999-03-26 2010-06-02 Mitsubishi Plastics, Inc. Method for producing a three-dimensional printed circuit board
US7841078B2 (en) 2008-01-07 2010-11-30 International Business Machines Corporation Method of optimizing land grid array geometry

Also Published As

Publication number Publication date
JPH0693536B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
US7347950B2 (en) Rigid flexible printed circuit board and method of fabricating same
JP4874305B2 (en) Circuit board with built-in electric / electronic components and manufacturing method thereof
JP2007110010A (en) Flexible printed wiring board, flexible printed circuit board, and their manufacturing method
WO2002007485A1 (en) Circuit board and method for manufacturing the same, and electronic apparatus comprising it
WO2003083940A1 (en) Method of manufacturing heat conductive substrate
JPH0335584A (en) Manufacture of two-stage wiring circuit board
JPH02273985A (en) Manufacture of three-dimensional wiring circuit board
JP3600317B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP3744970B2 (en) Manufacturing method of flex rigid wiring board
JP4133756B2 (en) Connection method of printed wiring board
JP3501268B2 (en) Flexible printed wiring board
JP2000068620A (en) Circuit substrate and manufacture thereof
JP3948317B2 (en) Method for manufacturing thermally conductive substrate
JP2784682B2 (en) Switch mounting board mounting structure
JP2005217173A (en) Printed wiring board, connecting method thereof and manufacturing method thereof
JP2000133943A (en) Manufacture of multilayered board
JP2008235346A (en) Flexible printed wiring board
JPH0710511Y2 (en) Three-dimensional wiring circuit board
KR100771310B1 (en) Rigid flexible printed circuit board and fabricating method of the same
JP4476474B2 (en) CONNECTION MATERIAL, ITS MANUFACTURING METHOD, AND CONNECTION STRUCTURE MANUFACTURING METHOD
JP2001257448A (en) Method for manufacturing printed wiring board and printed wiring board obtained thereby
JPH069313B2 (en) Method for manufacturing metal-based printed wiring board
JPH0693542B2 (en) Method for manufacturing smooth wiring circuit board
JPH10303553A (en) Manufacture for printed wiring board
JPH04137591A (en) Multilayer circuit board