JPH02273516A - Process for separating and enrichment of isotope by thermal diffusion - Google Patents

Process for separating and enrichment of isotope by thermal diffusion

Info

Publication number
JPH02273516A
JPH02273516A JP9439589A JP9439589A JPH02273516A JP H02273516 A JPH02273516 A JP H02273516A JP 9439589 A JP9439589 A JP 9439589A JP 9439589 A JP9439589 A JP 9439589A JP H02273516 A JPH02273516 A JP H02273516A
Authority
JP
Japan
Prior art keywords
isotope
mixture
thermal diffusion
substance
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9439589A
Other languages
Japanese (ja)
Other versions
JP2765722B2 (en
Inventor
Tadashi Takayasu
高安 紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan filed Critical Research Development Corp of Japan
Priority to JP1094395A priority Critical patent/JP2765722B2/en
Publication of JPH02273516A publication Critical patent/JPH02273516A/en
Application granted granted Critical
Publication of JP2765722B2 publication Critical patent/JP2765722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PURPOSE:To effect enrichment and separation of a very small amount of isotope contained in a mixture efficiently by means by a small separation column by adding a third substance having chemical properties different from that of the mixture containing isotope. CONSTITUTION:In a process for separation and enrichment of isotope of tritium, etc., present in a hydrogen-isotope mixed gas by thermal diffusion, a third substance such as helium, etc., is added in advance to the mixture containing isotope such as the hydrogen-isotope mixed gas, wherein said third substance has chemical properties different from that of the mixture. As a result, a specific isotope of high purity such as tritium can be separated from a mixed gas of isotope and further a separation column can be made smaller, thereby decreasing the operation cost thereof.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、熱拡散法による同位体の分離濃縮方法に関
するものである。さらに詳しくは、この発明は、同位体
混合物の分解能を大きくし、微量の同位体をも分離濃縮
でき、しかも使用する分離塔を小型化することができる
とともに、その運転コストを低減させることのできる熱
拡散法による同位体の分離濃縮方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for separating and concentrating isotopes by thermal diffusion. More specifically, the present invention can increase the resolution of isotope mixtures, make it possible to separate and concentrate even trace amounts of isotopes, and further reduce the size of the separation column used, as well as reduce its operating cost. This paper relates to a method for separating and concentrating isotopes using thermal diffusion.

(従来の技術) 従来より、同位体の混合物から所望の同位体を分離し、
濃縮する方法として、熱拡散法が広く知られている0通
常、熱拡散法においては、鉛直に立てた外側を冷却する
円筒と、この円筒内部の中心線に沿って配置したし−タ
とで構成される熱拡散分離塔を用い、同位体の混合物を
この熱拡散分離塔内に導入し、その分子量の相違により
分離濃縮してきている。−船釣に、分子量の小さい物質
は分離塔の上端に分離濃縮し、一方、分子量の大きい物
質はその下端に分離濃縮する。同位体混合物中の分子量
の小さい成分を分離濃縮する場合には、分離塔の下方か
ら同位体混合物を導入し、分離塔上端に目的とする成分
を濃縮させている。また、同位体混合物中の分子量の大
きい成分を分離濃縮する場合には、分離塔の上方から同
位体混合物を導入し、分離塔下端に目的とする成分を濃
縮させている。
(Prior art) Conventionally, a desired isotope is separated from a mixture of isotopes,
Thermal diffusion method is widely known as a method of concentration. Normally, the thermal diffusion method uses a vertically erected cylinder to cool the outside and a dropper placed along the center line inside the cylinder. A mixture of isotopes is introduced into the thermal diffusion separation column and separated and concentrated based on their molecular weight differences. - In boat fishing, substances with small molecular weights are separated and concentrated at the upper end of the separation column, while substances with large molecular weights are separated and concentrated at the lower end. When separating and concentrating a component with a small molecular weight in an isotope mixture, the isotope mixture is introduced from the bottom of the separation column, and the target component is concentrated at the top of the separation column. In addition, when separating and concentrating a component with a large molecular weight in an isotope mixture, the isotope mixture is introduced from above the separation column, and the target component is concentrated at the bottom end of the separation column.

(発明が解決しようとする課題) しかしながら、従来の熱拡散法においては、−般番1、
同位体の分解能、す゛なわち分離塔の上端と下端におけ
る同位体の濃度の比が、小さいという欠点がある。また
、使用する分離塔の形状は、分離11、ようとする同位
体の粘性係数、拡散係数等の同位体固有の性質により一
義的に決って17マうなぬ、分離a縮しようとする同位
体混合物の息の多少に応じて使用jる分離塔の形状を大
型にしたり、あるいは小型にしl、′:りするような変
更は不可能でもあった。
(Problem to be solved by the invention) However, in the conventional thermal diffusion method, - general number 1,
The drawback is that the isotope resolution, ie, the ratio of the isotope concentrations at the upper and lower ends of the separation column, is small. In addition, the shape of the separation column used is uniquely determined depending on the isotope-specific properties such as the viscosity coefficient and diffusion coefficient of the isotope to be separated. It has not been possible to change the shape of the separation column used, such as making it larger or smaller depending on the amount of gas in the mixture.

このような状況に鑑みC1この発明の発明者は、水素同
位体温ら・ガス中に存在するトリチウムの分wL酒綿に
おいて、上述しt:従来の熱拡散法の欠点を解消するた
めに、水素同位体混合ガスに^、リウムを予め添加し、
白金、ニッケル、パラジウム等の触媒を用いてトリ升つ
ムを熱拡散法により分離a1i1するJj法を提案1.
てらいる。この方法は、高純廉のトリチウムを水素同位
体混合ガスから分^tすることが゛で゛き、しかも分離
塔を小型化することらできるとい・)潰れた作用効果を
有し、注目されているものである。
In view of this situation, the inventors of the present invention have developed hydrogen isotope temperature and tritium present in the gas as described above. Add lithium to the isotope mixed gas in advance,
1. Proposed the Jj method in which trisium is separated by thermal diffusion using a catalyst such as platinum, nickel, or palladium.1.
Tell me. This method is attracting attention because it has an outstanding effect of being able to separate high-purity tritium from a hydrogen isotope mixed gas and also making it possible to downsize the separation tower. It is something.

この発明は6上記1.た水素同位体混合ガスからのトリ
チウムの分離濃縮方法の長所を生かしつつ、さらにこわ
、を発展させ、水素同位体以外の同位体混合物の場合に
も5、同位体の分離能を大きくj−2て微量の同位体を
も分離濃縮することができ、17かも使用する仔馬を塔
を小型化する、:、とができるともに、その運転コスト
を低減させることのできろ改善された熱拡散法による同
位体の分M漂縮1j法を提供することを目的としている
This invention is based on 6 above 1. While taking advantage of the advantages of the method for separating and concentrating tritium from a hydrogen isotope mixture gas, we have further developed the method to greatly increase the isotope separation ability in the case of isotope mixtures other than hydrogen isotopes. By using an improved thermal diffusion method, it is possible to separate and concentrate even trace amounts of isotopes, and to reduce the size of the column used, as well as to reduce its operating costs. The purpose is to provide a fraction M drift 1j method for isotopes.

(課題を解決する′l′、:めの手Pi )この発明は
、上記の目的を実現するなめに、熱拡散法により同(i
’7体混体物合物特定の同位体を5)H濃縮するにあた
り、予め同位体混合物に1、これとは化γ的性質を異に
する物質を少なくとら1祠11」上添加し、特定の同位
体を分M漂縮することを特徴とする熱拡散法による同位
体の分離濃縮方法を提供する。
('l' to solve the problem: Menote Pi) In order to achieve the above object, the present invention uses the thermal diffusion method to achieve the same (i)
5) When concentrating a specific isotope in a 7-body mixture compound, at least 1 substance with chemical properties different from this is added to the isotope mixture in advance, Provided is a method for separating and concentrating isotopes using a thermal diffusion method, which is characterized by drifting a specific isotope by M.

同位体混合物ど化学的性質を異にする物質(第3!t!
J質)は7m位体混合物の各同位体の拡散分離の特性と
わずかに興なるため、分離塔における第3杓質の濃縮域
に分配される同位体の組成比を、分離塔導入時の同位体
混合物の組成比と相違させる4゛−とができる、同位体
と第3物質との組合わせ方によ−)て高効率で特定の同
位体を完全に濃縮させることらli丁能となる。また1
、二の第3物質を添加づることによって、使用する分w
l塔の太さ、ヒータ温度、第3物質の濃度等にIjl、
適値が得られる。
Substances with different chemical properties such as isotopic mixtures (3rd!t!
Since the characteristics of the diffusion separation of each isotope in the 7m-tope mixture differ slightly, the composition ratio of the isotopes distributed to the enrichment zone of the third ladle in the separation column is adjusted to By combining the isotope and the third substance, which differs from the composition ratio of the isotope mixture, it is possible to completely concentrate a specific isotope with high efficiency. Become. Also 1
, by adding the second third substance, the amount to be used w
ljl, the thickness of the tower, the heater temperature, the concentration of the third substance, etc.
An appropriate value can be obtained.

第3物質の濃縮域で補集した物質からの第3物質の陥入
は、その化T的性質が同位体と異なっているため、通常
の化学分離法により容易に行うことかできる。
The invagination of the third substance from the substance collected in the third substance enrichment region can be easily carried out by ordinary chemical separation methods, since its chemical properties are different from those of isotopes.

、1な、この発明に16いては、同位体混合物に複数樟
の第3物質を添加することにより分離濃縮しよ−)とす
る同位体をさらに濃縮することができる。
According to the present invention, the isotopes to be separated and concentrated can be further concentrated by adding a plurality of third substances to the isotope mixture.

(実施例) 以F、実施例を示11、この発明の熱拡散法による同位
体の分離濃縮方法についてさらに詳しく説明づ゛る。
(Example) Hereinafter, Example 11 will be shown, and the method for separating and concentrating isotopes by the thermal diffusion method of the present invention will be explained in more detail.

実施例1 ガラス管(32−φ)を外筒に用い、その外側を水冷で
きるように121、この外筒内にコク1フム線を有する
石英’iiJ’ (7amφ)を配Ij7て、電気的に
加熱するし−タとして使用l−な。このような構成から
なる熱拡散分離塔の有効長を1mと12、その1部には
1fのガス溜めを説けた。
Example 1 A glass tube (32-φ) was used as the outer cylinder, and a quartz 'iiJ' (7 amφ) having a 1mm wire was arranged inside the outer cylinder so that the outside could be cooled with water. Use it as a heater to heat it up. The effective length of the thermal diffusion separation tower constructed as described above was 1m, 12, and a 1f gas reservoir was found in a part of it.

まず、第3物質としてNeを用い、H,、/D。First, using Ne as the third substance, H,,/D.

/ N e = 0.310.310.4の割合からな
る混合カスを分離塔に導入し、1、気圧と1.な。この
後、ヒータを110V、4Aで加熱したところ、おJ:
(2時間後に定常状態に達した。シー・夕の温度は、1
40 ’Cから310’Cの温度分布を示1−たにのと
きの分静塔内のガス#ll成は、上端では11ス/HD
/Dλ/N e = 0.60/ 0.29/ (1,
04/ 0.07 (142/HD /D2=64.7
%/30.7%/4.6%)で、下端ではHz /HD
/f)2/N e =6.3810−’/”3.OX1
0□’/9.8 X 10’−’10.995  (H
z / HD7・/D2=13.5%/65゜3%/2
1.1%)であった。
/ N e = 0.310.310.4 is introduced into the separation column, and the pressure is 1. atmospheric pressure and 1. Na. After this, when I heated the heater at 110V and 4A, I found that:
(Steady state was reached after 2 hours. The temperature at sea and evening was 1
The gas composition in the separation column when the temperature distribution is 40'C to 310'C is 11st/HD at the upper end.
/Dλ/N e = 0.60/ 0.29/ (1,
04/ 0.07 (142/HD /D2=64.7
%/30.7%/4.6%) and at the lower end Hz/HD
/f)2/N e =6.3810-'/”3.OX1
0□'/9.8 X 10'-'10.995 (H
z / HD7・/D2=13.5%/65°3%/2
1.1%).

水素同位体中のり、の濃度は、下端がth一端の、1.
5 ffiにも達した。7’Jeを添加した場合には、
後述する比較例よりも分解能は大きく、しかもし−夕の
加熱に要する電圧および電流はともに小さいことが確認
された。
The concentration of glue in the hydrogen isotope is 1.
It reached 5 ffi. When 7'Je is added,
It was confirmed that the resolution was greater than that of the comparative example described later, and that both the voltage and current required for heating were small.

比較例1 実施例と同様の分離塔を用い、Neを添加せずにDlの
濃縮を行った。このときの電圧は120■で、電流は4
.4Aであった。また、ヒータの温度は、290℃から
370℃の温度分布を示した。ガス組成は、上端ではH
z /HD/D! =40.3%/44.3%/15.
3%で、下端ではH2/HD/D2=11.2%/39
.9%/48.9%であった。
Comparative Example 1 Dl was concentrated using the same separation column as in Example without adding Ne. At this time, the voltage was 120■, and the current was 4
.. It was 4A. Further, the temperature of the heater showed a temperature distribution from 290°C to 370°C. The gas composition is H at the top end.
z /HD/D! =40.3%/44.3%/15.
3%, at the lower end H2/HD/D2=11.2%/39
.. It was 9%/48.9%.

水素同位体中のD2の濃度は、下端が上端の約3倍であ
った。Neを添加しない場合には、前述の実施例1より
も分解能は小さく、ヒータの加熱に要する電圧および電
流はともに大きかった。
The concentration of D2 in the hydrogen isotope was approximately three times higher at the lower end than at the upper end. When Ne was not added, the resolution was smaller than in Example 1 described above, and both the voltage and current required for heating the heater were large.

実施例2 第3物質としてNeおよびHeを用い、H,/D * 
/ N e / He =0.2510.1010.2
710.38の割合からなる混合ガスを実施例1と同様
の分離塔に導入し、1気圧とした。この後、ヒータを5
0■。
Example 2 Using Ne and He as the third substance, H,/D*
/ N e / He =0.2510.1010.2
A mixed gas having a ratio of 710.38% was introduced into a separation column similar to that in Example 1, and the pressure was set at 1 atmosphere. After this, turn on the heater 5
0 ■.

2Aで加熱したところ、およそ2時間後に定常状態に達
した。ヒータの温度は、120℃から190℃の温度分
布を示した。このときの分離塔内のガス組成は、上端で
はH2/ HD / D t / N e / He=
= o、2010.1410.0110.1410.5
1 (H2/ HD /D2=57.5%/ 40.0
%/2.5%)で、下端ではHz   /  HD/ 
 Di   /  N  e  /  Fl  e  
=0.007  / 0.01310.01110.9
1710.052  (Hz / HD/ D 2 =
23.0%/42.9%/34.1%)であった。
Heating at 2A reached steady state after approximately 2 hours. The temperature of the heater showed a temperature distribution from 120°C to 190°C. At this time, the gas composition inside the separation column is H2/HD/Dt/Ne/He=
= o, 2010.1410.0110.1410.5
1 (H2/HD/D2=57.5%/40.0
%/2.5%) and at the lower end Hz/HD/
Di / Ne / Fl e
=0.007 / 0.01310.01110.9
1710.052 (Hz/HD/D2=
23.0%/42.9%/34.1%).

水素同位体中のD2の濃度は、下端が上端の14倍にも
達し、ヒータの加熱に要する電圧および電流をさらに小
さくなることが確認された。
It was confirmed that the concentration of D2 in the hydrogen isotope was 14 times higher at the lower end than at the upper end, further reducing the voltage and current required for heating the heater.

もちろんこの発明は、以上の例によって限定されるもの
ではない0分離塔の構造および構成、同位体および第3
物質として添加する物質の種類等の細部については様々
な!rX様が可能であるととはいうまでもない。
Of course, this invention is not limited to the above examples, but includes the structure and composition of the zero separation column, isotope and tertiary
There are various details regarding the type of substance added as a substance! It goes without saying that rX-like is possible.

”CI ”’ UF4等の場合にら、この発明の分離濃
縮方法を有効に用いることができる。
The separation and concentration method of the present invention can be effectively used in the case of "CI"' UF4 and the like.

(発明の効果) 以上詳しく説明した通り、この発明によって、同位体混
合物と化学的性質を異にする第3物質を1種以上添加す
ることにより、同位体の分解能を大きくすることができ
る。このため、使用する分離塔を小型化することができ
、しかも微量しか存在しない混合物中の同位体の分離濃
縮をも行うことができる。さらには、同位体の分離濃縮
時のし−タの温度を低下させることができるため、分離
濃縮に要する分離塔の運転コストを低減させることがで
きる。
(Effects of the Invention) As explained in detail above, according to the present invention, isotope resolution can be increased by adding one or more types of third substances having chemical properties different from those of the isotope mixture. Therefore, it is possible to downsize the separation column used, and it is also possible to separate and concentrate isotopes in a mixture that are present in only trace amounts. Furthermore, since the temperature of the filter during separation and concentration of isotopes can be lowered, the operating cost of the separation column required for separation and concentration can be reduced.

代理人 弁理士  西  澤  利  夫手続補正書(
自発) 平成1年 6月28日 16事件の表示 平成 1年特 許 願第94395号 3、補正をする者 事件との関係   特許出願人 住所 東京都千代田区永田町二丁目5番2号名称 新技
術開発事業団 理事長 赤羽信久 4、代 理 人 (郵便番号150) 東京都渋谷区宇田川町2−1 渋谷ホームズ423 明   細   書 1、発明の名称 熱拡散法による同位体の分離濃縮方法 2、特許請求の範H (1) 熱拡散法にJ、り同位体混合物から特定の同位
体を分離濃縮するにあたり、予め同位体混合物に、これ
とは化T的性質を異にする物質を少なくとも1種以1−
添加195、特定の同位体を分離濃縮することを特徴と
する熱拡散法による同位体の分′pI誤縮方法。
Agent Patent Attorney Toshio Nishizawa Procedural Amendment (
(Spontaneous) June 28, 1999 Display of Case 16 1999 Patent Application No. 94395 3, Relationship with the amended case Patent Applicant Address 2-5-2 Nagatacho, Chiyoda-ku, Tokyo Name New Technology Development Corporation Chairman Nobuhisa Akabane 4, Agent (zip code 150) Shibuya Homes 423, 2-1 Udagawa-cho, Shibuya-ku, Tokyo Specification 1, Name of invention Method for separating and concentrating isotopes by thermal diffusion method 2, Patent Claim H (1) When separating and concentrating a specific isotope from an isotope mixture using a thermal diffusion method, at least one substance having chemical properties different from that of the isotope mixture is added to the isotope mixture in advance. Below 1-
Addition 195, a method for isotope fraction/pI condensation using a thermal diffusion method, which is characterized by separating and concentrating a specific isotope.

3、発明の詳細な説明 (産業上の利用分野) こcl)・発明は、熱拡散法による同位体の分離濃縮方
法に関するらのである。さらに詳しくは、この発明は、
同位体混合物の分^を能を太きく1−1微量の同位体を
ら分^f漂縮でき、しかも使用する分が塔を小型化する
ことができるとともに、その運転コストを低減さぜる、
□、とのできる熱拡散法による同位体の分M Jl縮方
法に関するものである。
3. Detailed description of the invention (industrial application field) This invention relates to a method for separating and concentrating isotopes by thermal diffusion. More specifically, this invention
It is possible to increase the capacity of the isotope mixture and to drift 1-1 trace amounts of isotopes, and the amount used can reduce the size of the tower and reduce its operating cost. ,
□, is related to a method of isotope reduction using thermal diffusion method.

(従来の技術) b’c*より、同位体の混合物から所望の同?)7体を
分離し、濃縮する方法と17で、熱拡散法が広く知られ
ている。通常、熱拡散法においては、jlN直ト、′:
立てた外側を冷却する円筒と、この(vl筒内部の中心
線に沿って配置(7たヒータどで構成される熱拡散分だ
塔を用い、同位体の混合物を3′:の熱拡散分離塔的に
導入1,5、その分子量の相違(、二より分I′a縮1
、できている、−船釣に、分子量の小さい物質は分離塔
の上端に分離]17、一方、分子層の大きい物質はその
下端に分離濃縮する。同位体714合物中の分子量の小
さい成分を分HJ縮する場合には、分離塔の下方から同
位体混合物を導入し、分^を名士、端に目的どする成分
を濃縮させている。また、同位体混合物中の分子量の大
きい成分を分離濃縮する場合には、分離塔の上方から同
位体混合物を導入し1、分14を塔下間に目的とする成
分を濃縮させている。
(Prior art) From b'c*, a desired isotope is extracted from a mixture of isotopes. ) Thermal diffusion method is widely known. Usually, in the thermal diffusion method, jlN direct, ′:
A mixture of isotopes is subjected to 3' thermal diffusion separation using a thermal diffusion separating column consisting of a cylinder that cools the outside of the cylinder, and a heater placed along the center line inside the cylinder. Columnically introduced 1,5, the difference in molecular weight (,2 fraction I'a condensed 1
, made, - In boat fishing, substances with a small molecular weight are separated at the upper end of the separation tower] 17, while substances with a large molecular layer are separated and concentrated at the lower end. When a component with a small molecular weight in an isotope 714 compound is subjected to HJ condensation, the isotope mixture is introduced from the bottom of the separation column, and the component is concentrated at the bottom, and the desired component is concentrated at the end. In addition, when separating and concentrating a component with a large molecular weight in an isotope mixture, the isotope mixture is introduced from above the separation column and the target component is concentrated between 1 and 14 minutes below the column.

(発明が解決しようとする課題) )2かしながら、従来の熱拡散法においては、般C7,
゛、同位体の分^t口:(2,ずなわぢ分離塔の十(4
;ど−F9における同位体の濃度の比が、小さいという
入点かある。また、t、I!用する分離塔の形状は、分
A1ff1iようとする同位体の粘性係数、拡散係数等
の同位体固有の1質に1J、:り一義的に決ってしまう
ため、3?献濃縮しよう!。する同位体混合物の量の多
少に応!:、て使用する分離塔の形状を大型にしたり、
あン:1いは小便にjまたl’jするような変更は不可
能でも、jl)−>た。
(Problem to be solved by the invention))2 However, in the conventional thermal diffusion method, general C7,
゛, Isotope fraction ^t mouth: (2, 10 of the Zunawaji separation tower (4
;The entry point is that the ratio of isotope concentrations in Do-F9 is small. Also, t, I! The shape of the separation column to be used is uniquely determined by the isotope-specific properties such as the viscosity coefficient and diffusion coefficient of the isotope to be used. Let's concentrate! . Depending on the amount of isotope mixture to be used! :Increasing the shape of the separation tower used,
An: Even if it is impossible to make a change such as adding j or l'j to 1 or piss, jl)->ta.

Jのような状況に鑑みて、この発明の発明者は、水素同
位体混合ガス中に存在するトリチウムの分離ZN縮にお
いて、1一連した従来の熱拡散法の欠点を解消するため
に、(・(素同位体混自ガスにヘリウムを予め添加し、
白金、ニッケル、パラジウム等の触媒を用いて1−リー
1−ウムを熱拡散法により分離濃縮する方法を提案1.
”Cもいる。この方法は、高純庶のトリチウムを水素同
位体混合ガスから分離1”る、二とかでき、しかも分離
塔を小型化する、:ともて・きるという清れプ、=作用
効果を有し5注目さtlているGのである。
In view of the situation described in J., the inventor of the present invention has developed a method ( (Helium is added to the isotope mixture gas in advance,
Proposed a method of separating and concentrating 1-li-1-ium by thermal diffusion using catalysts such as platinum, nickel, and palladium.1.
"C" is also available. This method can separate high-purity tritium from a hydrogen isotope mixture gas, and also downsizes the separation column. It is the G that has the effect and attracts attention.

この発明は、1ユ記した水素同位体混合ガスからのl・
リチウムの分14縮方法の長所を生かし7つつ、さらに
これを発展させ、水素同位体以外の同位体混合物の場合
に6、同位体の分酊能を大きく1−2て微坦の同位体を
も分離濃縮することができ、j7か#J使用する分離塔
を小型化することができるヒζ、に、その運転コストを
低減させることのできる改苦された熱拡散法による同位
体の分離!!4綿方法を提供することを目的としている
This invention is based on the hydrogen isotope mixture gas described in 1.
Taking advantage of the advantages of the fractionation method for lithium,7 it is further developed, and in the case of isotope mixtures other than hydrogen isotopes,6 the isotope fractionation ability is greatly increased by 1-2 to produce minute isotopes. Separation of isotopes by a modified thermal diffusion method that can also separate and concentrate and reduce the operating cost of the separation column used. ! It aims to provide four cotton methods.

(課題を解決するための手段) この発明は、」−記の1]的を実現するなめに、熱拡散
法により同位体混合物から特定の同位体を分離濃縮する
にあたり、予め同位体混合物に、こノ]とは化学的性質
を異にする物質を少なくと(,1種以−I−1添加し、
特定の同位体を分At濃縮することを特徴とする熱拡散
法による同位体の分離濃縮方法を提供する。
(Means for Solving the Problems) In order to achieve the objective 1), the present invention provides, when separating and concentrating a specific isotope from an isotope mixture by a thermal diffusion method, the isotope mixture is At least one substance (I-1) with different chemical properties is added to
Provided is a method for isotope separation and concentration using a thermal diffusion method, which is characterized by concentrating a specific isotope by At.

同位体混合物と化学的性質を異にする物質(第3物質)
は、同位体混合1勿の各同位体の拡散’t) Atの特
性とわずかに異なるため、分離塔にお(′)る第3物質
の濃縮域に分配される同位体の組成比を、分離塔導入時
の同位体混合物の組成比と相違させることができる。同
位体と第3物質との組合わせ方によって高効率で特定の
同位体を完全に5IIaさせることも可能となる。また
、この第3物質を添加することによって、使用する分離
塔の太さ、ヒータ温度、第3物質の濃度等に最適値が得
られる。
Substances with different chemical properties from isotope mixtures (tertiary substances)
The diffusion of each isotope in the isotope mixture 't) is slightly different from the characteristics of At, so the composition ratio of the isotopes distributed to the enrichment zone of the third substance in the separation column (') is The composition ratio of the isotope mixture at the time of introduction into the separation column can be made different. Depending on the combination of the isotope and the third substance, it is also possible to completely convert a specific isotope to 5IIa with high efficiency. Furthermore, by adding this third substance, optimum values can be obtained for the thickness of the separation column used, the heater temperature, the concentration of the third substance, etc.

第3物質の濃縮域で補集した物質からの第3物質の除去
は、その化学的性質が同位体と異なっているため、通常
の化学分離法により容易に行うことができる。
Removal of the third substance from the substance collected in the third substance enrichment zone can be easily carried out by a normal chemical separation method since its chemical properties are different from those of isotopes.

また、この発明においては、同位体混合物に複数種の第
3物質を添加することにより分離fir!ILようとす
る同位体をさらに:ll4aすることができる。
Moreover, in this invention, separation fir! is achieved by adding a plurality of types of third substances to the isotope mixture. The isotope desired for IL can also be:ll4a.

(実施例) 以下、実施例を示し、この発明の熱拡散法による同位体
の分111f濃縮方法についてさらに詳しく説明する。
(Example) Hereinafter, the method for concentrating 111f isotopes by the thermal diffusion method of the present invention will be explained in more detail by showing examples.

実施例1 ガラス管(32111Iφ)を外筒に用い、その外側を
水冷できるようにし、この外筒内にニクロム線を有する
石英管(7閤φ)を配置して、電気的に加熱するし−タ
として使用しな、このような構成からなる熱拡散分離塔
の有効長を1mとし、その上部には1jのガス溜めを設
けた。
Example 1 A glass tube (32111Iφ) is used as an outer cylinder, the outside of which can be cooled with water, and a quartz tube (7mmφ) having a nichrome wire is placed inside this outer tube and heated electrically. The effective length of the thermal diffusion separation column having such a structure was set to 1 m, and a 1j gas reservoir was provided at the upper part of the column.

まず、第3物質としてNeを用い、H2/ D x/ 
N e = 0.310.310.4の割合からなる混
合ガスを分離塔に導入し、1気圧とした。この後、ヒー
タを110V、4Aで加熱したところ、およそ2時間後
に定常状態に達した。ヒータの温度は、440℃から3
10℃の温度分布を示した。このときの分離塔内のガス
組成は、上端ではH2/HD/D−/N e = 0.
60/ 0.29/ 0.04/ 0.07 (H2/
 HD /D、=64.7%/30.7%/4.6%)
で、下端ではH2/HD/Di /Ne=6.3 xl
O−’/3.0 xl 0−’/9.8 x 10−’
10.995  (H2/HD/D2=13.5%/6
5.3%/21.1%)であった。
First, using Ne as the third substance, H2/D x/
A mixed gas consisting of a ratio of N e = 0.310.310.4 was introduced into the separation column and the pressure was set at 1 atmosphere. Thereafter, when the heater was heated at 110 V and 4 A, a steady state was reached after about 2 hours. The temperature of the heater is 440℃ to 3
It showed a temperature distribution of 10°C. At this time, the gas composition in the separation column is H2/HD/D-/N e = 0.
60/ 0.29/ 0.04/ 0.07 (H2/
HD/D, = 64.7%/30.7%/4.6%)
So, at the lower end H2/HD/Di /Ne=6.3 xl
O-'/3.0 xl 0-'/9.8 x 10-'
10.995 (H2/HD/D2=13.5%/6
5.3%/21.1%).

水素同位体中のD2の濃度は、下端が上端の4.5@に
も達した。Neを添加した場合には、後述する比較例よ
りも分離能は大きく、しかもし−夕の加熱に要する電圧
および電流はともに小さいことが確認された。
The concentration of D2 in the hydrogen isotope reached as high as 4.5@ at the lower end than at the upper end. It was confirmed that when Ne was added, the separation power was greater than in the comparative example described below, and both the voltage and current required for heating were smaller.

比較例1 実施ρjと同様の分離塔を用い、Neを添加せずにD2
の濃縮を行った。このときの電圧は120Vで、電流は
4.4Aであった。また、ヒータの温度は、290°C
から370’Cの温度分布を示した。ガス組成は、上端
では]−12/HD/D、 =40.3%/44.3%
/15.3%で、下端ではH2/HD/D2 =11.
2%/ 39.9%/118.9%であった。
Comparative Example 1 Using the same separation column as in Example ρj, D2 was obtained without adding Ne.
was concentrated. At this time, the voltage was 120V and the current was 4.4A. Also, the temperature of the heater is 290°C
It showed a temperature distribution from to 370'C. At the upper end, the gas composition is ]-12/HD/D, =40.3%/44.3%
/15.3%, and at the lower end H2/HD/D2 = 11.
2%/39.9%/118.9%.

水素同位体中のD2の濃度は、下端が上端の約3倍であ
った。Neを添加しない場合には、前述の実施例1より
も分解能は小さく、ヒータの加熱に要する電圧および電
流はともに大きかった。
The concentration of D2 in the hydrogen isotope was approximately three times higher at the lower end than at the upper end. When Ne was not added, the resolution was smaller than in Example 1 described above, and both the voltage and current required for heating the heater were large.

実施例2 第3物質としてNeおよびHeを用い、Hz/D z 
/ N e / He = 0.2510.1010.
2710.38の割合からなる混合ガスを実施例1と同
様の分離塔に導入し、1気圧とした。この後、と−タを
50V。
Example 2 Using Ne and He as the third substance, Hz/D z
/ N e / He = 0.2510.1010.
A mixed gas having a ratio of 2710.38% was introduced into a separation column similar to that in Example 1, and the pressure was set at 1 atmosphere. After this, turn the power on to 50V.

2Aで加熱したところ、およそ2時間後に定常状態に達
した。ヒータの温度は、120℃から190℃の温度分
布を示した。このときの分離塔内のガス組成は、上端で
はH2/ HD / D t / N e / He=
 0.2010.1470.0I10゜1410.51
 (H2/HD/D、 =57.5%/ 40.0%/
2,5%)で、下端ではH2/ HD / D 2/ 
N e / He = 0.00710.01310.
01110.91710.052  (H2/HD/D
2=23.0%/42.9%/34.1%)であった。
Heating at 2A reached steady state after approximately 2 hours. The temperature of the heater showed a temperature distribution from 120°C to 190°C. At this time, the gas composition inside the separation column is H2/HD/Dt/Ne/He=
0.2010.1470.0I10゜1410.51
(H2/HD/D, =57.5%/40.0%/
2.5%), and at the lower end H2/HD/D2/
N e / He = 0.00710.01310.
01110.91710.052 (H2/HD/D
2=23.0%/42.9%/34.1%).

水素同位体中のD2の濃度は、下端が上端の14倍にも
達し、ヒータの加熱に要する電圧および電流をさらに小
さくなることが確認された。
It was confirmed that the concentration of D2 in the hydrogen isotope was 14 times higher at the lower end than at the upper end, further reducing the voltage and current required for heating the heater.

もちろんこの発明は、以上の例によって限定されるもの
ではない0分離塔の構造および構成、同位体および第3
物質として添加する物質の種類等の細部については様々
な態様が可能であることはいうまでもない。
Of course, this invention is not limited to the above examples, but includes the structure and composition of the zero separation column, isotope and tertiary
It goes without saying that various embodiments are possible regarding details such as the type of substance added as a substance.

”C、”’ U F 6等の場合にも、この発明の分離
濃縮方法を有効に用いることができる。
The separation and concentration method of the present invention can also be effectively used in the case of "C,"'U F 6, etc.

(発明の効果) 以上詳しく説明した通り、この発明によって、同位体混
合物と化T的性質を異にする第3物質を1種以J゛、添
加することにより、同位体の分解fij:を大きくする
ことができる。このため、使用する分M塔を小型化する
、二とができ、しから倣凰しか存在1、ない混合物中の
同位体の分、II!i縮をも行うことができる。さらに
は5、同位体の分HIA縮時のヒータの温度を低1ぐさ
(ることができるため、分離製綿に要する分離塔の運転
コストを低減させることができる。
(Effects of the Invention) As explained in detail above, according to the present invention, by adding one or more third substances having chemical properties different from those of the isotope mixture, isotope decomposition fij: can be greatly increased. can do. For this reason, it is possible to miniaturize the M column used, and to reduce the amount of isotopes in the mixture that exist only by imitation 1 and II! Icondensation can also be performed. Furthermore, since the temperature of the heater during isotope HIA reduction can be kept low, the operating cost of the separation column required for separate cotton making can be reduced.

Claims (1)

【特許請求の範囲】[Claims] (1)熱拡散法により同位体混合物から特定の同位体を
分離濃縮するにあたり、予め同位体混合物に、これとは
化学的性質を異にする物質を少なくとも1種以上添加し
、特定の同位体を分離濃縮することを特徴とする熱拡散
法による同位体の分離濃縮方法。
(1) When separating and concentrating a specific isotope from an isotope mixture using the thermal diffusion method, at least one substance with different chemical properties is added to the isotope mixture in advance, and the specific isotope is separated and concentrated. A method for separating and concentrating isotopes using a thermal diffusion method, which is characterized by separating and concentrating isotopes.
JP1094395A 1989-04-14 1989-04-14 Separation and concentration method of hydrogen isotope by thermal diffusion method Expired - Fee Related JP2765722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1094395A JP2765722B2 (en) 1989-04-14 1989-04-14 Separation and concentration method of hydrogen isotope by thermal diffusion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1094395A JP2765722B2 (en) 1989-04-14 1989-04-14 Separation and concentration method of hydrogen isotope by thermal diffusion method

Publications (2)

Publication Number Publication Date
JPH02273516A true JPH02273516A (en) 1990-11-08
JP2765722B2 JP2765722B2 (en) 1998-06-18

Family

ID=14109080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1094395A Expired - Fee Related JP2765722B2 (en) 1989-04-14 1989-04-14 Separation and concentration method of hydrogen isotope by thermal diffusion method

Country Status (1)

Country Link
JP (1) JP2765722B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7815890B2 (en) * 2005-10-11 2010-10-19 Special Separations Application, Inc. Process for tritium removal from water by transfer of tritium from water to an elemental hydrogen stream, followed by membrane diffusion tritium stripping and enrichment, and final tritium enrichment by thermal diffusion

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632208A (en) * 1986-06-20 1988-01-07 田中貴金属工業株式会社 Holed revet type contact

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632208A (en) * 1986-06-20 1988-01-07 田中貴金属工業株式会社 Holed revet type contact

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7815890B2 (en) * 2005-10-11 2010-10-19 Special Separations Application, Inc. Process for tritium removal from water by transfer of tritium from water to an elemental hydrogen stream, followed by membrane diffusion tritium stripping and enrichment, and final tritium enrichment by thermal diffusion

Also Published As

Publication number Publication date
JP2765722B2 (en) 1998-06-18

Similar Documents

Publication Publication Date Title
DE3750751T2 (en) Gas chromatographic method for the separation of hydrogen isotopes.
ZA851706B (en) A structure with membranes that have continuous pores,a method for producing this structure,as well as applications of the structure
IS1691B (en) Method of obtaining stable crystalline fine-grained materials
Wei et al. Study on Al removal from MG-Si by vacuum refining
US4605542A (en) Process for producing silicon carbide whisker
CA2058075A1 (en) Composite ceramic powder and production process thereof
Herzfeld et al. Interpretation of spectra of atoms and molecules in solid nitrogen condensed at 4.2 k
JPH02273516A (en) Process for separating and enrichment of isotope by thermal diffusion
RU2230830C1 (en) High-purity germanium hydride preparation method
JPH05148013A (en) Alumina ceramic and its production
JPS61138519A (en) Membrane separation process of hydrogen isotope
CN109607559A (en) A method of using metal powder fluxing agent synthesis of ternary lamellar compound
JP2798684B2 (en) Purification method of silicon carbide powder
JPH01156437A (en) Method for refining indium
US2929678A (en) Method of producing zinc selenide
JPS632208B2 (en)
US2690381A (en) Isotope exchange process for concentrating deuterium
JPS61155222A (en) Separation of niobium and tantalum
US3535079A (en) Method for fractionation of carbon isotopes
JPS61204006A (en) Separation membrane and its production
JPS60195099A (en) Production of silicon nitride whisker
CN1041408C (en) Di-substituted benzene position isomer continuous solidifying and separating method
JP2002284518A (en) Boron crystal, boron compound crystal, and method for manufacturing them
Vorotyntsev et al. Ultrapurification of gases in a continuous membrane column cascade
JPH0238305A (en) Slilicon for solar cell, production and use thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees