JPH02272701A - Ceramic fixed resistor - Google Patents

Ceramic fixed resistor

Info

Publication number
JPH02272701A
JPH02272701A JP1094494A JP9449489A JPH02272701A JP H02272701 A JPH02272701 A JP H02272701A JP 1094494 A JP1094494 A JP 1094494A JP 9449489 A JP9449489 A JP 9449489A JP H02272701 A JPH02272701 A JP H02272701A
Authority
JP
Japan
Prior art keywords
ceramic
mgo
material consisting
additive
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1094494A
Other languages
Japanese (ja)
Inventor
Nobuo Hara
伸生 原
Takashi Kayama
香山 隆司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP1094494A priority Critical patent/JPH02272701A/en
Publication of JPH02272701A publication Critical patent/JPH02272701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)

Abstract

PURPOSE:To enhance durability against a high-tension pulse and big power surge by mixing a ceramic material consisting of MgO and SiO2, a conductive material consisting of SnO2, Sb2O3 and alkaline-earth metal oxide at specific ratios. CONSTITUTION:A ceramic fixed resistor consists of a ceramic insulating material consisting of MgO and SiO2, a conductive material consisting of SnO2 and Sb2O3 and an additive consisting of an alkaline-earth metal oxide of at least one kind of BeO, CaO, SrO and BaO. And, a compounding ratio is 0.1<=x<=85[wt.%], 30<=y<=75[mol%], 90<=z<=99.9[mol%] in the formula I, and the additive is 0.1 to 20mol%. Thereby, as compared with a carbon distributed ceramic resistor, durability against high pulse and a high power surge is improved and a resistance value range is widened.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、例えばテレビの高圧パルス回路や、自動車の
雑音防止等に用いられるSnO□系セラミック固定抵抗
器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a SnO□-based ceramic fixed resistor used, for example, in high-voltage pulse circuits of televisions, noise prevention in automobiles, and the like.

(従来の技術) 従来のセラミック固定抵抗器は、ケイ酸アルミニウム系
材料(粘土、SiO□、AJ2(h等)に導電材料とし
て炭素粉末を混合し、結合剤(バインダー)を加えて成
形し、次に成形体を非酸化性雰囲気炉内で焼成し、両端
にアルミニウム等の電極を設けた炭素分散型セラミック
抵抗器が知られている。
(Prior art) Conventional ceramic fixed resistors are made by mixing carbon powder as a conductive material with aluminum silicate material (clay, SiO□, AJ2 (h, etc.), adding a binder, and molding. A carbon-dispersed ceramic resistor is known in which the molded body is then fired in a non-oxidizing atmosphere furnace and electrodes made of aluminum or the like are provided at both ends.

(発明が解決しようとする課題) しかしながら、炭素分散型セラミック抵抗器は、炭素が
水に対して濡れ性が劣り、かさ密度がセラミック原料よ
りも小さいため均一な混合が難しく、抵抗値がばらつき
やすい。
(Problem to be solved by the invention) However, in carbon-dispersed ceramic resistors, carbon has poor wettability with water and has a lower bulk density than ceramic raw materials, making it difficult to mix uniformly and causing resistance values to vary. .

また炭素分散型セラミック抵抗器は緻密性が劣るため、
サージ吸収時に炭素粉間に放電を生ずるので、放電耐量
が少く、高圧パルス、大電力サージ特性が劣る。
In addition, carbon dispersed ceramic resistors have poor density, so
Since a discharge occurs between the carbon particles when absorbing a surge, the discharge resistance is low and the high-voltage pulse and high-power surge characteristics are poor.

また、炭素が酸化されやすいため、非酸化性雰囲気での
焼成が必要となり焼成コストが高くなる。
Furthermore, since carbon is easily oxidized, firing is required in a non-oxidizing atmosphere, which increases firing cost.

さらに、炭素分散型セラミック抵抗器は、炭素とセラミ
ックの配合比が、炭素が5v1%以下では抵抗値のばら
つきが大きく、15vt%以上では緻密な焼結が困難と
なるため、実用範囲は5〜15w1%に限定され、比抵
抗も1〜103Ωと範囲が狭いという問題がある。
Furthermore, in carbon-dispersed ceramic resistors, if the blending ratio of carbon and ceramic is less than 5v1%, the resistance value will vary greatly, and if it is more than 15vt%, dense sintering will be difficult, so the practical range is 5 to 1%. There is a problem that the resistivity is limited to 15w1% and the specific resistance is in a narrow range of 1 to 103Ω.

本発明の目的は、上記問題点に鑑み、炭素分散型セラミ
ック抵抗器に比べて高圧パルスや大電力サージに対して
耐久性があり、抵抗値範囲が広く焼成時に非酸化性雰囲
気炉を用いることなく製造することができ、また抵抗値
の範囲を10−”〜106Ω国程度の広い範囲のものを
得ることができるセラミック固定抵抗器を提供するもの
である。
In view of the above-mentioned problems, an object of the present invention is to provide a ceramic resistor that is more durable against high-voltage pulses and large power surges than carbon-dispersed ceramic resistors, has a wider resistance value range, and uses a non-oxidizing atmosphere furnace during firing. The purpose of the present invention is to provide a ceramic fixed resistor that can be manufactured without any problems and can have a wide resistance value range of about 10-'' to 10<6>Ω.

〔発明の構成〕 (課題を解決するための手段) 本発明のセラミック固定抵抗器は、JOとSiO□より
なるセラミック絶縁材料と、5n02とsb、  o、
よりなる導電材料と、BeO、CaO,5rOBaOの
少くとも一種のアルカリ土類金属酸化物よりなる添加物
とからなり、配合比が下記式(1)において、 x fr (MgO}+ (10G−r)(Si(h 
 )十添加物}+(100−I) fz(SnOz }
+(10G−2) (Sb203 )1・・・・・・(
1) 0.1  ≦X≦85  (vj% 〕30≦y≦75
  C+++oj%〕 9G≦Z≦99.9  (mo1%〕 であり、添加物が、11.1〜20mo1%であるもの
である。
[Structure of the Invention] (Means for Solving the Problems) The ceramic fixed resistor of the present invention includes a ceramic insulating material made of JO and SiO□, 5n02, sb, o,
and an additive made of at least one kind of alkaline earth metal oxide such as BeO, CaO, and 5rOBaO, and the compounding ratio is x fr (MgO}+ (10G-r) in the following formula (1). )(Si(h
) 10 additives} + (100-I) fz (SnOz }
+(10G-2) (Sb203)1......(
1) 0.1 ≦X≦85 (vj%) 30≦y≦75
C+++oj%] 9G≦Z≦99.9 (mo1%), and the additive is 11.1 to 20 mo1%.

(作用) 本発明のセラミック固定抵抗器は、MgOとSiO2よ
りなるセラミック絶縁材料を0.1v1%〜85vt%
、SnO2と5b2o、よりなる導電材料を15wj%
〜99.9w1%の広い範囲で配合し同一材料で抵抗値
を10−1Ωan〜106Ωcm程度の広範囲のソリッ
ド抵抗体を得ることができる。
(Function) The ceramic fixed resistor of the present invention contains a ceramic insulating material composed of MgO and SiO2 in an amount of 0.1v1% to 85vt%.
, 15 wj% of conductive material consisting of SnO2 and 5b2o
By blending in a wide range of 1% to 99.9w1%, it is possible to obtain a wide range of solid resistors with resistance values of about 10 -1 Ωan to 10 6 Ωcm using the same material.

また添加物として、BeO、CaO、SrO、Ba0の
少くとも一種を添加することにより焼成温度を低下させ
、広い範囲に亘る配合比の抵抗体を実用温度範囲で焼成
することが可能になる。
Furthermore, by adding at least one of BeO, CaO, SrO, and Ba0 as an additive, the firing temperature can be lowered, making it possible to fire resistors with a wide range of compounding ratios within a practical temperature range.

(実施例) 実施例1 70vtXf(65mojXMg(OH)z + 35
moj%SiO2+7moL%BxCOs +3noj
%CxC0t )1+30v1% f(97,5noj
%SnO□+2.5mo(XSb203 )1の配合比
となるように原料を調合し、ボールミルで20時間混合
する。この混合物を1100℃で2時間保持して仮焼す
る。この仮焼粉を再びボールミルで20時間混合する。
(Example) Example 1 70vtXf(65mojXMg(OH)z + 35
moj%SiO2+7moL%BxCOs +3noj
%CxC0t)1+30v1%f(97,5noj
The raw materials were prepared to have a blending ratio of %SnO□+2.5mo(XSb203)1 and mixed in a ball mill for 20 hours. This mixture is held at 1100° C. for 2 hours to calcinate. This calcined powder is mixed again in a ball mill for 20 hours.

この混合物にポリビニールアルコール溶液を添加し造粒
する。この造粒粉を圧縮成形する。この成形体を134
0℃の温度に2時間保持して焼成する。得られた焼結体
は、 70W(%t(65moj%MgO+35nol %S
in、  +7+oj%BaO+  3mo  1%C
a0)l+30v1511(97,5mo(% SnO
□+2.5+++oj%sb2 03  )1の配合比
を有する。この焼結体の両端に電極を形成し、抵抗器と
する。得られた抵抗器の抵抗値は1.2にΩ、TCRは
−1440ppm /℃であった。
A polyvinyl alcohol solution is added to this mixture and granulated. This granulated powder is compression molded. This molded body is 134
It is kept at a temperature of 0° C. for 2 hours and fired. The obtained sintered body was 70W(%t(65moj%MgO+35nol%S
in, +7+oj%BaO+ 3mo 1%C
a0)l+30v1511(97,5mo(% SnO
It has a blending ratio of □+2.5+++oj%sb2 03 )1. Electrodes are formed on both ends of this sintered body to form a resistor. The resistance value of the obtained resistor was 1.2Ω, and the TCR was -1440 ppm/°C.

実施例2 ?Ovj%((35moj%Mg (01() 2 +
 65noA’%Sin□+3moj%BaC0t +
7noj%5rCOq )1+30w1% f(95m
oj%SnO□+5mo7%5b203 )1の配合比
で調合し、ボールミルで2時間混合する。
Example 2? Ovj%((35moj%Mg (01() 2 +
65noA'%Sin□+3moj%BaC0t+
7noj%5rCOq)1+30w1%f(95m
oj%SnO□+5mo7%5b203) Prepare at a blending ratio of 1 and mix in a ball mill for 2 hours.

この混合物にポリビニールアルコール溶液を添加し造粒
する。この造粒粉を圧縮成形する。この成形体を138
0℃の温度で2時間保持して焼成する。得られた焼結体
は、 70w1%[(35moj%MgO+65moj%Si
O+ 3moj%BaO+7noj%5rO)l+30
vt%I(95moj%SnO2+5moj%Sb2 
03)1 の配合比を有する。この焼結体の両端に電極を形成し、
抵抗器とする。得られた抵抗器の抵抗値は430にΩ、
TCRは−1420ppm /℃であった。
A polyvinyl alcohol solution is added to this mixture and granulated. This granulated powder is compression molded. This molded body is 138
Baking is performed by holding at a temperature of 0° C. for 2 hours. The obtained sintered body was 70w1% [(35moj%MgO+65moj%Si
O+ 3moj%BaO+7noj%5rO)l+30
vt%I(95moj%SnO2+5moj%Sb2
03) It has a blending ratio of 1. Electrodes are formed on both ends of this sintered body,
Use it as a resistor. The resistance value of the obtained resistor was 430Ω,
TCR was -1420 ppm/°C.

実施例3 xvt%1(97,5mo1% 51102  +2.
5moj%sb203  )1+(100−1)W1%
[(10[1mo1%214g0・SiO□+5moj
%BaC0,+3moj%SrCO3+2n+o1%C
aCO5)1よりなる配合比の原材料を、 15≦X≦99.9 の範囲でXを変化させ実施例1と同様な方法で抵抗器を
作成し、夫々の比抵抗を測定した結果を第1図に示す。
Example 3 xvt%1 (97.5mo1% 51102 +2.
5moj%sb203)1+(100-1)W1%
[(10[1mo1%214g0・SiO□+5moj
%BaC0,+3moj%SrCO3+2n+o1%C
Resistors were made in the same manner as in Example 1 by changing the X in the range of 15≦X≦99.9 using raw materials with a compounding ratio of aCO5)1, and the results of measuring the specific resistance of each were shown in the first table. As shown in the figure.

第1図より、導電材料の配合量を15w1%〜99、9
wt%、絶縁材料を0. IW1%〜85w1% (D
範囲で変化させることにより比抵抗を106Ωcm〜1
0Ω側の広範囲に変化させることができることを示して
いる。
From Figure 1, the blending amount of the conductive material is 15w1% to 99,9
wt%, insulating material 0. IW1%~85w1% (D
By changing the specific resistance within the range from 106Ωcm to 1
This shows that it can be varied over a wide range on the 0Ω side.

実施例4 70wt%((YlllIO1%MgO+ (100−
r) mo 1%5i02+3ma1%B@CQ3)l
+aθv1%((’15mo(%SnO,+5mo(%
5b203 )1 よりなる配合比の原材料を、 30≦y≦75 の範囲でMgOと SiO□の配合量を変化させ実施例
1と同様な方法で焼成温度は1300℃〜1500℃、
最高温度で2時間焼成して抵抗器を作成し、夫々の比抵
抗を測定した結果を第2図に示す。
Example 4 70wt% ((YlllIO1%MgO+ (100-
r) mo 1%5i02+3ma1%B@CQ3)l
+aθv1%(('15mo(%SnO,+5mo(%
5b203)1 The raw materials with a blending ratio of
Resistors were made by firing at the maximum temperature for 2 hours, and the resistivity of each resistor was measured. The results are shown in FIG.

第2図より、MgOを30moj%〜75+oj94、
SiLを25no1%〜79mot%の範囲で配合量を
変化させることにより、比抵抗を102ΩCm〜106
Ω国の範囲に変化させることができ、またMgO60m
oj51、SiO□40a+oJ%で比抵抗が最小にな
ることを示している。
From Figure 2, MgO is 30moj% ~ 75+oj94,
By changing the blending amount of SiL in the range of 25no1% to 79mot%, the specific resistance can be increased from 102ΩCm to 106
Ω can be varied to a range of countries, and MgO60m
It is shown that the specific resistance becomes the minimum at oj51 and SiO□40a+oJ%.

実施例5 75w(%(5Qn+oj%MgO+50moj%Si
n□+5moj%BICO3+8moj%5rCO,+
2+++oj%C5C(h l+(25wt%) (9
7,5moj%SnO□+2.5@oj%5b2Q、)
よりなる配合比の原材料を用い、実施例1と同様の方法
で焼成温度1250℃、2時間焼成し抵抗器を作成し、
この抵抗器を第3図に示す電気回路のRxに用い、形状
寸法5.5閣φ×25閣で抵抗値10にΩに30 K 
V (A) と、形状寸法4.OMφ×1511II1
1テ抵抗値10KQG:15KV(B) とで高圧パル
スを加え、高圧パルスの回数と抵抗値変化率(△R/R
)の関係を第4図に示した。
Example 5 75w(%(5Qn+oj%MgO+50moj%Si
n□+5moj%BICO3+8moj%5rCO,+
2+++oj%C5C(h l+(25wt%) (9
7.5moj%SnO□+2.5@oj%5b2Q,)
Using raw materials with a mixing ratio of
This resistor is used for the Rx of the electric circuit shown in Figure 3, and the shape and size are 5.5 mm x 25 mm and the resistance is 10 Ω and 30 K.
V (A) and shape and dimensions 4. OMφ×1511II1
A high voltage pulse is applied with a resistance value of 10KQG: 15KV (B), and the number of high voltage pulses and the rate of change in resistance value (△R/R
) is shown in Figure 4.

第4図より(^)(B)は何れの場合も高圧パルス20
000回でも抵抗値変化率は1%以下であり、高圧パル
スに対して抵抗値の安定性が高いことを示している。
From Figure 4, (^) (B) is a high voltage pulse of 20 in both cases.
Even after 000 cycles, the resistance value change rate was 1% or less, indicating that the resistance value was highly stable against high voltage pulses.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、MgOと SiO□よりなるセラミッ
ク絶縁材料と、SnO□と5b203よりなる導電材料
の配合比の範囲を広くすることにより、同一原料より抵
抗値の範囲が10−1Ω唾から106Ωcm程度の広い
ものを得ることができる。
According to the present invention, by widening the blending ratio of the ceramic insulating material made of MgO and SiO□ and the conductive material made of SnO□ and 5b203, the resistance value range can be increased from 10-1Ωcm to 106Ωcm using the same raw materials. You can get a wide range of degrees.

また添加物として加えられるBeO、CaO1SrO、
B2Oの少くとも一種が焼成温度を低下させ、広範囲に
亘る絶縁材料と導電材料の配合が可能になる。
BeO, CaO1SrO, which can also be added as additives,
At least one type of B2O lowers the firing temperature, allowing for a wide range of insulating and conductive material formulations.

さらにセラミック絶縁材料としてMgOとSiO□、導
電材料としてSnO2と5b203を配合したため高電
圧、高圧パルスに耐え抵抗値変化率を低くすることがで
きる。
Furthermore, since it contains MgO and SiO□ as ceramic insulating materials and SnO2 and 5b203 as conductive materials, it can withstand high voltage and high-voltage pulses and can reduce the rate of change in resistance value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のセラミック固定抵抗器の絶縁材料と導
電材料の配合比を変化させた場合の比抵抗との関係を示
す図表、第2図は同上MgOとSin、の配合比を変化
させた場合の比抵抗との関係図表、第3図は実施例の抵
抗器を用いた高圧パルス試験用の回路図、第4図は高圧
パルスに対する抵抗値変化率特性図である。 X@リリ 庫15− ’icmo1%7 卑主呈
Fig. 1 is a chart showing the relationship between specific resistance when the mixing ratio of insulating material and conductive material of the ceramic fixed resistor of the present invention is changed, and Fig. 2 is a chart showing the relationship between specific resistance when the mixing ratio of MgO and Sin is changed. FIG. 3 is a circuit diagram for a high-voltage pulse test using the resistor of the example, and FIG. 4 is a characteristic diagram of resistance value change rate with respect to high-voltage pulses. X @ Lili storage 15- 'ICMO1 % 7 Significer presentation

Claims (1)

【特許請求の範囲】[Claims] (1)MgOとSiO_2よりなるセラミック絶縁材料
と、SnO_2とSb_2O_3よりなる導電材料と、
BeO、CaO、SrO、B_2Oの少くとも一種のア
ルカリ土類金属酸化物よりなる添加物とからなり、配合
比が下記式(1)において、 x{y(MgO)+(100−y)(SiO_2)+添
加物}+(100−x){Z(SnO_2)+(100
−Z)(Sb_2O_3)}・・・・・・(1) 0.1≦x≦85〔wt%〕 30≦y≦75〔mol%〕 90≦Z≦99.9〔mol%〕 であり、添加物が、0.1〜20mol%であることを
特徴とするセラミック固定抵抗器。
(1) A ceramic insulating material made of MgO and SiO_2, and a conductive material made of SnO_2 and Sb_2O_3,
It consists of an additive consisting of at least one kind of alkaline earth metal oxide of BeO, CaO, SrO, and B_2O, and the compounding ratio is x{y(MgO)+(100-y)(SiO_2) in the following formula (1). )+additive}+(100-x){Z(SnO_2)+(100
-Z)(Sb_2O_3)}...(1) 0.1≦x≦85 [wt%] 30≦y≦75 [mol%] 90≦Z≦99.9 [mol%], A ceramic fixed resistor characterized in that the additive content is 0.1 to 20 mol%.
JP1094494A 1989-04-14 1989-04-14 Ceramic fixed resistor Pending JPH02272701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1094494A JPH02272701A (en) 1989-04-14 1989-04-14 Ceramic fixed resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1094494A JPH02272701A (en) 1989-04-14 1989-04-14 Ceramic fixed resistor

Publications (1)

Publication Number Publication Date
JPH02272701A true JPH02272701A (en) 1990-11-07

Family

ID=14111851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1094494A Pending JPH02272701A (en) 1989-04-14 1989-04-14 Ceramic fixed resistor

Country Status (1)

Country Link
JP (1) JPH02272701A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800240B2 (en) 2000-11-27 2004-10-05 K-Tech Devices Corp. Method for manufacturing ceramic resistor
CN103843078A (en) * 2011-09-29 2014-06-04 兴亚株式会社 Ceramic resistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6800240B2 (en) 2000-11-27 2004-10-05 K-Tech Devices Corp. Method for manufacturing ceramic resistor
CN103843078A (en) * 2011-09-29 2014-06-04 兴亚株式会社 Ceramic resistor

Similar Documents

Publication Publication Date Title
JPH02272701A (en) Ceramic fixed resistor
JP3202078B2 (en) Resistive element and fixed resistor
US5387559A (en) Resistive paste
JPH0442855A (en) Porcelain composition and its production
JP2692210B2 (en) Zinc oxide varistor
JPS6355904A (en) Oxide resistor
JP3213647B2 (en) Negative thermistor composition and negative thermistor
JP2943367B2 (en) Method of manufacturing voltage non-linear resistor
EP0686983B1 (en) Resistive paste
JPH04119601A (en) Porcelain composition for non-linear voltage resistor
JPH0551553B2 (en)
JP3213643B2 (en) Negative thermistor composition and negative thermistor
JPS626323B2 (en)
JPS62290105A (en) Electrode material for voltage nonlinear resistance unit
JPH0578924B2 (en)
JP3631786B2 (en) Method for manufacturing voltage nonlinear resistor
JP2555790B2 (en) Porcelain composition and method for producing the same
JPH0464201A (en) Ceramic resistor
JPH04175259A (en) Voltage-nonlinear resistance ceramic composition
JPH03109257A (en) Grain boundary oxidized voltage-nonlinear resistance composition
JPH0459656A (en) Ceramic composition and production thereof
JPH04139061A (en) Composition of porcelain and its production
JPH03109260A (en) Grian boundary oxidized voltage-nonlinear resistance composition
JPS622441B2 (en)
JPH0550121B2 (en)