JPH0464201A - Ceramic resistor - Google Patents

Ceramic resistor

Info

Publication number
JPH0464201A
JPH0464201A JP2175221A JP17522190A JPH0464201A JP H0464201 A JPH0464201 A JP H0464201A JP 2175221 A JP2175221 A JP 2175221A JP 17522190 A JP17522190 A JP 17522190A JP H0464201 A JPH0464201 A JP H0464201A
Authority
JP
Japan
Prior art keywords
zno
oxide
terms
resistance
frit glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2175221A
Other languages
Japanese (ja)
Inventor
Moritaka Shoji
庄司 守孝
Seiichi Yamada
誠一 山田
Takeo Yamazaki
山崎 武夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2175221A priority Critical patent/JPH0464201A/en
Publication of JPH0464201A publication Critical patent/JPH0464201A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To reduce the dispersion of a resistance value by mainly comprising zinc oxide, containing aluminum oxide and magnesium oxide in specific values and containing one kind or more of borate, silicate and borosilicate group frit glass in specific values. CONSTITUTION:A ceramic material contains 0.5-40mol% aluminum oxide in terms of Al2O3, 0.5-40mol% magnesium oxide in terms of MgO, 20-99mol% zinc oxide in terms of ZnO and 0.01-2.0wt.% frit glass. Al2O3 reacts with ZnO, a double oxide crystal grain composed of ZnAl2O4 is formed, and electric resistance is increased. MgO augments electric resistance, and lowers the temperature coefficient of resistance or changes it into a positive value. ZnO is a main component, and mainly forms a conductive section. Frit glass forms liquid phase during braking, and promotes sintering. Accordingly, the size of a ZnO crystal grain is equalized, and ZnO contributes to the reduction of the dispersion of a resistance value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は遮断器、変圧器等電力機器に好適なセラミック
抵抗体に関する6 〔従来の技術〕 従来、電力用直線抵抗体には炭素系及び酸化亜鉛系セラ
ミック抵抗体が用いられてきた。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a ceramic resistor suitable for power equipment such as circuit breakers and transformers. Zinc oxide based ceramic resistors have been used.

炭素系抵抗体は酸化アルミニウム結晶中で炭素粉を分散
させたもので、数百Ω1の抵抗率を持ち。
Carbon-based resistors are made by dispersing carbon powder in aluminum oxide crystals, and have a resistivity of several hundred ohms.

遮断器、変圧器等に適用されている。しかし、この抵抗
体は緻密性が劣り、放電サージ吸収時に炭素粉間で放電
を起こすために耐量が小さい欠点がある。
Applied to circuit breakers, transformers, etc. However, this resistor has the drawback of poor density and low resistance because discharge occurs between the carbon powder when absorbing a discharge surge.

一方、酸化豆粉系抵抗体、特に、酸化アルミニウムと酸
化マグネシウムとを含む抵抗体は特願昭62−6561
1号明細書に記載したように抵抗率10−1000Ωl
、放電サージ耐量1000J/a+f以上で正の抵抗温
度係数をもち、特性は良好である。この抵抗体は通常の
セラミック焼成技術、即ち、酸化亜鈴その他の原料粉を
混合機造粒し、成形、焼成、電極相の各工程を経て作製
される。抵抗値のばらつきは±10〜20%で、変圧器
用抵抗体の場合±15%以内が要求される。
On the other hand, a resistor based on oxidized bean flour, especially a resistor containing aluminum oxide and magnesium oxide, is disclosed in Japanese Patent Application No. 62-6561.
Resistivity 10-1000Ωl as described in Specification No. 1
, it has a positive temperature coefficient of resistance at a discharge surge resistance of 1000 J/a+f or more, and has good characteristics. This resistor is manufactured using the usual ceramic firing technique, that is, by granulating raw material powder such as tin oxide in a mixer, and going through the steps of molding, firing, and electrode phase. The variation in resistance value is ±10 to 20%, and in the case of a resistor for a transformer, within ±15% is required.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記酸化亜鉛系抵抗体に関する従来技術は焼成工程が難
かしく、抵抗値がばらつく問題があった。
The conventional technology related to the above-mentioned zinc oxide-based resistor has a problem in that the firing process is difficult and the resistance value varies.

本発明の目的は焼成工程を改善することにあり。The purpose of the present invention is to improve the firing process.

さらに、抵抗値のそろった酸化亜鉛−酸化アルミニウム
ー酸化マグネシウム系抵抗体を提供することにある。
Another object of the present invention is to provide a zinc oxide-aluminum oxide-magnesium oxide resistor having uniform resistance values.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は酸化亜鉛−酸化アルミニウムー酸化マグネシ
ウム抵抗体にフリットガラスを添加することにより達成
される。
The above object is achieved by adding frit glass to the zinc oxide-aluminum oxide-magnesium oxide resistor.

また、目標抵抗率を得るために900〜1300℃間の
温度で焼成したものである。
Further, in order to obtain the target resistivity, it was fired at a temperature between 900 and 1300°C.

本発明者等は酸化亜鉛系抵抗体にほう珪酸系ガラスを少
量添加すると焼成温度が低下し、多数焼成した場合の抵
抗値のばらつきが低減することを見出した。
The present inventors have discovered that when a small amount of borosilicate glass is added to a zinc oxide resistor, the firing temperature is lowered and the variation in resistance value when a large number of resistors are fired is reduced.

酸化アルミニウムはAQzOaに換算して0.5〜40
+soR%が適量である。酸化マグネシウムはMgOに
換算して0.5〜40■oQ%が適量である。酸化亜鉛
はZnOに換算して20〜991IOQ%が適量である
Aluminum oxide is 0.5 to 40 in terms of AQzOa
+soR% is an appropriate amount. The appropriate amount of magnesium oxide is 0.5 to 40 oQ% in terms of MgO. The appropriate amount of zinc oxide is 20 to 991 IOQ% in terms of ZnO.

フリットガラスは0.01〜2.Ow t%が適量であ
る。これ以下では抵抗値のばらつきが低減せず、一方2
.Ow t%以上では抵抗値が低下してしまう。因に、
wt%で表示したのは市販のフリットガラスの分子量が
判明せず、mOQ比で表示できないためである。フリッ
トガラスにはほう酸系(BzOs)、珪酸系(S i 
02)、はう珪酸系(S i 02−BzOs)等が用
いられる。これらのガラスは、適宜に20.ZnO,C
ab、A(lzos、Pbo等が添加されたものを用い
ても本発明の特性を損うものではない。また、二種以上
のガラスを添加可能である。
Frit glass is 0.01~2. Owt% is an appropriate amount. Below this value, the variation in resistance value will not be reduced; on the other hand, 2
.. If it exceeds Owt%, the resistance value will decrease. Incidentally,
The reason why it is expressed in wt% is because the molecular weight of commercially available frit glasses is unknown and cannot be expressed in terms of mOQ ratio. Frit glass is made of boric acid (BzOs) or silicic acid (Si).
02), silicic acid type (S i 02-BzOs), etc. are used. These glasses are suitably made of 20. ZnO,C
Even if a glass containing ab, A(lzos, Pbo, etc.) is used, the characteristics of the present invention will not be impaired.Furthermore, two or more kinds of glasses can be added.

焼成温度は900〜1300℃間が適当である。The firing temperature is suitably between 900 and 1300°C.

これ以下では抵抗が高すぎ5一方、1300℃以上では
収縮率が上らない。
Below this, the resistance is too high5, while above 1300°C the shrinkage rate does not increase.

抵抗率は10〜1000Ω■が適量である。このような
材料を加工し、おおよそ直径3o〜150圓、厚さ10
〜50m範囲の円筒形素子が作製される。
A suitable resistivity is 10 to 1000 Ω. By processing such materials, the diameter is approximately 3 to 150 mm, and the thickness is 10 mm.
Cylindrical elements in the ˜50 m range are fabricated.

〔作用〕[Effect]

A D xoaはZnOと反応してZ n A Q x
oaからなる複酸化物結晶粒を形成し、電気抵抗を高め
る。
A D xoa reacts with ZnO to form Z n A Q x
Forms multiple oxide crystal grains consisting of OA and increases electrical resistance.

MgOは電気抵抗を高め、かつ、抵抗の温度係数を低減
乃至正に転化させる。ZnOは主成分であり、主として
導電部を形成する。
MgO increases the electrical resistance and reduces the temperature coefficient of resistance to a positive value. ZnO is the main component and mainly forms the conductive part.

フリットガラスは焼成中に液相を形成し、焼結を促進す
る。このため、焼成温度が低減する。本発明抵抗体の微
構造をamした結果では、ZnO結晶粒の大きさがそろ
い、抵抗値のばらつき低減に寄与している。
The frit glass forms a liquid phase during firing, promoting sintering. Therefore, the firing temperature is reduced. The results of microstructure analysis of the resistor of the present invention show that the ZnO crystal grains have uniform sizes, which contributes to reducing variations in resistance value.

〔実施例〕〔Example〕

以下、本発明の一実施例を説明する。 An embodiment of the present invention will be described below.

〈実施例1〉 ZnO: 3502g(43,0noff)、AQzO
a: 357g(3,5mol)、MgO: 141g
(3,5■oQ)、及び、はう酸亜鉛フリットガラス:
20g(0,5wt%)をボールミルで混合した。
<Example 1> ZnO: 3502g (43,0noff), AQzO
a: 357g (3.5mol), MgO: 141g
(3,5■oQ) and zinc oxide frit glass:
20g (0.5wt%) were mixed in a ball mill.

これにバインダを加え、スプレードライヤで造粒した。A binder was added to this, and it was granulated using a spray dryer.

これを直径5o閣、厚さ15mに成形した。This was molded to a diameter of 5 mm and a thickness of 15 m.

この成形体は電気炉に入れ、温度をかえて各2h焼成し
た。最後に、焼結体両面にアルミニウムを溶射し、電極
にした。特性比較のため、フリットガラスを添加しない
抵抗体も作製した。
This molded body was placed in an electric furnace and fired for 2 hours at different temperatures. Finally, aluminum was thermally sprayed on both sides of the sintered body to form electrodes. For comparison of characteristics, a resistor without frit glass was also fabricated.

第1図は焼成温度による抵抗率ρの変化を示す。FIG. 1 shows the change in resistivity ρ depending on the firing temperature.

曲線1は0.5wt% フリットガラス添加した酸化亜
鉛系抵抗体、一方向縁2は従来のフリットガラスを添加
しない酸化亜鉛系抵抗体の場合である。
Curve 1 is for a zinc oxide resistor to which 0.5 wt% frit glass is added, and curve 2 is for a conventional zinc oxide resistor to which no frit glass is added.

曲線1は曲#!2よりも焼成温度が低く、かつ、103
Ω口以下で、焼成温度による抵抗の変化率が小さいこと
がわかる。
Curve 1 is song #! The firing temperature is lower than 2, and 103
It can be seen that the rate of change in resistance due to firing temperature is small below Ω.

〈実施例2〉 実施例1と同様な組成及び工程で、各二十個の抵抗体を
作製した。この場合、本発明品は1090’C2従来品
は1280℃の温度で焼成した。従来品は17個400
〜500Ω■間の抵抗率を示し、二個600Ωl、−個
3500amで、三個不合格品が出たのに対し、本発明
は二十個全て400〜500Ω1間の抵抗率を示した。
<Example 2> Twenty resistors were manufactured using the same composition and process as in Example 1. In this case, the product of the present invention was fired at a temperature of 1090'C2 and the conventional product was fired at a temperature of 1280°C. Conventional product: 17 pieces 400
The resistivity of the present invention was between 400 and 500 Ω1, whereas 2 of them were 600 Ωl and 3 of them were 3500 am, and 3 were rejected.

〈実施例3〉 組成及び焼成温度をかえ、実施例1と同様にして、各条
件二十個ずつの抵抗体を作製し、抵抗値のばらつきを求
めた。八2203及びMgO量は百分率で表わした。個
数は400〜500Ω■間の抵抗率を示す抵抗体の数量
とした。0.01〜2 、Ow t%のガラス量では1
8〜20個の合格品が得られ、ガラス添加しない16個
と比べて明らかに増大した。第1表には成分量をかえた
場合の目標抵抗率範囲に入った抵抗体の個数を示す。
<Example 3> Twenty resistors were produced for each condition in the same manner as in Example 1, except that the composition and firing temperature were changed, and variations in resistance values were determined. The amounts of 82203 and MgO were expressed as percentages. The number of resistors was determined to be the number of resistors exhibiting a resistivity between 400 and 500 Ω. 0.01~2, 1 for Ow t% glass amount
8 to 20 acceptable products were obtained, which was clearly increased compared to 16 products without glass addition. Table 1 shows the number of resistors that fell within the target resistivity range when the component amounts were changed.

第  1  表 三個4oO〜50oΩl、−個400Q(!m、六個5
00Qa11以上であった。
Table 1 Three pieces 4oO~50oΩl, - pieces 400Q (!m, six pieces 5
00Qa11 or higher.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、焼成温度を下げ、かつ、焼成温度によ
る抵抗率変化を軽減できるので、抵抗値のばらつきを低
減することができる。
According to the present invention, it is possible to lower the firing temperature and reduce the change in resistivity due to the firing temperature, so it is possible to reduce variations in resistance value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における焼成温度と抵抗率との関係の説
明図である。
FIG. 1 is an explanatory diagram of the relationship between firing temperature and resistivity in the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1.酸化亜鉛を主成分として、酸化アルミニウムがAl
_2O_3に換算して0.5〜40mol%,酸化マグ
ネシウムがMgOに換算して0.5〜40mol%から
なり、かつ一種以上のほう酸系、けい酸系及びほうけい
酸系フリツトガラスを0.01〜2.0wt%を含むこ
とを特徴とするセラミツク抵抗体。
1. Zinc oxide is the main component, aluminum oxide is Al
It consists of 0.5 to 40 mol% in terms of _2O_3, 0.5 to 40 mol% of magnesium oxide in terms of MgO, and 0.01 to 40 mol% of one or more boric acid-based, silicic acid-based, and borosilicate-based frit glasses. A ceramic resistor characterized by containing 2.0 wt%.
JP2175221A 1990-07-04 1990-07-04 Ceramic resistor Pending JPH0464201A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2175221A JPH0464201A (en) 1990-07-04 1990-07-04 Ceramic resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2175221A JPH0464201A (en) 1990-07-04 1990-07-04 Ceramic resistor

Publications (1)

Publication Number Publication Date
JPH0464201A true JPH0464201A (en) 1992-02-28

Family

ID=15992409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2175221A Pending JPH0464201A (en) 1990-07-04 1990-07-04 Ceramic resistor

Country Status (1)

Country Link
JP (1) JPH0464201A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5764129A (en) * 1995-03-27 1998-06-09 Hitachi, Ltd. Ceramic resistor, production method thereof, neutral grounding resistor and circuit breaker
CN114477994A (en) * 2022-01-25 2022-05-13 广东爱晟电子科技有限公司 High-power ceramic chip resistor and material and preparation thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5764129A (en) * 1995-03-27 1998-06-09 Hitachi, Ltd. Ceramic resistor, production method thereof, neutral grounding resistor and circuit breaker
CN114477994A (en) * 2022-01-25 2022-05-13 广东爱晟电子科技有限公司 High-power ceramic chip resistor and material and preparation thereof

Similar Documents

Publication Publication Date Title
GB891711A (en) Improvements in and relating to electronically-conductive glasses and processes for their manufacture
CA1100749A (en) Pre-glassing method of producing homogeneous sintered zno non-linear resistors
US4180483A (en) Method for forming zinc oxide-containing ceramics by hot pressing and annealing
JPH0464201A (en) Ceramic resistor
JPS5923442B2 (en) resistance composition
US2839414A (en) Low loss ceramic insulators
JPS61256701A (en) Oxide resistor
US3072493A (en) Glass for dielectric uses
JPS6355904A (en) Oxide resistor
JPH03159201A (en) Oxide resistor
JP3061684B2 (en) Ceramic resistor
JPH05335106A (en) Resistance paste
KR100335290B1 (en) The Composition and Manufacturing Methods of NTC (Negative Temperature Coefficient) Thermistor
JPS581913A (en) High dielectric porcelain composition
JPS61294803A (en) Manufacture of voltage non-linear resistor
CN116143511A (en) Preparation method of zinc oxide resistor disc with low voltage ratio and high current capacity
JPH0389501A (en) Voltage non-linear resistor and manufacture thereof
JPH0259462A (en) Composition for thermistor
JPS60113402A (en) Linear resistor and method of producing same
JPH05258920A (en) Manufacture of voltage non-linear resistor
JPS62270462A (en) Semiconductor ceramic dielectric composition, semiconductor ceramic dielectric and manufacture
JPH01120004A (en) Manufacture of voltage nonlinear resistor
JP2003086416A (en) Low-loss oxide magnetic material for molded transformer
JPS61281501A (en) Oxide resistor
JPH01143302A (en) Ceramic resistor