JPH0550121B2 - - Google Patents

Info

Publication number
JPH0550121B2
JPH0550121B2 JP59007854A JP785484A JPH0550121B2 JP H0550121 B2 JPH0550121 B2 JP H0550121B2 JP 59007854 A JP59007854 A JP 59007854A JP 785484 A JP785484 A JP 785484A JP H0550121 B2 JPH0550121 B2 JP H0550121B2
Authority
JP
Japan
Prior art keywords
weight
resistor
glass
powder
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59007854A
Other languages
Japanese (ja)
Other versions
JPS60150602A (en
Inventor
Masao Sakai
Makoto Sugimoto
Myaichi Hashizume
Minoru Tanaka
Yukihiko Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP59007854A priority Critical patent/JPS60150602A/en
Priority to US06/690,628 priority patent/US4601848A/en
Priority to DE3501558A priority patent/DE3501558C3/en
Priority to DE3546922A priority patent/DE3546922C2/en
Publication of JPS60150602A publication Critical patent/JPS60150602A/en
Publication of JPH0550121B2 publication Critical patent/JPH0550121B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[分野] 本発明は、ガソリン機関などに装着される雑音
発生防止用の抵抗入り点火栓の抵抗体組成物に関
する。 [従来技術] 内燃機関の高電圧イグニツシヨン回路からの無
線周波数放時による、通信電波への障害を防止す
るために抵抗体を点火プラグの絶縁碍子内に有す
る点火プラグの例は、特開昭50−144830号公報、
特開昭49−68131号公報、特開昭57−105988号公
報などに開示されている。 特開昭50−144830号公報は比較的粒径の大きい
セラミツクフイラー(骨材)を用いるものであ
り、これに対し、ガラス質骨材を用いるものが前
記の他の2つの公報に開示されている。特開昭57
−105988号公報は、ホウ硅酸−リチウム−カルシ
ウム系ガラスの比較的粒径の大きなもの(16メツ
シユ全通)を用い、これとカーボンブラツクガラ
ス粉末、セラミツク粉末を混合してなるものであ
る。これらの比較的粒径の大きいガラス質粗粒骨
材は、内部をブロツク型構造の抵抗体として形成
し、電流経路を曲折させて長くすることにより電
波雑音防止特性を向上させるものであつた。しか
し一方では電流経路が細くなるため、そこを流れ
る放電電流密度は高くなり、従来の組成物では使
用中にカーボンなどの炭化物質が酸化(焼損)
し、抵抗値が増大してしまう。また近年ではエン
ジンの高出力化に伴い火花放電エネルギーも高く
なり、従来の抵抗体組成物では性能が不十分であ
る。 [発明の目的] 本発明の目的は、近年のエンジンの高出力化に
伴う火花放電エネルギーの増大に対応し、十分な
負荷寿命安定性を有し、電波雑音防止効果の大き
い抵抗入り点火栓用抵抗体組成物の提供にある。 [発明の構成] 本発明の抵抗入り点火栓用抵抗体組成物は、抵
抗体中重量%において、屈伏点300〜700℃のガラ
ス2〜60重量%、セラミツク粉末2〜65重量%、
カーボンブラツクまたは有機炭質物質の一種類以
上の抵抗体制御材0.1〜7重量%、Al Mg Zn Sn
Ti Zr Fe Ag Gaの金属および合金の一種類以
上の金属粉末0.01〜10重量%からなる抵抗素材10
〜70重量%と、屈伏点550〜900℃のガラスまたは
該ガラス粉末とセラミツク原料粉末とを混合、造
粒したもので、各粒径が100〜800μmのセラミツ
ク骨材30〜90重量%とからなることを構成とす
る。 [発明の効果] 上記構成よりなる本発明の抵抗入り点火栓用抵
抗体組成物は、近年のエンジンの高出力化に伴う
火花放電エネルギーの増加によつて抵抗体成分中
のカーボンが酸化(焼損)して生ずる抵抗値増加
を、還元作用の比較的強い金属粉末の添加によつ
て防止し、抵抗値の安定性と電波雑音防止特性を
長期にわたつて十分満足させる効果を奏する。 [実施例] 次に本発明の抵抗入り点火栓用抵抗体組成物の
具体的な例に基づき説明する。 本発明の抵抗入り点火栓用抵抗体組成物は、抵
抗体中重量%において、BaO−B2O3系、BaO−
B2O3−SiO2系、BaO−B2O3−SiO2−R2O(RO)
系、PbO−SiO2系、PbO−B2O3−SiO2−Al2O3
系、B2O3−SiO2系、B2O3−SiO2−Al2O3系、
B2O3−SiO2−R2O(RO)系、B2O3−SiO2
Al2O3−R2O(RO)系などの屈伏点300〜700℃で
好ましくは粒径150μmの抵抗素材用ガラス
(RO、R2O、Na2O、K2O、Li2O、MgO、CaO、
ZnOなどが挙げられる)2〜60重量%と、ジルコ
ニア、溶融シリカ、アルミナ、ベントナイト、蛙
目粘土、珪石、珪砂、長石、ムライト、ジルコ
ン、β−スポジユメン、窒化珪素、窒化ホウ素、
窒化アルミニウムなど粒径が好ましくは150μm
以下のセラミツク粉末2〜65重量%と、水溶性炭
質物質、就中、シヨ糖、乳糖、マルトース、ラフ
イノース、グリコーク、キシロール、デキストリ
ン、メチルセルロースなどの糖類や、エチレング
リコール、グリセリン、プロピレングリコール、
ポリエチレングリコール、ポリビニルアルコール
などの脂肪族炭化水素よりなる有機炭質物質およ
びカーボンブラツクなどの一種類以上よりなる抵
抗体制御材0.1〜7重量%、Al、Mg、Zn、Sn、
Ti、Fe、Zr、Ag、Gaの金属および合金の一種
類以上で、望ましくは粒径が150μm以下、さら
に望ましくは60μm以下の金属粉末0.01〜10重量
%とからなる抵抗素材10〜70重量%と、残部30〜
90重量%は、粒径が100〜800μmのセラミツク骨
材とから形成される。 粒径が100〜800μmのセラミツク骨材としては
ガラス、ガラス粉末とセラミツク原料粉末とを混
合、造粒したものなどがある。このうちガラス骨
材は、例えばB2O3−SiO2−R2O(RO)系、B2O3
−SiO2−Al2O3−R2O(RO)系、B2O3−SiO2
Al2O3系、B2O3−SiO2系、SiO2−AlO2O3−R2O
(RO)系などよりなる屈伏点550〜900℃の比較
的高融点のガラス(R2O、ROは抵抗素材用ガラ
ス同成分を示す)もしくは結晶化ガラスが望まし
い。ガラスと混合するセラミツク原料骨材として
は、例えば溶融シリカ、溶融アルミナ、ムライ
ト、窒化珪素、溶融マグネシア、ジルコンなどの
比較的高融点を有したセラミツク原料骨材が望ま
しい。またガラス粉末とセラミツク原料粉末を混
合仮焼して用いる場合は、上述の骨材用ガラスの
上述のセラミツク原料を適量混合し、仮焼造粒し
て上記粒径にしたものを用いる。 また抵抗素材中に含まれるセラミツク粉末2〜
65重量%は、元素の周規律表のa族、a族、
a族の各亜族の金属および稀土類元素の酸化物
および炭化物、ならびにZnO、B4C、SiC、TiB、
TiNから選ばれた一種類以上よりなる負荷寿命
安定材と成分中30重量%以下を上記低抗体組成に
対応して置換される。 負荷寿命特性のより安定化のために用いられる
負荷寿命安定材を30重量%以下に限定したのは、
30重量%を越えて添加すると抵抗値の温度係数が
劣悪となり、電波雑音防止特性は逆に悪くなる。 負荷寿命特性における抵抗値を安定化する成分
としての金属または合金の金属粉末は、0.01重量
%未満であると、その効果がなく抵抗値が増大し
て使用に耐えず、また10重量%を越えると抵抗値
が減少しすぎて電波雑音防止効果を悪くする。 抵抗体制御材は導電性で、この分量で電気雑音
防止に必要な0.5〜30kΩの抵抗値の調節する。抵
抗体制御材は0.1重量%未満では抵抗値が過大と
なつて使用に適しがたく、また7重量%を越える
と逆に抵抗値が小さくなつて使用できなくなる。 抵抗素材用ガラスは、封着時、抵抗素材の結合
剤及び骨材と抵抗素材、絶縁体若しくは電極と低
抗体組成物の接合剤として不可欠であり、2重量
%未満では、特に抵抗素材の結合力が弱く、気孔
が多数残留する為、負荷寿命特性の悪化を招き、
60重量%を越えると抵抗体制御材の分散性が悪化
して抵抗値のバラツキが大きくなる。また、屈伏
点が300℃未満のものを用いると点火栓使用時に
抵抗体組成物が温度上昇により軟化して実用化に
適さず、屈伏点が700℃を越えるものを用いると
封着の際、封着不良を招く。 セラミツク粉末は、抵抗体制御材の分散を良く
するために2重量%以上は必要である。しかし、
65重量%を越えると抵抗体の焼結性が悪く多孔質
となり負荷寿命特性を悪化させる。 抵抗素材が全抵抗体中10重量%未満では、導電
経路が細くなり、高電圧の印加により電流集中が
起こり、抵抗値が増大し、70重量%を越えると、
絶縁性セラミツク骨材の添加効果が現れず雑音防
止特性が著しく悪くなる。 セラミツク骨材として、ガラス粉末とセラミツ
ク原料粉末の混合物を用いる場合は、好ましくは
仮焼を施して予備焼結する。この仮焼は100〜
800μmの造粒する工程の前、あるいは後に行う
ことができる。またガラス粉末とセラミツク原料
粉末の混合造粒物は、ガラス、セラミツク粉末、
負荷寿命安定材、抵抗体制御材、金属粉末よりな
る抵抗素材との混合の後、封着時において加熱加
圧され、仮焼状態と同様な熱作用を受けるため仮
焼はなくてもよい。 特にガラス骨材又は造粒骨材中のガラスはガラ
スシール温度域における粘着性がよく、抵抗素材
粒子との間の結合力を増すことができるためセラ
ミツク骨材として有用である。 なお、ガラス粉末とセラミツク原料粉末の混合
造粒してセラミツク骨材に用いるガラス、セラミ
ツク原料粉末の粒径を150μm以上の粗粒を使用
することは好ましくない。粒径が大きいと不均一
な混合物となり、封着温度付近で骨材造粒物の
各々の軟化状態が異なつてくるので、骨材形状が
くずれ軟化雑音防止特性に影響する。 セラミツク骨材と抵抗素材との混合の際には有
機バインダを用いることが望ましい。この有機バ
インダとしては、デキストリン、メチルセルロー
ス、ポリビニルアルコール、アラビアゴムなどの
水性または溶剤溶液またはエマルジヨンを用い
る。また抵抗体制御材を有機バインダとして利用
してもよい。セラミツク骨材と抵抗素材との混合
に際しては、有機バインダは同時混合するか、あ
るいはセラミツク骨材または抵抗素材に予混合す
ることにより均一混合が容易となる。 セラミツク骨材の粒径は100〜800μmとする範
囲が雑音防止特性に最も優れ、この範囲を外れる
と粗、細いずれの場合のも雑音防止性能は悪化す
る。 ガラス、セラミツク粉末、負荷寿命安定材、金
属粉末および抵抗制御材からなる抵抗素材は、セ
ラミツク骨材の周囲空間に一様に分散封着される
ことが必要であり、各成分の粒径は150μm以下
が望ましく、より望ましくは100μm以下が良い。 セラミツク骨材の、ガラス又はガラス粉末の屈
伏点が500℃未満であると封着時に溶融して骨材
形状が崩れ点火栓の雑音防止性能が悪化する。ま
た、900℃を越えるものを用いると、封着時に軟
化し難く、抵抗素材がセラミツク骨材の周囲に均
一的に分散しなくなり、電流経路が寸断される
か、又は極めて細い電流経路を形成する為、高電
圧引加時、抵抗体制御材が焼損し、負荷寿命が悪
化する。 次に第1表に示される組成のガラスと、セラミ
ツク粉末、抵抗体制御材、金属粉末の原料配合物
とからなる抵抗素材を調合し、ボールミルで粉砕
混合し、100〜800μmに造粒されたセラミツク骨
材にまぶし、第2表に示す如く調整する。アルミ
ナ製絶縁体の中心軸孔内の下端に中心電極を装入
し、その上に導電性シール部材0.2g、上記粉砕
混合調整した抵抗体組成物0.5g、導電性シール
部材0.2gを順次充填し、次いで端子電極を軸孔
内に挿入した。次にこの絶縁体全体を800〜1000
℃に加熱し、端子電極側より圧力(40Kg)を加
え、軸孔内に充填した抵抗体組成物および導電性
シール材を熱間加圧により封着した。この絶縁体
の外周囲に接地電極を固定したハウジングを固定
し、電波雑音抑制上必要とされる0.5〜30kΩの範
囲内の抵抗値を持つ抵抗体入り点火栓を得た。 本発明において、負荷寿命安定度を検証するた
めに自動車トランジスタ点火装置を用い、点火コ
イル一次側蓄積エネルギー100ミリジユール、放
電電圧30kV、放電回数3600回/分の条件下で100
時間運転後の抵抗値の変化率(10個の平均値)を
求め第2表に示す結果を得た。
[Field] The present invention relates to a resistor composition for a resistor-containing spark plug installed in a gasoline engine or the like to prevent noise generation. [Prior Art] An example of a spark plug that has a resistor inside the insulator of the spark plug in order to prevent interference with communication radio waves due to radio frequency emissions from the high voltage ignition circuit of an internal combustion engine is disclosed in Japanese Patent Application Laid-Open No. 1973 −144830 Publication,
It is disclosed in Japanese Patent Application Laid-open No. 49-68131, Japanese Patent Application Laid-Open No. 57-105988, etc. JP-A-50-144830 uses a ceramic filler (aggregate) with a relatively large particle size, whereas the other two publications mentioned above use a glassy aggregate. There is. Unexamined Japanese Patent Publication 1987
Publication No. 105988 uses borosilicate-lithium-calcium glass having a relatively large particle size (all 16 meshes) and mixes it with carbon black glass powder and ceramic powder. These vitreous coarse aggregates having a relatively large particle size are formed inside as a resistor with a block type structure, and the electric wave noise prevention properties are improved by bending and elongating the current path. However, on the other hand, as the current path becomes narrower, the density of the discharge current flowing through it becomes higher, and with conventional compositions, carbonized substances such as carbon are oxidized (burned out) during use.
However, the resistance value increases. Furthermore, in recent years, spark discharge energy has increased as engines have increased in output, and conventional resistor compositions have insufficient performance. [Object of the Invention] The object of the present invention is to provide a resistor-containing spark plug which has sufficient load life stability and has a large radio noise prevention effect, in response to the increase in spark discharge energy accompanying the recent increase in the output of engines. The present invention provides a resistor composition. [Structure of the Invention] The resistor composition for a resistor-containing spark plug of the present invention contains 2 to 60% by weight of glass having a yield point of 300 to 700°C, 2 to 65% by weight of ceramic powder, based on the weight of the resistor.
Resistor control material of one or more types of carbon black or organic carbonaceous substances 0.1 to 7% by weight, Al Mg Zn Sn
Resistive material 10 consisting of 0.01-10% by weight of metal powder of one or more types of Ti Zr Fe Ag Ga metals and alloys
-70% by weight and 30-90% by weight of ceramic aggregate, which is made by mixing and granulating glass with a yield point of 550-900℃ or the glass powder and ceramic raw material powder, and each particle size is 100-800μm. It consists of becoming. [Effects of the Invention] In the resistor composition for a resistor-containing spark plug of the present invention having the above-mentioned configuration, the carbon in the resistor component is oxidized (burned out) due to the increase in spark discharge energy accompanying the increase in the output of engines in recent years. ) The increase in resistance value caused by this can be prevented by adding a metal powder with a relatively strong reducing effect, and this is effective in fully satisfying the resistance value stability and radio noise prevention characteristics over a long period of time. [Example] Next, a description will be given based on a specific example of the resistor composition for a resistor-containing spark plug of the present invention. The resistor composition for a resistor-containing spark plug of the present invention contains BaO-B 2 O 3 series, BaO-
B 2 O 3 −SiO 2 system, BaO−B 2 O 3 −SiO 2 −R 2 O (RO)
system, PbO−SiO 2 system, PbO−B 2 O 3 −SiO 2 −Al 2 O 3
system, B 2 O 3 −SiO 2 system, B 2 O 3 −SiO 2 −Al 2 O 3 system,
B 2 O 3 −SiO 2 −R 2 O (RO) system, B 2 O 3 −SiO 2
Glass for resistance materials with a yield point of 300 to 700°C and preferably a particle size of 150 μm, such as Al 2 O 3 −R 2 O (RO) system (RO, R 2 O, Na 2 O, K 2 O, Li 2 O, MgO, CaO,
ZnO, etc.) 2 to 60% by weight, zirconia, fused silica, alumina, bentonite, frog's eye clay, silica, silica sand, feldspar, mullite, zircon, β-spodiumene, silicon nitride, boron nitride,
The particle size is preferably 150μm, such as aluminum nitride.
2 to 65% by weight of the following ceramic powders, water-soluble carbonaceous substances, especially sugars such as sucrose, lactose, maltose, ruffinose, glycoke, xylol, dextrin, methylcellulose, ethylene glycol, glycerin, propylene glycol,
0.1 to 7% by weight of a resistor control material consisting of an organic carbonaceous substance made of aliphatic hydrocarbons such as polyethylene glycol and polyvinyl alcohol, and one or more types of carbon black, Al, Mg, Zn, Sn,
10 to 70% by weight of a resistive material consisting of 0.01 to 10% by weight of metal powder of one or more of Ti, Fe, Zr, Ag, and Ga metals and alloys, preferably with a particle size of 150 μm or less, more preferably 60 μm or less And the remaining 30~
90% by weight is formed from ceramic aggregate with a particle size of 100 to 800 μm. Ceramic aggregates having a particle size of 100 to 800 μm include those obtained by mixing and granulating glass or glass powder with ceramic raw material powder. Among these, glass aggregates include, for example, B 2 O 3 −SiO 2 −R 2 O (RO) system, B 2 O 3
−SiO 2 −Al 2 O 3 −R 2 O (RO) system, B 2 O 3 −SiO 2
Al2O 3 system, B 2 O 3 −SiO 2 system, SiO 2 −AlO 2 O 3 −R 2 O
(RO) glass having a relatively high melting point with a yield point of 550 to 900° C. (R 2 O and RO represent the same components as glass for resistance materials) or crystallized glass are desirable. As the ceramic raw material aggregate to be mixed with glass, ceramic raw material aggregates having a relatively high melting point such as fused silica, fused alumina, mullite, silicon nitride, fused magnesia, and zircon are desirable. When glass powder and ceramic raw material powder are mixed and calcined and used, an appropriate amount of the ceramic raw material of the above-mentioned aggregate glass is mixed and calcined and granulated to the above particle size. In addition, ceramic powder contained in the resistance material2~
65% by weight is group a of the periodic table of elements, group a,
Oxides and carbides of metals and rare earth elements of each subgroup of group a, as well as ZnO, B 4 C, SiC, TiB,
30% by weight or less of the components is replaced with a load life stabilizer consisting of one or more types selected from TiN in accordance with the above-mentioned low antibody composition. In order to further stabilize the load life characteristics, we limited the load life stabilizer used to less than 30% by weight.
If it is added in an amount exceeding 30% by weight, the temperature coefficient of resistance becomes poor, and the radio noise prevention properties become worse. If the amount of metal powder of metal or alloy as a component that stabilizes the resistance value in load life characteristics is less than 0.01% by weight, it will have no effect and the resistance value will increase, making it unusable, and if it exceeds 10% by weight. The resistance value decreases too much and the radio noise prevention effect deteriorates. The resistor control material is conductive, and this amount adjusts the resistance value of 0.5 to 30 kΩ, which is necessary to prevent electrical noise. If the resistor control material is less than 0.1% by weight, the resistance value will be excessive and it will be unsuitable for use, and if it exceeds 7% by weight, the resistance value will be too small to be used. Glass for resistance materials is indispensable as a binder for resistance materials and a bonding agent for aggregates and resistance materials, insulators or electrodes, and low-antibody compositions during sealing. The force is weak and many pores remain, leading to deterioration of load life characteristics.
If it exceeds 60% by weight, the dispersibility of the resistor control material will deteriorate and the variation in resistance will increase. Furthermore, if a material with a yield point of less than 300°C is used, the resistor composition will soften due to temperature rise during use, making it unsuitable for practical use. This will lead to poor sealing. The amount of ceramic powder is required to be 2% by weight or more in order to improve the dispersion of the resistor control material. but,
If it exceeds 65% by weight, the sinterability of the resistor becomes poor and it becomes porous, deteriorating the load life characteristics. If the resistance material is less than 10% by weight of the total resistor, the conductive path becomes thin, current concentration occurs due to the application of high voltage, and the resistance value increases; if it exceeds 70% by weight,
The effect of adding the insulating ceramic aggregate does not appear and the noise prevention properties deteriorate significantly. When a mixture of glass powder and ceramic raw material powder is used as the ceramic aggregate, it is preferably calcined and presintered. This calcination is 100~
This can be carried out before or after the step of granulating 800 μm particles. In addition, mixed granules of glass powder and ceramic raw material powder can be used for glass, ceramic powder,
After mixing with the load life stabilizing material, the resistor control material, and the resistive material made of metal powder, the material is heated and pressed during sealing and subjected to the same thermal effect as in the calcined state, so calcination is not necessary. In particular, the glass in the glass aggregate or granulated aggregate has good adhesiveness in the glass sealing temperature range and can increase the bonding force with the resistance material particles, so it is useful as a ceramic aggregate. Incidentally, it is not preferable to use coarse particles having a particle size of 150 μm or more for glass or ceramic raw material powder used for ceramic aggregate by mixing and granulating glass powder and ceramic raw material powder. If the particle size is large, the mixture will be non-uniform, and the softening state of each aggregate granule will be different near the sealing temperature, which will cause the shape of the aggregate to collapse, which will affect the softening noise prevention properties. It is desirable to use an organic binder when mixing the ceramic aggregate and the resistance material. As this organic binder, an aqueous or solvent solution or emulsion of dextrin, methylcellulose, polyvinyl alcohol, gum arabic, etc. is used. Further, the resistor control material may be used as an organic binder. When mixing the ceramic aggregate and the resistance material, uniform mixing can be facilitated by simultaneously mixing the organic binder or by premixing it with the ceramic aggregate or the resistance material. The particle size of the ceramic aggregate is in the range of 100 to 800 μm, which has the best noise prevention properties, and outside this range, the noise prevention performance deteriorates regardless of whether it is coarse or fine. The resistance material consisting of glass, ceramic powder, load life stabilizer, metal powder, and resistance control material must be uniformly dispersed and sealed in the space surrounding the ceramic aggregate, and the particle size of each component is 150 μm. The thickness is preferably 100 μm or less, more preferably 100 μm or less. If the yield point of the glass or glass powder in the ceramic aggregate is less than 500°C, it will melt during sealing and the shape of the aggregate will collapse, deteriorating the noise prevention performance of the ignition plug. Additionally, if a material with a temperature exceeding 900°C is used, it will not easily soften during sealing, and the resistance material will not be uniformly dispersed around the ceramic aggregate, resulting in the current path being severed or forming an extremely thin current path. Therefore, when high voltage is applied, the resistor control material burns out and the load life deteriorates. Next, a resistance material consisting of glass having the composition shown in Table 1 and a raw material mixture of ceramic powder, resistance control material, and metal powder was prepared, and the mixture was ground and mixed in a ball mill, and granulated to a size of 100 to 800 μm. Sprinkle on ceramic aggregate and adjust as shown in Table 2. A center electrode is inserted into the lower end of the center shaft hole of the alumina insulator, and 0.2g of the conductive sealing material, 0.5g of the above-mentioned pulverized and mixed resistor composition, and 0.2g of the conductive sealing material are sequentially filled thereon. Then, the terminal electrode was inserted into the shaft hole. Then this whole insulator is 800-1000
℃, pressure (40 kg) was applied from the terminal electrode side, and the resistor composition filled in the shaft hole and the conductive sealing material were sealed by hot pressing. A housing with a grounding electrode fixed to the outer periphery of this insulator was fixed to obtain a spark plug containing a resistor having a resistance value within the range of 0.5 to 30 kΩ, which is necessary for suppressing radio noise. In the present invention, in order to verify the load life stability, an automobile transistor ignition system was used.
The rate of change in resistance value (average of 10 values) after hours of operation was determined, and the results shown in Table 2 were obtained.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 抵抗体中重量%において、 屈伏点300〜700℃のガラス2〜60重量%、セラ
ミツク粉末2〜65重量%、カーボンブラツクまた
は有機炭質物質の一種類以上の抵抗体制御材0.1
〜7重量%、Al Mg Zn Sn Ti Zr Fe Ag Ga
の金属および合金の一種類以上の金属粉末0.01〜
10重量%からなる抵抗素材10〜70重量%と、 屈伏点550〜900℃のガラスまたは該ガラス粉末
とセラミツク原料粉末とを混合、造粒したもの
で、各粒径が100〜800μmのセラミツク骨材30〜
90重量%と からなる抵抗入り点火栓用抵抗体組成物。 2 前記セラミツク粉末2〜65重量%は、成分中
30重量%以下を負荷寿命安定材として元素の周期
律表のa族、a族、a族の各亜族の金属お
よび稀土類元素の酸化物および炭化物、並びに
ZnO、B4C、SiC、TiB、TiNから選ばれた一種
類以上により置換されたことを特徴とする特許請
求の範囲第1項記載の抵抗入り点火栓用抵抗体組
成物。
[Scope of Claims] 1 Resistor control of one or more types of glass, 2 to 60% by weight of glass with a yield point of 300 to 700°C, 2 to 65% by weight of ceramic powder, carbon black or organic carbonaceous material, based on the weight of the resistor. Material 0.1
~7% by weight, Al Mg Zn Sn Ti Zr Fe Ag Ga
Metal powder of one or more types of metals and alloys from 0.01 to
Ceramic bones made by mixing and granulating 10 to 70% by weight of a resistance material consisting of 10% by weight, glass with a yield point of 550 to 900°C, or the glass powder and ceramic raw material powder, each particle size being 100 to 800 μm. Material 30~
A resistor composition for a resistor-containing spark plug consisting of 90% by weight. 2 2 to 65% by weight of the ceramic powder in the ingredients
Oxides and carbides of metals and rare earth elements of Group A, Group A, and each subgroup of Group A of the Periodic Table of the Elements, with 30% by weight or less as a load life stabilizer, and
The resistor composition for a resistor-containing spark plug according to claim 1, wherein the resistor composition is substituted with one or more selected from ZnO, B 4 C, SiC, TiB, and TiN.
JP59007854A 1984-01-18 1984-01-18 Resistor composition for ignition plug with resistor Granted JPS60150602A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59007854A JPS60150602A (en) 1984-01-18 1984-01-18 Resistor composition for ignition plug with resistor
US06/690,628 US4601848A (en) 1984-01-18 1985-01-11 Resistor compositions for producing a resistor in resistor-incorporated spark plugs
DE3501558A DE3501558C3 (en) 1984-01-18 1985-01-18 Powder mixture for producing an electrical resistor in a spark plug
DE3546922A DE3546922C2 (en) 1984-01-18 1985-01-18 Spark plug resistance compsns.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59007854A JPS60150602A (en) 1984-01-18 1984-01-18 Resistor composition for ignition plug with resistor

Publications (2)

Publication Number Publication Date
JPS60150602A JPS60150602A (en) 1985-08-08
JPH0550121B2 true JPH0550121B2 (en) 1993-07-28

Family

ID=11677210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59007854A Granted JPS60150602A (en) 1984-01-18 1984-01-18 Resistor composition for ignition plug with resistor

Country Status (1)

Country Link
JP (1) JPS60150602A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010052875A1 (en) 2008-11-04 2010-05-14 日本特殊陶業株式会社 Spark plug

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2864884A (en) * 1954-01-25 1958-12-16 Gen Motors Corp Resistor and spark plug embodying same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2864884A (en) * 1954-01-25 1958-12-16 Gen Motors Corp Resistor and spark plug embodying same

Also Published As

Publication number Publication date
JPS60150602A (en) 1985-08-08

Similar Documents

Publication Publication Date Title
US4601848A (en) Resistor compositions for producing a resistor in resistor-incorporated spark plugs
US4001145A (en) Glassy resistor composition for use in a resistor incorporated spark plug
JP3383920B2 (en) Spark plug for internal combustion engine
KR20170041212A (en) Corona ignition device with improved seal
EP0303353B1 (en) Metallized glass seal resistor composition
US5304894A (en) Metallized glass seal resistor composition
JPH0222997B2 (en)
US4482475A (en) Resistor composition for resistor-incorporated spark plugs
EP0473419B1 (en) Voltage non-linear resistor and method of producing the same
US4504411A (en) Resistor composition for resistor-incorporated spark plugs
JPH0429204B2 (en)
JPH0550121B2 (en)
JPS62187156A (en) Manufacture of high insulation high alumina ceramic composition
JP2667398B2 (en) Resistor for plug with resistor
JP3254950B2 (en) Voltage non-linear resistor, its manufacturing method and application
JPH0552641B2 (en)
EP0332462A2 (en) Voltage non-linear resistor
JPS6218001A (en) Resistance body composition for ignition plug
JPH0379850B2 (en)
JP3755848B2 (en) Resistance paste
RU2138090C1 (en) Compound for manufacturing spark-plug resistor
JPH10261506A (en) Composite ptc material
JPH04245601A (en) Nonlinearly voltage-dependent resistor
JPS61281501A (en) Oxide resistor
JPH0677010A (en) Linear resistor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term