JPH0222997B2 - - Google Patents

Info

Publication number
JPH0222997B2
JPH0222997B2 JP58040033A JP4003383A JPH0222997B2 JP H0222997 B2 JPH0222997 B2 JP H0222997B2 JP 58040033 A JP58040033 A JP 58040033A JP 4003383 A JP4003383 A JP 4003383A JP H0222997 B2 JPH0222997 B2 JP H0222997B2
Authority
JP
Japan
Prior art keywords
resistor
particle size
aggregate
glass
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58040033A
Other languages
Japanese (ja)
Other versions
JPS59167984A (en
Inventor
Masao Sakai
Yasuhiko Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP58040033A priority Critical patent/JPS59167984A/en
Publication of JPS59167984A publication Critical patent/JPS59167984A/en
Publication of JPH0222997B2 publication Critical patent/JPH0222997B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Non-Adjustable Resistors (AREA)
  • Spark Plugs (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 本発明は、雑音発生防止用の抵抗入り点火プラ
グに関する。 「従来の技術」 内燃機関の高電圧イグニツシヨン回路からの無
線周波数放時による、通信電波への障害を防止す
るために抵抗体を点火プラグの絶縁耐火物内に有
する点火プラグの例は、特開昭50−144830、特開
昭49−68131、特開昭57−105988等に開示されて
いる。 特開昭50−144830は比較的粒径の大きい絶縁性
セラミツクフイラー(骨材)を用いるものであ
り、これに対し、ガラス質骨材を用いるものが前
記の他の2つの特開昭に開示されている。特開昭
57−105988は、ホウ珪酸−リチウム−カルシウム
系ガラスの比較的粒径の大きなもの(16メツシユ
全通)を用い、これとカーボンブラツク、ガラス
粉末、セラミツク粉末を混合して成るものであ
る。 「発明が解決しようとする問題点」 しかし、従来のガラス質粗粒骨材は、雑音防止
効果の面から特定の耐火性ないし高軟化温度を有
しかつ特定の粗い粒径にそろえたものを用いる必
要があり、一般にコスト高である。またこれらの
従来法において、なおその電波障害防止特性の改
善も望まれている。 本発明の目的は、一般的な低い軟化温度のガラ
スの使用可能にすること、及び特定の粒径のガラ
スを用いることなく、優れた雑音防止効果を達成
する抵抗入り点火プラグの提供にある。 「問題点を解決するための手段」 (1) 絶縁体と、該絶縁体の軸孔内の下端に中心電
極を挿入し、その上部に導電性シール材で挾持
されて抵抗体が端子電極とともに加熱封着さ
れ、この絶縁体の外周に接地電極を固着したハ
ウジングを固定して成る抵抗入り点火プラグに
おいて、 前記抵抗体は、その抵抗体中重量%におい
て、 () 屈伏点500〜900℃、粒径150μm以下のガ
ラス5〜90%及び粒径150μm以下の絶縁性
セラミツク粉末0〜85%を含有し、これを混
合し、造粒あるいは造粒前後に仮焼して粒径
100〜800μmとした造粒骨材35〜90%と、 () 屈伏点300〜600℃、粒径150μm以下のガ
ラス2〜55%、カーボンブラツク0.1〜5%、
及び粒径150μm以下の絶縁性セラミツク粉
末5〜58%を含有して成る抵抗素材10〜65%
とから成る抵抗入り点火プラグである。 「作用」 本発明の抵抗入り点火プラグは粗粒骨材として
ガラス粉末と絶縁性セラミツク粉末を上記の如く
適量割合に混合し、造粒あるいは付加的に仮焼す
ることによつて得られる粒径が100〜800μmの粗
粒骨材(以下造粒骨材と言う)を用いることによ
り、特定の粒径のガラスをそのまま用いることな
く、より軟化温度の低い広範囲(粒径150μm以
下)のガラス粉末が使用でき、第1表の如く雑音
防止効果を向上する。また造粒骨材は、仮焼しな
くても抵抗体の封着時において仮焼状態と同様な
熱作用を受け、同時に加熱加圧されて骨材(粒)
として保持されても同様に雑音防止効果を向上す
ることができる。 「実施例」 次に本発明の抵抗入り点火プラグの抵抗体組成
物の具体例について説明する。 骨材に用いる絶縁性セラミツク粉末とは、ジル
コニア、溶融シリカ、アルミナ等の絶縁性金属酸
化物、ベントナイト、蛙目粘土、珪石、珪砂、長
石、ムライト、ジルコン、β−スポジウメン等の
耐火性窯業原料鉱物ないし合成材料、窒化珪素、
窒化ホウ素、窒化アルミニウム等の窒化物、骨材
を仮焼前に造粒する場合は絶縁性セラミツク粉末
として粘結性の粘土質鉱物を含有する方が造粒し
易く、水又は溶剤で加湿混合して行うことができ
る。粘土質鉱物としては、ベントナイト、蛙目粘
土等を用いることが好ましく、その配合割合は全
抵抗体に対し1〜20重量%、好ましくは3〜10重
量%である。 なお、有機バインダを0.1〜2.0重量%、好まし
くは0.3〜1.0重量%添加した方が造粒し易い。 造粒は、その他公知の成形助剤用有機バインダ
によつても行うことができ、仮焼を施す場合有機
バインダは実質上消失する。 造粒骨材と抵抗素材との混合の際には有機バイ
ンダを用いる。この有機バインダとしては、デキ
ストリン、メチルセルロース、ポリビニルアルコ
ール、アラビアゴム等の水性又は溶剤溶液又はエ
マルジヨンを用いる。造粒骨材と抵抗素材との混
合に際しては、有機バインダは同時混合するか、
或いは好ましくは骨材に予混合して、別途予混合
した抵抗素材を添加混合することにより、均一混
合が容易となる。 更に本発明に使用されるガラス原料としては抵
抗素材用と骨材用とがあるが、従来法の如くいず
れも特定の種類に限定されることはない。しか
し、封着(シール)時のシール特性上、抵抗素材
用のガラスとしては屈伏点300〜600℃の比較的低
軟化温度ガラスが望ましい。骨材用ガラスとして
は屈伏点500〜900℃の比較的高融点のガラスが適
切である。但し、セラミツク粉末との配合の調整
により骨材のみかけ上の軟化温度が高くなる。こ
れらのガラスの代表的なものを例として示せば低
軟化温度ガラスとしては、BaO−B2O3系、BaO
−B2O3−SiO2系、BaO−B2O3−SiO2−R2O
(RO)系、PbO−SiO2系、及びPbO−B2O3
SiO2−Al2O3系が挙げられる。 高軟化温度ガラスとしてはSiO2−B2O3
Al2O3−R2O(RO)系、SiO2−B2O5−Al2O3系、
SiO2−B2O3系、SiO2−B2O3−PbO−R2O(RO)
系、SiO2−Al2O3−R2O(RO)系等のガラスがあ
る。 但し、ここにRは周期律表、族の金属元素
を示し、R2O、ROの代表例としてはNa2O、
K2O、Li2O、MgO、CaO、ZnO、BaOなどが挙
げられる。 上記ガラスは本発明のための特定のものではな
く、公知の各種成分比のガラスが使用できる。 抵抗素材は抵抗体全体に対する%にてカーボン
ブラツク0.1〜5重量%、ガラス2〜55重量%、
絶縁性セラミツク粉末5〜58重量%の三成分から
本質上なり、この三成分の合計は全抵抗体の10〜
65重量%となるようにする。カーボンブラツクは
導電性材料であり、0.1〜5重量%で電気雑音防
止に必要な0.5〜20KΩの抵抗値が得られる。カ
ーボンブラツクは、分散性が悪く、抵抗値のバラ
ツキが大きくなりがちであり、また負荷寿命試験
での抵抗値の変動をまねきやすい。この分散を良
くするためにセラミツク粉末が5%以上は必要で
ある。セラミツク粉末は58%をこえると抵抗体の
焼結性が悪く多孔質となり、負荷寿命特性を悪化
させる。ガラスは封着時の結合剤として不可欠で
あり、2%未満では結合力が弱く、55%を超える
とカーボンの分散性が悪くなるためR値のバラツ
キが大きくなる。封着の不良は負荷寿命特性を悪
化させる。抵抗素材は、造粒骨材の周囲空間に一
様に分散封着されることが必要であり各成分の粒
径は150μm以下が好ましく、より望ましくは
100μm以下がよい。 また、負荷寿命特性のより安定化のためには前
記絶縁性セラミツク粉末5〜58%のうち、周期律
表a、a、aの各亜族の金属及び希土類元
素の酸化物及び炭化物並びにZnO、B4C、SiC、
TiB、TiNから成る群から選ばれた少なくとも1
種以上30%以下を置換することが好ましい。な
お、30%超えて添加すると負荷寿命特性は逆に悪
くなる。 この抵抗素材と造粒骨材とを混合して、抵抗体
とする。抵抗素材が全抵抗体中10%未満では、導
電径路が細くなり、高電圧の印加により電流集中
が起こり、R値が増大し、65%を超えると、造粒
骨材の添加効果が現われず雑音防止特性が著しく
悪くなる。 次に骨材はガラス粉末(5〜90%)と絶縁性セ
ラミツク粉末(0〜85%)を造粒して作るが、ガ
ラスの屈伏点が高い場合(600℃以上)にはセラ
ミツク粉末なしにガラス粉末単独で骨材とするこ
ともできる。封着温度附近で骨材粒子を焼結させ
るためには、骨材用ガラスは最低5%必要である
(従つて絶縁性セラミツク粉末は最大85%とな
る)。これ以下では骨材粒子としてほとんど軟化
特性が出ず、封着性が悪くなり、負荷寿命特性が
安定しない。 骨材の総量は後述する実施例にも示される通り
抵抗体中に35〜90重量%とし、好ましくは50〜80
重量%である。骨材が35%以下では雑音防止特性
が劣る。一方90%を超えると、雑音防止特性は低
下しないが、相対的に他の成分量が減少して負荷
寿命試験における抵抗値の増加、不安定化などを
もたらし実用性に劣ることになる。 全抵抗体中に占める骨材(35〜90重量%)の残
部は、本質上抵抗素材(65〜10重量%)から成
る。 骨材の造粒は本発明の重要な点である。ガラス
粉末と、セラミツク粉末(通例150μmパスのも
ので可)を100〜800μmの粒径の範囲に造粒す
る。好ましくはこれを更に仮焼して焼結させ骨材
として使用することによりその周りに抵抗素材相
が連続的に形成された抵抗体構成となる。 しかも、本発明の場合は特に骨材用ガラスとし
て軟化温度の低いガラスが使用可能なのでシール
密度を容易に向上させることができる。見掛上の
軟化温度は原料ガラスの屈伏点の選択の他、セラ
ミツク粉末とガラスとの混合割合によつてもかな
り自由に変えることができるので、所定の封着温
度に適合した配合を自由に選択できる。 造粒骨材の粒径は100〜800μmの範囲が第1図
に示すように雑音防止特性に最もすぐれている。
この範囲を外れると粗、細いずれの場合にも雑音
防止性能は悪化する。造粒物は、仮焼されること
が望ましい。粘結性粘土質鉱物を骨材のセラミツ
ク粉末として含めることにより造粒できるため必
ずしも仮焼を必要としない。然し、通常は仮焼し
た方が製造が容易で製品のバラツキも少ない。ま
た、仮焼を先に行なつてから造粒することもでき
る。この場合は最終的な性能に変りはないのでど
ちらを先にするかは製造の容易な方を選択すれば
よい。 なお、造粒骨材に用いるガラス粉末、セラミツ
ク粉末造粒出発原料として最初から150μm以上
の粗粒を使用することは好ましくない。粒径が大
きいと不均一な骨材造粒物となり、封着温度附近
で骨材造粒物の各々の軟化状態が異なつてくるの
で、骨材形状がくずれ雑音防止特性に影響する。 抵抗素材用として使用される絶縁性セラミツク
粉末は、骨材用セラミツク粉末と同じものであつ
ても別のものであつてもよく、適当に選択して用
いる。 造粒骨材は抵抗素材と混合され、点火プラグ内
孔内で焼結される。この混合の際、既述の通り有
機バインダを併用した方が造粒骨材と抵抗素材と
の一様な分散混合に好適である。 「本発明の効果」 以上のことから、抵抗体中に粒径が100〜800μ
mと比較的大きい骨材を高密度に充填し、雑音防
止特性のすぐれた抵抗体を製造することができ
る。ガラスの種類、粒径等に制約の少ない本発明
は従来の方法に比べて容易に製造できる。またコ
スト的にも従来法の如く特定の粗い粒径にそろえ
た高軟化点の特定のガラス粒を用いる必要がない
ため、本発明により、より安価な抵抗体組成物が
提供される。 以下に実施例を示すが、本発明はこれらに限定
されない。 (1) 抵抗素材の調整 第1表に示すガラス粉末、セラミツク粉末は
いずれも100μmのフルイ全通の粉末を使用し、
カーボンブラツクと共に第1表の配合比で混合
した。 (2) 造粒骨材の調整 第2表に示すガラス粉末、セラミツク粉末
(100μmのフルイ全通)を混合し、水分添加混
練し、0.8φスクリーンから押し出し造粒法にて
顆粒状の粒子を作成し、乾燥後800〜100μmに
フルイ分けして整粒した。No.26はこれをそのま
ま次工程へ回し、他はこれを電気炉で900℃で
仮焼した。また比較例として100μm以下の原
料粉体を使つたNo.27、800μm以上の原料粉体
を使つたNo.28を試験に加えた。 (3) 抵抗体素地の作成 造粒骨材と抵抗素材を第1表の通り混合し有
機バインダとしてメチルセルロース水溶液を適
量加えて造粒乾燥し、抵抗体素地を得た。 (4) 点火プラグ絶縁体の軸孔内への抵抗体の封着
アルミナ製絶縁体の中心軸孔内の下端に中心電
極(発火電極)を挿入し、その上に導電性シー
ル材0.2g、上記調整した抵抗体素地0.55g、
導電性シール材0.2gを順次充填し、次いで端
子電極を軸孔内に挿入した。次にこの絶縁体全
体を800〜950℃に加熱し、端子電極に圧力(40
Kg重)を加え、軸孔内に充填した抵抗体素地、
シール材を熱間加圧により封着した。この絶縁
体の外周囲に接地電極を固着したハウジングを
固定し、電波雑音抑制上必要とされる0.5〜
20KΩ(好ましくは3〜20KΩ)の範囲内の抵
抗値を持つ抵抗体入り点火プラグを得た。 (5) 製品の性能検査 雑音電界強度は4サイクル、360c.c.エンジン
でCISPR規格に準じて120MHzで5回測定し、
平均値をとつた。その結果を同じく第1表に示
す。 この結果カーボンブラツクは0.1〜5重量%
(以下抵抗体中)でほぼ目標の抵抗値をみたし
ている。抵抗素材のガラスの量は2〜55重量%
の範囲で所要抵抗特性、シール性をみたす。ま
た骨材の総量は35〜90重量%で抵抗値、雑音防
止特性とも問題ないが、35重量%以下になると
雑音防止特性が悪化し90重量%以上になると電
流集中が起こり抵抗値が増大する。骨材ガラス
の量は、5〜90重量%が適切である。さらに同
じ配合で仮焼をした場合としない場合を比較す
ると(No.3とNo.26)特性としては大きな差がな
いことが判る。一方、骨材原料の粒径を100μ
m未満としたもの(No.27)、800μmをこえるも
の(No.28)はいずれも雑音防止特性に劣つてい
る。 (6) 比較例 No.8(骨材の過少なもの)、No.27(骨材<100μ
m)、No.28(骨材>800μm)、No.29(従来品BaO
−B2O3ガラス30重量部、粘土35重量部、
TiO210重量部、カーボンブラツク1.5重量部、
No.30(従来品B2O3−SiO2−ZnO−Na2Oガラス
50重量部、Si3N450重量部、カーボンブラツク
2.3重量部)原料はいずれも100μm以下のもの
を使用。
"Industrial Application Field" The present invention relates to a spark plug containing a resistor for preventing noise generation. "Prior Art" An example of a spark plug that has a resistor inside the insulating refractory of the spark plug in order to prevent interference to communication radio waves due to radio frequency emissions from the high voltage ignition circuit of an internal combustion engine is disclosed in Japanese Patent Application Laid-Open No. It is disclosed in 144830-1980, 68131-1982, 105988-1987, etc. JP-A-50-144830 uses an insulating ceramic filler (aggregate) with a relatively large particle size, whereas the other two JP-A-Sho discloses a method using a glassy aggregate. has been done. Tokukai Akira
57-105988 is made by using borosilicate-lithium-calcium glass with a relatively large particle size (all 16 meshes) and mixing it with carbon black, glass powder, and ceramic powder. ``Problems to be Solved by the Invention'' However, conventional glassy coarse aggregates have a specific fire resistance or high softening temperature and have a specific coarse particle size in order to prevent noise. are generally expensive. Further, in these conventional methods, it is still desired to improve the radio wave interference prevention properties. An object of the present invention is to enable the use of common glass having a low softening temperature, and to provide a resistor-containing spark plug that achieves excellent noise prevention effects without using glass of a specific particle size. "Means for solving the problem" (1) Insert an insulator and a center electrode into the lower end of the shaft hole of the insulator, and sandwich the resistor with a terminal electrode on top of the center electrode with a conductive sealing material. In a resistor-containing spark plug comprising a housing that is heat-sealed and has a ground electrode fixed to the outer periphery of the insulator, the resistor has a yield point of 500 to 900°C in terms of weight percent of the resistor; Contains 5 to 90% of glass with a particle size of 150 μm or less and 0 to 85% of insulating ceramic powder with a particle size of 150 μm or less, which are mixed and granulated or calcined before and after granulation to reduce the particle size.
35-90% granulated aggregate with a particle size of 100-800 μm; () 2-55% glass with a yield point of 300-600°C and a particle size of 150 μm or less; 0.1-5% carbon black;
and 10 to 65% of a resistance material containing 5 to 58% of insulating ceramic powder with a particle size of 150 μm or less.
It is a resistor-containing spark plug consisting of. "Function" The resistor-containing spark plug of the present invention has a particle size obtained by mixing glass powder and insulating ceramic powder as coarse aggregate in appropriate proportions as described above, and granulating or additionally calcining the mixture. By using coarse aggregate with a particle diameter of 100 to 800 μm (hereinafter referred to as granulated aggregate), glass powder with a lower softening temperature over a wide range (particle size of 150 μm or less) can be produced without using glass with a specific particle size as it is. can be used to improve the noise prevention effect as shown in Table 1. In addition, even without calcination, the granulated aggregate is subjected to a thermal effect similar to that in the calcination state when sealing the resistor, and at the same time is heated and pressurized to form the aggregate (granules).
The noise prevention effect can be similarly improved even if it is held as "Example" Next, specific examples of the resistor composition of the resistor-containing spark plug of the present invention will be described. The insulating ceramic powder used for the aggregate includes insulating metal oxides such as zirconia, fused silica, and alumina, and refractory ceramic raw materials such as bentonite, frog's eye clay, silica, silica sand, feldspar, mullite, zircon, and β-spodiumene. Mineral or synthetic materials, silicon nitride,
When granulating nitrides such as boron nitride, aluminum nitride, and aggregates before calcination, it is easier to granulate them if they contain caking clay minerals as insulating ceramic powder, and the mixture should be moistened with water or a solvent. You can do it by doing this. As the clay mineral, it is preferable to use bentonite, frog's eye clay, etc., and the blending ratio thereof is 1 to 20% by weight, preferably 3 to 10% by weight, based on the total resistor. Note that granulation is easier when the organic binder is added in an amount of 0.1 to 2.0% by weight, preferably 0.3 to 1.0% by weight. Granulation can also be carried out using other known organic binders for molding aids, and when calcining is performed, the organic binder substantially disappears. An organic binder is used when mixing the granulated aggregate and the resistance material. As this organic binder, an aqueous or solvent solution or emulsion of dextrin, methylcellulose, polyvinyl alcohol, gum arabic, etc. is used. When mixing granulated aggregate and resistance material, it is necessary to mix the organic binder at the same time or
Alternatively, uniform mixing can be facilitated by premixing the aggregate with a separately premixed resistance material. Further, the glass raw materials used in the present invention include those for resistance materials and those for aggregates, but unlike conventional methods, they are not limited to a specific type. However, in view of the sealing properties during sealing, it is desirable to use a relatively low softening temperature glass with a yield point of 300 to 600° C. as the glass for the resistance material. Glass having a relatively high melting point with a yield point of 500 to 900°C is suitable as the glass for aggregate. However, by adjusting the blend with ceramic powder, the apparent softening temperature of the aggregate becomes higher. Typical examples of these glasses include BaO−B 2 O 3 series and BaO
−B 2 O 3 −SiO 2 system, BaO−B 2 O 3 −SiO 2 −R 2 O
(RO) system, PbO−SiO 2 system, and PbO−B 2 O 3
Examples include SiO 2 -Al 2 O 3 system. As a high softening temperature glass, SiO 2 −B 2 O 3
Al 2 O 3 −R 2 O (RO) system, SiO 2 −B 2 O 5 −Al 2 O 3 system,
SiO 2 −B 2 O 3 system, SiO 2 −B 2 O 3 −PbO−R 2 O (RO)
There are glass types such as SiO 2 -Al 2 O 3 -R 2 O (RO) series. However, R here represents a metal element in a group of the periodic table, and representative examples of R 2 O and RO include Na 2 O,
Examples include K 2 O, Li 2 O, MgO, CaO, ZnO, and BaO. The above-mentioned glass is not specific to the present invention, and glasses having various known component ratios can be used. Resistance materials are carbon black 0.1-5% by weight, glass 2-55% by weight based on the entire resistor.
It consists essentially of three components of 5 to 58% by weight of insulating ceramic powder, and the sum of these three components accounts for 10 to 58% of the total resistor.
Make it 65% by weight. Carbon black is a conductive material, and at 0.1 to 5% by weight, a resistance value of 0.5 to 20 KΩ, which is necessary for preventing electrical noise, can be obtained. Carbon black has poor dispersibility, tends to have large variations in resistance value, and also tends to cause fluctuations in resistance value during a load life test. In order to improve this dispersion, 5% or more of ceramic powder is required. If the ceramic powder exceeds 58%, the resistor has poor sinterability and becomes porous, which deteriorates the load life characteristics. Glass is indispensable as a binder during sealing, and if it is less than 2%, the bonding force is weak, and if it exceeds 55%, the dispersibility of carbon deteriorates, resulting in large variations in the R value. Poor sealing deteriorates load life characteristics. The resistance material needs to be uniformly dispersed and sealed in the surrounding space of the granulated aggregate, and the particle size of each component is preferably 150 μm or less, more preferably
100μm or less is preferable. In order to further stabilize the load life characteristics, 5 to 58% of the insulating ceramic powder should contain oxides and carbides of metals and rare earth elements of subgroups a, a, and a of the periodic table, as well as ZnO, B4C , SiC,
At least one selected from the group consisting of TiB, TiN
It is preferable to substitute at least 30% of species. Note that if it is added in excess of 30%, the load life characteristics will deteriorate. This resistance material and granulated aggregate are mixed to form a resistance element. If the resistance material is less than 10% of the total resistor, the conductive path becomes narrow, current concentration occurs due to the application of high voltage, and the R value increases, and if it exceeds 65%, the effect of adding granulated aggregate does not appear. Noise prevention characteristics deteriorate significantly. Next, aggregate is made by granulating glass powder (5-90%) and insulating ceramic powder (0-85%), but if the yield point of glass is high (600℃ or higher), ceramic powder may not be used. Glass powder alone can also be used as aggregate. In order to sinter the aggregate particles near the sealing temperature, a minimum of 5% aggregate glass is required (therefore a maximum of 85% insulating ceramic powder). Below this range, the aggregate particles exhibit almost no softening properties, poor sealing properties, and unstable load life characteristics. As shown in the examples below, the total amount of aggregate in the resistor is 35 to 90% by weight, preferably 50 to 80% by weight.
Weight%. If the aggregate content is less than 35%, the noise prevention properties will be poor. On the other hand, if it exceeds 90%, the noise prevention properties will not deteriorate, but the amounts of other components will be relatively reduced, resulting in an increase in resistance value and instability in the load life test, resulting in poor practicality. The balance of the aggregate (35-90% by weight) in the total resistor consists essentially of resistive material (65-10% by weight). Granulation of the aggregate is an important aspect of the present invention. Glass powder and ceramic powder (generally 150 μm pass is acceptable) are granulated to a particle size range of 100 to 800 μm. Preferably, this is further calcined and sintered and used as an aggregate, resulting in a resistor structure in which a resistive material phase is continuously formed around it. Furthermore, in the case of the present invention, glass having a low softening temperature can be used particularly as the aggregate glass, so that the sealing density can be easily improved. The apparent softening temperature can be changed quite freely not only by selecting the yield point of the raw material glass but also by changing the mixing ratio of ceramic powder and glass, so you can freely select a composition that is suitable for a predetermined sealing temperature. You can choose. As shown in FIG. 1, the particle size of granulated aggregate in the range of 100 to 800 μm has the best noise prevention properties.
Outside this range, the noise prevention performance deteriorates in both coarse and fine cases. It is desirable that the granules are calcined. Calcination is not necessarily required because granulation can be achieved by including caking clay minerals as ceramic powder aggregate. However, calcining is usually easier to manufacture and results in less variation in the product. Alternatively, granulation can be performed after calcining first. In this case, there is no difference in final performance, so the one that is easier to manufacture should be selected first. Note that it is not preferable to use coarse particles of 150 μm or more from the beginning as a starting material for granulating glass powder or ceramic powder used as granulated aggregate. If the particle size is large, the aggregate granules will be non-uniform, and the softening state of each aggregate granule will be different near the sealing temperature, so the shape of the aggregate will affect the collapse noise prevention properties. The insulating ceramic powder used for the resistance material may be the same as the ceramic powder for the aggregate or different, and is appropriately selected and used. The granulated aggregate is mixed with the resistance material and sintered within the spark plug bore. During this mixing, as mentioned above, it is more suitable to use an organic binder in combination to uniformly disperse and mix the granulated aggregate and the resistance material. "Effects of the present invention" From the above, it can be seen that the grain size in the resistor is 100 to 800μ.
It is possible to manufacture a resistor with excellent noise prevention properties by densely filling aggregate with a relatively large size of m. The present invention, which has fewer restrictions on the type of glass, particle size, etc., can be manufactured more easily than conventional methods. In addition, in terms of cost, it is not necessary to use specific glass grains with a high softening point and a specific coarse particle size as in the conventional method, so the present invention provides a more inexpensive resistor composition. Examples are shown below, but the present invention is not limited thereto. (1) Adjustment of the resistance material The glass powder and ceramic powder shown in Table 1 are all powders that can be passed through a 100 μm sieve.
It was mixed with carbon black at the blending ratio shown in Table 1. (2) Preparation of granulated aggregate Glass powder and ceramic powder shown in Table 2 (through a 100 μm sieve) were mixed, water was added, kneaded, and granulated particles were extruded through a 0.8φ screen using the granulation method. After drying, the particles were sized by sieving to 800 to 100 μm. No. 26 was passed on to the next process as is, while the others were calcined at 900°C in an electric furnace. In addition, as comparative examples, No. 27 using raw material powder of 100 μm or less and No. 28 using raw material powder of 800 μm or more were added to the test. (3) Preparation of resistor base Granulated aggregate and resistance material were mixed as shown in Table 1, an appropriate amount of methylcellulose aqueous solution was added as an organic binder, and the mixture was granulated and dried to obtain a resistor base. (4) Sealing the resistor into the shaft hole of the spark plug insulator Insert the center electrode (ignition electrode) into the lower end of the center shaft hole of the alumina insulator, and place 0.2g of conductive sealing material on top of it. 0.55g of the resistor material adjusted above,
0.2 g of conductive sealing material was sequentially filled, and then a terminal electrode was inserted into the shaft hole. This entire insulator is then heated to 800-950°C and pressure (40
Kg weight) is added and the resistor material is filled into the shaft hole.
The sealing material was sealed by hot pressing. A housing with a grounding electrode fixed to the outer periphery of this insulator is fixed, and the
A spark plug containing a resistor having a resistance value within the range of 20KΩ (preferably 3 to 20KΩ) was obtained. (5) Product performance test The noise electric field strength was measured 5 times at 120MHz for 4 cycles using a 360c.c. engine according to the CISPR standard.
The average value was taken. The results are also shown in Table 1. As a result, carbon black is 0.1 to 5% by weight.
(hereinafter referred to as resistor) almost meets the target resistance value. The amount of glass in the resistance material is 2 to 55% by weight.
The required resistance characteristics and sealing performance are satisfied within the range of . Also, if the total amount of aggregate is 35 to 90% by weight, there will be no problem with resistance value or noise prevention properties, but if it is less than 35% by weight, the noise prevention properties will deteriorate, and if it is more than 90% by weight, current concentration will occur and the resistance value will increase. . A suitable amount of aggregate glass is 5 to 90% by weight. Furthermore, when comparing the same composition with and without calcining (No. 3 and No. 26), it is found that there is no significant difference in properties. On the other hand, the particle size of the aggregate raw material is 100μ
Both those with a thickness of less than 800 μm (No. 27) and those with a diameter of over 800 μm (No. 28) have poor noise prevention properties. (6) Comparative examples No. 8 (with too little aggregate), No. 27 (with aggregate <100 μ
m), No.28 (aggregate>800μm), No.29 (conventional product BaO
−30 parts by weight of B 2 O 3 glass, 35 parts by weight of clay,
10 parts by weight of TiO2 , 1.5 parts by weight of carbon black,
No.30 (Conventional product B 2 O 3 −SiO 2 −ZnO−Na 2 O glass
50 parts by weight, 50 parts by weight of Si 3 N 4 , carbon black
2.3 parts by weight) All raw materials used are 100μm or less.

【表】【table】

【表】 (注) ※印は本発明の範囲外
[Table] (Note) *marked is outside the scope of the present invention

【表】【table】

【表】 に拠る。
Based on [Table].

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は骨材粒径と雑音防止効果の関係を示す
グラフである。
FIG. 1 is a graph showing the relationship between aggregate particle size and noise prevention effect.

Claims (1)

【特許請求の範囲】 1 絶縁体と、該絶縁体の軸孔内の下端に中心電
極を挿入し、その上部に導電性シール材で挾持さ
れて抵抗体が端子電極とともに加熱封着され、こ
の絶縁体の外周に接地電極を固着したハウジング
を固定して成る抵抗入り点火プラグにおいて、 前記抵抗体は、その抵抗体中重量%において、 () 屈伏点500〜900℃、粒径150μm以下のガラ
ス5〜90%及び粒径150μm以下の絶縁性セラ
ミツク粉末0〜85%を含有し、これを混合し、
造粒あるいは造粒前後に仮焼して粒径100〜
800μmとした造粒骨材35〜90%と、 () 屈伏点300〜600℃、粒径150μm以下のガラ
ス2〜55%、カーボンブラツク0.1〜5%及び
粒径150μm以下の絶縁性セラミツク粉末5〜
58%を含有して成る抵抗素材10〜65%とから成
る抵抗入り点火プラグ。 2 前記抵抗素材の前記絶縁性セラミツク粉末5
〜58%は、その成分中30%以下を負荷寿命安定剤
として周期律表a、a、a族の各亜族の金
属及び希土類元素の酸化物及び炭化物並びに
ZnO、B4C、SiC、TiB、TiNから選ばれた少な
くとも1種以上により置換されたことを特徴とす
る請求項1記載の抵抗入り点火プラグ。
[Scope of Claims] 1. A center electrode is inserted into the lower end of an insulator and a shaft hole of the insulator, and a resistor is sandwiched on top of the center electrode with a conductive sealing material and heat-sealed together with a terminal electrode. In a resistor-containing spark plug consisting of a housing with a grounding electrode fixed to the outer periphery of an insulator, the resistor is made of glass having a yield point of 500 to 900°C and a particle size of 150 μm or less in weight percent of the resistor. 5 to 90% and 0 to 85% of insulating ceramic powder with a particle size of 150 μm or less, mixed together,
Granulation or calcining before and after granulation to achieve particle size of 100~
35-90% of granulated aggregate with a particle diameter of 800 μm; () 2-55% glass with a yield point of 300-600°C and a particle size of 150 μm or less; 0.1-5% carbon black; and insulating ceramic powder with a particle size of 150 μm or less. ~
A spark plug with a resistor consisting of 10 to 65% of a resistor material containing 58%. 2 the insulating ceramic powder 5 of the resistance material;
~58% contains oxides and carbides of metals and rare earth elements of each subgroup of Groups A, A, and A of the Periodic Table, with less than 30% of the components being load life stabilizers.
The spark plug with resistance according to claim 1, characterized in that the spark plug is replaced with at least one selected from ZnO, B 4 C, SiC, TiB, and TiN.
JP58040033A 1983-03-12 1983-03-12 Resistor for ignition plug and method of producing same Granted JPS59167984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58040033A JPS59167984A (en) 1983-03-12 1983-03-12 Resistor for ignition plug and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58040033A JPS59167984A (en) 1983-03-12 1983-03-12 Resistor for ignition plug and method of producing same

Publications (2)

Publication Number Publication Date
JPS59167984A JPS59167984A (en) 1984-09-21
JPH0222997B2 true JPH0222997B2 (en) 1990-05-22

Family

ID=12569596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58040033A Granted JPS59167984A (en) 1983-03-12 1983-03-12 Resistor for ignition plug and method of producing same

Country Status (1)

Country Link
JP (1) JPS59167984A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2667398B2 (en) * 1987-04-20 1997-10-27 株式会社デンソー Resistor for plug with resistor
JP3819586B2 (en) * 1997-04-23 2006-09-13 日本特殊陶業株式会社 Spark plug with resistor, resistor composition for spark plug, and method of manufacturing spark plug with resistor
GB2468312A (en) 2009-03-04 2010-09-08 Dyson Technology Ltd Fan assembly
JP5709085B2 (en) * 2009-09-15 2015-04-30 日本電気硝子株式会社 Resistor forming glass composition
JP4648476B1 (en) * 2009-09-25 2011-03-09 日本特殊陶業株式会社 Spark plug for internal combustion engine
GB2483448B (en) 2010-09-07 2015-12-02 Dyson Technology Ltd A fan
GB2486019B (en) 2010-12-02 2013-02-20 Dyson Technology Ltd A fan
GB2502104B (en) 2012-05-16 2016-01-27 Dyson Technology Ltd A fan
AU2013261587B2 (en) 2012-05-16 2015-11-19 Dyson Technology Limited A fan
GB2503907B (en) 2012-07-11 2014-05-28 Dyson Technology Ltd A fan assembly
GB2530906B (en) 2013-07-09 2017-05-10 Dyson Technology Ltd A fan assembly

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105988A (en) * 1980-12-23 1982-07-01 Nippon Denso Co Resistance-filled ignition plug
JPS5812302A (en) * 1981-07-16 1983-01-24 日本特殊陶業株式会社 Resistor composition for ignition plug with resistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57105988A (en) * 1980-12-23 1982-07-01 Nippon Denso Co Resistance-filled ignition plug
JPS5812302A (en) * 1981-07-16 1983-01-24 日本特殊陶業株式会社 Resistor composition for ignition plug with resistor

Also Published As

Publication number Publication date
JPS59167984A (en) 1984-09-21

Similar Documents

Publication Publication Date Title
US4001145A (en) Glassy resistor composition for use in a resistor incorporated spark plug
JPH0222997B2 (en)
KR20170041212A (en) Corona ignition device with improved seal
EP0303353B1 (en) Metallized glass seal resistor composition
US5304894A (en) Metallized glass seal resistor composition
CA1100749A (en) Pre-glassing method of producing homogeneous sintered zno non-linear resistors
US5225111A (en) Voltage non-linear resistor and method of producing the same
US4504411A (en) Resistor composition for resistor-incorporated spark plugs
JPS5917202A (en) Resistor-filled ignition plug resistor composition
CA1061472A (en) Voltage-dependent resistor
JPS61135079A (en) Resistance-contained ignition plug
CA1043587A (en) Electrical resistor glaze composition and resistor
JPH0550121B2 (en)
JP2667398B2 (en) Resistor for plug with resistor
US4005050A (en) Tantalum or niobium-modified resistor element
EP0722175B1 (en) Resistance paste and resistor comprising the material
EP0332462A2 (en) Voltage non-linear resistor
JP3256366B2 (en) Method of manufacturing voltage non-linear resistor
JPS6218001A (en) Resistance body composition for ignition plug
RU2138090C1 (en) Compound for manufacturing spark-plug resistor
JPH09306636A (en) Spark plug
JPH09110520A (en) Ferrite sintered compact
JPS62143866A (en) Manufacture of high insulation high alumina base ceramic composition
JPH04270139A (en) Glass frit
EP0720184A2 (en) Resistance material, and resistance paste and resistor comprising the material