JPH02271516A - Aligner - Google Patents

Aligner

Info

Publication number
JPH02271516A
JPH02271516A JP1093815A JP9381589A JPH02271516A JP H02271516 A JPH02271516 A JP H02271516A JP 1093815 A JP1093815 A JP 1093815A JP 9381589 A JP9381589 A JP 9381589A JP H02271516 A JPH02271516 A JP H02271516A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
exposure
exposure apparatus
standard
exposure field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1093815A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tanaka
裕之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1093815A priority Critical patent/JPH02271516A/en
Publication of JPH02271516A publication Critical patent/JPH02271516A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To prevent a large quantity of defective semiconductor substrates from being exposed until an abnormality is discovered by a method wherein uneven parts on the surface of a semiconductor substrate inside an exposure field are detected automatically and this detected value is judged after it has been compared with a standard value. CONSTITUTION:In an exposure treatment process of the surface of a semiconductor substrate, the following are included: roughness detection processes 8 to 10 at each exposure field on the surface of the semiconductor substrate; computation processes 11 to 13 of an amount deviated from a reference face; a process 13 to judge whether a detected result is within a standard or not. Accordingly, it is not required to execute this inspection by stopping a main operation; even when an uneven part on the surface of the semiconductor substrate is outside of the standard, it is possible to issue an alarm to stop an aligner. Thereby, even in an automated process it is possible to prevent a large quantity of defective semiconductor substrates from being exposed until an abnormality is detected at an inspection after a developing operation.

Description

【発明の詳細な説明】 〔概 要〕 半導体基板の表面の凹凸に起因する焦点ズレを防止する
手段を具備する露光装置に関し、半導体基板表面の凹凸
を、主作業の流れを停滞させないで検知し、算出して記
憶することが可能な露光装置の提供を目的とし、 光源から放射され、レチクルの透明部を透過した光線を
、縮小レンズ系により縮小し、半導体基板の表面に形成
したレジスト膜に照射する露光装置であって、ステージ
にR置した前記半導体基板の表面の露光フィールド毎の
凹凸を検知する手段と、該凹凸の値と該凹凸の値より求
めた参照面とのズレ量を算出する手段と、各露光フィー
ルド毎の前記ズレ量の値を記憶するメモリ手段とを具備
するよう構成する。
[Detailed Description of the Invention] [Summary] The present invention relates to an exposure apparatus that is equipped with a means for preventing focus shifts caused by unevenness on the surface of a semiconductor substrate. The purpose of the present invention is to provide an exposure apparatus that is capable of calculating and storing information, and the light rays emitted from a light source and transmitted through the transparent part of the reticle are reduced by a reduction lens system and applied to a resist film formed on the surface of a semiconductor substrate. An exposure apparatus for irradiating, a means for detecting irregularities for each exposure field on the surface of the semiconductor substrate placed R on a stage, and calculating an amount of deviation between the value of the irregularity and a reference surface determined from the value of the irregularity. and a memory means for storing the value of the amount of deviation for each exposure field.

〔産業上の利用分野〕[Industrial application field]

本発明は、半導体基板の表面の凹凸に起因する焦点ズレ
を防止する手段を具備する露光装置に関するものである
The present invention relates to an exposure apparatus equipped with means for preventing defocus caused by unevenness on the surface of a semiconductor substrate.

近年の縮小レンズ系を備えた縮小投影露光装置において
は、半導体基板の表面の部分的な凹凸に起因する焦点ズ
レが発生している。
In recent reduction projection exposure apparatuses equipped with reduction lens systems, focal shifts occur due to local unevenness on the surface of a semiconductor substrate.

以上のような状況から、この半導体基板の表面の部分的
な凹凸の値に適合した適正な露光を行うことが可能な露
光装置が要望されている。
Under the circumstances described above, there is a need for an exposure apparatus that can perform exposure appropriate to the value of the local unevenness on the surface of the semiconductor substrate.

〔従来の技術〕[Conventional technology]

従来の露光装置について第4図〜第6図により説明する
A conventional exposure apparatus will be explained with reference to FIGS. 4 to 6.

第4図は露光装置の概略構造を示す側面図であり、図に
おいて光源1から放射された光線1aはレチクル2に入
射し、レチクル2の透明部を透過した光線1aは縮小レ
ンズ系3により縮小され、ステージ4に載置された半導
体基板14の表面に形成したレジスト膜15に、通常は
直径20mの露光フィールド単位で照射されるようにな
っている。
FIG. 4 is a side view showing the schematic structure of the exposure device. In the figure, the light ray 1a emitted from the light source 1 enters the reticle 2, and the light ray 1a transmitted through the transparent part of the reticle 2 is reduced by the reduction lens system 3. The resist film 15 formed on the surface of the semiconductor substrate 14 placed on the stage 4 is normally irradiated in units of an exposure field of 20 m in diameter.

第5図はこの露光装置のステージ4に半導体基板14を
自動的に供給・取り出しする搬送機構の概略構造を示す
平面図である。
FIG. 5 is a plan view showing a schematic structure of a transport mechanism that automatically supplies and takes out semiconductor substrates 14 to and from the stage 4 of this exposure apparatus.

図において、供給側の半導体基板14を収納する収納容
器5から取り出された半導体基板14は、中間ステージ
7に搬送され、この中間ステージ7において半導体基板
14に設けられているオリエンテーションフラン) 1
4aを基準として位置決めされる。
In the figure, a semiconductor substrate 14 taken out from a storage container 5 that stores semiconductor substrates 14 on the supply side is transported to an intermediate stage 7, where an orientation flan (1) provided on the semiconductor substrate 14 is conveyed to an intermediate stage 7.
4a as a reference.

露光工程を完了したステージ4に搭載されている半導体
基板14と、この中間ステージ7にて位置決めされてい
る半導体基板14とは、それぞれ図示しない搬送具によ
って搬送されてその搭載位置を交換され、その後露光工
程を完了した中間ステージ7に搭載されている半導体基
板14は、取り出し側の半導体基板14を収納する収納
容器6に収納される。
The semiconductor substrate 14 mounted on the stage 4 that has completed the exposure process and the semiconductor substrate 14 positioned on the intermediate stage 7 are each transported by a transport tool (not shown) and their mounting positions are exchanged, and then The semiconductor substrate 14 mounted on the intermediate stage 7 that has completed the exposure process is stored in the storage container 6 that stores the semiconductor substrate 14 on the extraction side.

第6図はこのような露光装置の工程図である。FIG. 6 is a process diagram of such an exposure apparatus.

まず、これから処理を行う半導体基板14が中間ステー
ジ7に搭載されて位置決めされているか否かを「半導体
基板待機法か否か」工程でチエツクし、Noならば半導
体基板14の「待機処理」工程を行い、Yesならば上
記した半導体基板14の「交換処理」工程を行う。
First, it is checked in the "semiconductor substrate standby method" step whether or not the semiconductor substrate 14 to be processed is mounted and positioned on the intermediate stage 7, and if No, the "standby processing" step of the semiconductor substrate 14 is performed. If the answer is Yes, the above-described "replacement process" process for the semiconductor substrate 14 is performed.

つぎに、上記した露光工程を完了した半導体基板14を
取り出し側の収納容器6に収納する[アンロード処理」
工程を行い、つぎの露光工程を完了した半導体基板14
を中間ステージ7に搭載することが可能なように「待機
処理」工程を行う。
Next, the semiconductor substrate 14 that has undergone the above-described exposure process is stored in the storage container 6 on the removal side [unloading process].
Semiconductor substrate 14 that has undergone the process and completed the next exposure process
A "standby process" step is performed so that the intermediate stage 7 can be loaded with the "standby process".

ステージ4に搭載された半導体基板14は、その表面に
形成されているレジスト膜15に一工程前の露光が行わ
れているか否かを「重ね合わせ露光法か否か」工程でチ
エツクし、Noならば、「アライメント」工程を行わず
に[ステップ・リピート露光」工程を行い、Yesなら
ば「アライメント」工程を行った後、「ステップ・リピ
ート露光」工程を行う。
The semiconductor substrate 14 mounted on the stage 4 checks whether the resist film 15 formed on its surface has been exposed in the previous step in the "overlay exposure method or not" step. If so, the "step repeat exposure" process is performed without performing the "alignment" process, and if Yes, the "step repeat exposure" process is performed after the "alignment" process.

以上の工程を全ての半導体基板14に行ったか否かを「
全半導体基板終了か否か」工程でチエツクし、Noなら
ば「半導体基板待機法か否か」工程に戻り、つぎの半導
体基板14の処理を始める。[全半導体基板終了か否か
」工程でYesならば露光装置の稼動を終了する。
Check whether the above steps have been performed on all semiconductor substrates 14 or not.
A check is made in the process of ``Whether all semiconductor substrates have been completed or not'', and if No, the process returns to the process of ``Whether or not semiconductor substrate standby method is used'' and processing of the next semiconductor substrate 14 is started. If YES in the step ``Whether all semiconductor substrates have been completed?'', the operation of the exposure apparatus is terminated.

このような露光装置を用いて行う半導体基板14の露光
工程において、半導体基板14の表面に生じている凹凸
、通常は2μm程度を測定するには、上記の主工程とは
別工程の半導体基板14の露光フィールドの中心のみを
測定する「半導体基板フラットネス測定」工程を、半導
体基板14−枚毎に露光装置のオペレータの指示により
行わなければならない。
In the exposure process of the semiconductor substrate 14 carried out using such an exposure apparatus, in order to measure the unevenness occurring on the surface of the semiconductor substrate 14, which is usually about 2 μm, the semiconductor substrate 14 is processed in a process different from the above-mentioned main process. A "semiconductor substrate flatness measurement" process, in which only the center of the exposure field is measured, must be performed for every 14 semiconductor substrates according to instructions from the operator of the exposure apparatus.

このような露光装置を用いて行う半導体基[j14の露
光工程において、半導体基板14の表面に凹凸が生じて
いる場合には、光線1aが半導体基板14の表面のレジ
スト膜15の表面に焦点が結ぶように半導体基板14を
載置したステージ4を上下方向に移動して補正している
In the exposure process of the semiconductor substrate [j14] performed using such an exposure apparatus, if the surface of the semiconductor substrate 14 is uneven, the light beam 1a is focused on the surface of the resist film 15 on the surface of the semiconductor substrate 14. The correction is made by moving the stage 4 on which the semiconductor substrate 14 is placed in the vertical direction so as to tie the two.

また、更に半導体基板14の表面の傾斜が一方向のみの
場合には、ステージ4を傾斜させてこの半導体基板14
の表面の傾斜面を水平にする傾斜補正を行って露光を行
っている。
Furthermore, if the surface of the semiconductor substrate 14 is tilted in only one direction, the stage 4 is tilted so that the semiconductor substrate 14
Exposure is performed by performing tilt correction to make the slope of the surface horizontal.

しかしながら、露光装置の露光フィールド内の半導体基
板14表面の凹凸が一方向のみの傾斜ではない場合にお
いては、従来の補正方法では傾斜補正することが不可能
なため、傾斜補正を行わずに露光を行っている。
However, if the unevenness of the surface of the semiconductor substrate 14 in the exposure field of the exposure apparatus is not sloped in only one direction, it is impossible to correct the slope using the conventional correction method, so exposure is performed without performing slope correction. Is going.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上説明した大量の半導体基板の露光を行う従来の露光
装置においては、半導体基板表面の凹凸を検知すること
が可能な場合においても、半導体基板−枚毎に露光装置
のオペレータが指示しなければならず、この検知を行う
ためには主作業を停止して行わねばならないので主作業
の流れが停滞するため、全部の半導体基仮について凹凸
の検知を行うことは不可能であり、自動化された工程に
おいて万一半導体基板表面の凹凸が規格から外れている
場合には、現像工程後の検査工程に半導体基板が到達し
て異常が発見されるまでの間に大量の不良半導体基板が
露光されてしまうことになるという問題点があった。
In the conventional exposure equipment that exposes a large number of semiconductor substrates as described above, even when it is possible to detect irregularities on the surface of the semiconductor substrate, the operator of the exposure equipment must give instructions for each semiconductor substrate. First, in order to perform this detection, the main work must be stopped and the flow of the main work stagnates. Therefore, it is impossible to detect unevenness on all semiconductor substrates, and it is not possible to perform the automated process. In the event that the unevenness of the semiconductor substrate surface deviates from the standard, a large number of defective semiconductor substrates will be exposed until the semiconductor substrate reaches the inspection process after the development process and the abnormality is discovered. There was a problem with this.

本発明は以上のような状況から、半導体基板表面の凹凸
を、主作業の流れを停滞させないで検知し、算出して記
憶することが可能な露光装置の提供を目的としたもので
ある。
SUMMARY OF THE INVENTION In view of the above-mentioned circumstances, it is an object of the present invention to provide an exposure apparatus that can detect, calculate, and store irregularities on the surface of a semiconductor substrate without disrupting the main work flow.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の露光装置は、光源から放射され、レチクルの透
明部を透過した光線を、縮小レンズ系により縮小し、半
導体基板の表面に形成したレジスト膜に照射する露光装
置であって、ステージに載置したこの半導体基板の表面
の露光フィールド毎の凹凸を検知する手段と、この凹凸
の値とこの凹凸の値より求めた参照面とのズレ量を算出
する手段と、各露光フィールド毎のこのズレ量の値を記
憶するメモリ手段とを具備するよう構成する。
The exposure apparatus of the present invention is an exposure apparatus that reduces a light beam emitted from a light source and passes through a transparent part of a reticle using a reduction lens system, and irradiates the resist film formed on the surface of a semiconductor substrate, and the exposure apparatus is mounted on a stage. means for detecting the unevenness of the surface of the semiconductor substrate for each exposure field, means for calculating the amount of deviation between the value of the unevenness and a reference surface determined from the value of the unevenness, and means for detecting the deviation for each exposure field. and memory means for storing the value of the quantity.

〔作用〕[Effect]

即ち本発明においては通常の半導体基板の表面の露光処
理工程中に、半導体基板の表面の露光フィールド毎の凹
凸検知工程と、参照面とのズレ量の算出工程と、検知結
果が規格内に入っているかどうかを判断する工程とを組
み込んでいるので、オペレータが半導体基板−枚毎に露
光装置に指示し、主作業をストップしてこの検知を行う
必要がなく、万一半導体基板表面の凹凸が規格から外れ
ている場合には警報を発して露光装置を停止させること
が可能となるので、自動化された工程においても現像後
の検査において異常が発見されるまでの間に大量の不良
半導体基板を露光することを防止することが可能となる
That is, in the present invention, during the normal exposure process of the surface of a semiconductor substrate, there is a step of detecting unevenness for each exposure field on the surface of the semiconductor substrate, a step of calculating the amount of deviation from the reference surface, and a step of detecting that the detection result falls within the standard. This eliminates the need for the operator to instruct the exposure equipment for each semiconductor substrate and to stop the main operation to perform this detection. If it deviates from the standard, it is possible to issue an alarm and stop the exposure equipment, so even in an automated process, it is possible to eliminate a large number of defective semiconductor substrates before an abnormality is discovered during post-development inspection. It becomes possible to prevent exposure to light.

〔実施例〕〔Example〕

以下第1図〜第4図により本発明による一実施例の露光
装置について説明する。
An exposure apparatus according to an embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

本実施例に用いる露光装置の概略構造は第4図及び第5
図に示すような従来の露光装置と同じである。
The schematic structure of the exposure apparatus used in this example is shown in Figures 4 and 5.
This is the same as the conventional exposure apparatus shown in the figure.

第1図はこのような露光装置を用いる露光工程の工程図
である。
FIG. 1 is a process diagram of an exposure process using such an exposure apparatus.

図に示す「半導体基板待機法か否か」、「待機処理」、
「交換処理」、「アンロード処理」、「待機処理」は従
来の工程と同じである。
"Whether or not it is a semiconductor substrate standby method" and "standby processing" shown in the figure.
"Exchange processing", "unload processing", and "standby processing" are the same as the conventional process.

また「重ね合わせ露光済か否か」、「アライメント」、
「ステップ・リピート露光」も従来の工程と同じである
Also, "whether overlapping exposure has been completed", "alignment",
"Step repeat exposure" is also the same as the conventional process.

本発明による一実施例の露光装置においては、第1図に
おいてrAJ或いはrBJ或いは「C」と図示した位置
に第2図に示すような工程を追加している。
In an exposure apparatus according to an embodiment of the present invention, a process as shown in FIG. 2 is added to the position indicated as rAJ, rBJ, or "C" in FIG. 1.

rAJ、r[3J、rcJ工程の詳細は第2図に示すよ
うなものであり、半導体基板14の表面の露光フィール
ドの中心において行う「半導体基板表面凹凸検知」工程
と、この凹凸の値を最小二乗法により求めた参照面との
ズレ量を算出する「参照面とのズレ量の算出」工程と、
このズレ量が予め設定しておいた規格に入っているか否
かを判定する「規格内か否か」工程において、Yesな
らば工程を続行し、Noならば「警報発生」後、装置の
稼動を停止する。
The details of the rAJ, r[3J, rcJ process are as shown in FIG. "Calculating the amount of deviation from the reference surface" step of calculating the amount of deviation from the reference surface obtained by the square method;
In the "Whether or not the deviation amount is within the standard" process that determines whether or not it is within the preset standard, if Yes, the process continues, and if No, after the "alarm is generated", the equipment starts operating. stop.

なお、rCJの位置に第2図の工程を挿入する場合には
、その前の「ステップ・リピート露光」工程における自
動焦点合わせのデータを利用できるので、「半導体基板
表面凹凸検知」工程を省略することができる。
Note that when inserting the process shown in Figure 2 at the rCJ position, the automatic focusing data from the previous "step repeat exposure" process can be used, so the "semiconductor substrate surface unevenness detection" process is omitted. be able to.

この第2図の工程の挿入位置として最善の位置はrBJ
であり、rAJの位置は「アライメント」工程前でまだ
半導体基板14の位置が確定しておらず、「C」の位置
は「ステップ・リピー+−i光」工程後でこの半導体基
板14に対する露光後のため挿入位置としては次善の位
置である。
The best insertion position for the process shown in Figure 2 is rBJ.
The position of rAJ is before the "alignment" process and the position of the semiconductor substrate 14 has not yet been determined, and the position of "C" is the position of the semiconductor substrate 14 after the "step repeat +-i light" process. Because it is later, it is the next best insertion position.

以上の工程が終了した後の「全半導体基板終了か否か」
工程も従来の工程と同じである。
After the above steps are completed, "Whether or not all semiconductor substrates are finished?"
The process is also the same as the conventional process.

第3図は本発明による一実施例の露光装置における半導
体基板の凹凸補正機構のブロック図である。
FIG. 3 is a block diagram of a mechanism for correcting unevenness of a semiconductor substrate in an exposure apparatus according to an embodiment of the present invention.

検出器8にて検出した、半導体基板14の一枚分の全露
光フィールドの各中心に対して焦点合わせした凹凸のア
ナログデータを、自動利得制御器9(以下、AGC9と
略称する。)によって制御し、A−D変換器10でディ
ジタルデータに変換してメモリ11に記憶させる。この
ディジタルデータを用いてメインプロセッサ13により
各露光フィールドの中心の参照面からのズレ量を算出し
、本実施例において追加したメモ1月2にこの半導体基
板14の全露光フィールドのディジタルデータを貯えて
おき、このディジタルデータを元にしてこの参照面から
のズレ量を規格値、例えば1.0μmと比較して、それ
以上であるか否かをメインプロセッサ13により判断さ
せ、それ以下の場合はステージ4を制御して焦点を調節
し、それ以上の場合は露光装置の稼動を停止させる。
The analog data of the unevenness detected by the detector 8 and focused on each center of the entire exposure field for one semiconductor substrate 14 is controlled by an automatic gain controller 9 (hereinafter abbreviated as AGC 9). Then, it is converted into digital data by an A-D converter 10 and stored in a memory 11. Using this digital data, the main processor 13 calculates the amount of deviation of the center of each exposure field from the reference plane, and stores the digital data of the entire exposure field of the semiconductor substrate 14 in the memo January 2 added in this embodiment. Then, based on this digital data, the amount of deviation from this reference plane is compared with a standard value, for example, 1.0 μm, and the main processor 13 judges whether it is greater than or not. The stage 4 is controlled to adjust the focus, and if the focus is exceeded, the operation of the exposure apparatus is stopped.

このような露光装置を用いて行う半導体基板14の露光
工程においては、第2図に示す工程を追加し、第3図に
示す半導体基板の凹凸補正機構により半導体基板14の
表面に生じている凹凸の測定を全ての半導体基板14に
対して行うことができるから、半導体基板14の各露光
フィールドに対して適正な焦点合わせを行うことが可能
となる。
In the exposure process of the semiconductor substrate 14 performed using such an exposure apparatus, the process shown in FIG. Since this measurement can be performed on all the semiconductor substrates 14, it is possible to perform appropriate focusing for each exposure field of the semiconductor substrate 14.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば、オペレ
ータによる顧繁な操作は不要であり、露光装置において
自動的に露光フィールド内の半導体基板表面の凹凸を検
知し、この検知した値と規格値とを比較して判断し、異
常の場合には警報を発して露光装置を自動的に停止させ
ることが可能であり、自動化された場合に、異常の発見
までの間に大量の不良半導体基板を露光するのを防止す
ることが可能となる等の利点があり、著しい経済的及び
、信顛性向上の効果が期待できる露光装置の提供が可能
となる。
As is clear from the above description, according to the present invention, there is no need for frequent operations by an operator, and the exposure apparatus automatically detects the unevenness of the semiconductor substrate surface within the exposure field, and uses the detected value and the standard. It is possible to make a judgment by comparing the values and to issue an alarm in the event of an abnormality and automatically stop the exposure equipment.If automated, it is possible to eliminate a large number of defective semiconductor substrates by the time the abnormality is discovered. It is possible to provide an exposure apparatus that can be expected to be significantly economical and to improve reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による一実施例の露光装置の工程図、 第2図は本発明による一実施例の追加工程の詳細図、 第3図は本発明による一実施例の露光装置における半導
体基板の凹凸補正機構のブロック図、第4図は露光装置
の概略構造を示す側面図、第5図は露光装置の半導体基
板の搬送機構の概略構造を示す平面図、 第6図は従来の露光装置の工程図、 である。 図において、 ■は光源、 1aは光線、 2はレチクル、 3は縮小レンズ系、 4はステージ、 5は収納容器、 6は収納容器、 7は中間ステージ、 8は検出器、 9はAGC。 IOはA−D変換器、 11はメモリ、 12はメモリ、 13はメインプロセッサ、 14は半導体基板、 14aはオリエンテーションフラット、15はレジスト
膜、を示す。 本発明による一実施例の露光装置の工程図露光装置の概
略構造を示す側面図 第 図 露光装置の半導体基板の搬送機構の概略構造を示す平面
図第 図 本発明による一実施例の追加工程の詳細図率 図 従来の露光装置の工程図 第 図
FIG. 1 is a process diagram of an exposure apparatus according to an embodiment of the present invention, FIG. 2 is a detailed diagram of an additional process of an embodiment according to the present invention, and FIG. 3 is a semiconductor substrate in an exposure apparatus according to an embodiment of the present invention. 4 is a side view showing the schematic structure of the exposure device, FIG. 5 is a plan view showing the schematic structure of the semiconductor substrate transport mechanism of the exposure device, and FIG. 6 is a conventional exposure device. The process diagram is as follows. In the figure, ■ is a light source, 1a is a light beam, 2 is a reticle, 3 is a reduction lens system, 4 is a stage, 5 is a storage container, 6 is a storage container, 7 is an intermediate stage, 8 is a detector, and 9 is an AGC. IO is an A-D converter, 11 is a memory, 12 is a memory, 13 is a main processor, 14 is a semiconductor substrate, 14a is an orientation flat, and 15 is a resist film. A process diagram of an exposure apparatus according to an embodiment of the present invention. A side view showing a schematic structure of an exposure apparatus. Detailed coverage diagram Process diagram of conventional exposure equipment

Claims (1)

【特許請求の範囲】[Claims] 光源(1)から放射され、レチクル(2)の透明部を透
過した光線(1a)を、縮小レンズ系(3)により縮小
し、半導体基板(14)の表面に形成したレジスト膜(
15)に照射する露光装置であって、ステージ(4)に
載置した前記半導体基板(14)の表面の露光フィール
ド毎の凹凸を検知する手段と、該凹凸の値と該凹凸の値
より求めた参照面とのズレ量を算出する手段と、各露光
フィールド毎の前記ズレ量の値を記憶するメモリ手段と
を具備することを特徴とする露光装置。
The light beam (1a) emitted from the light source (1) and transmitted through the transparent part of the reticle (2) is reduced by the reduction lens system (3), and the resist film (1a) formed on the surface of the semiconductor substrate (14) is reduced.
15) An exposure apparatus for irradiating a semiconductor substrate (14) placed on a stage (4), comprising means for detecting irregularities for each exposure field on the surface of the semiconductor substrate (14) placed on a stage (4), and a means for detecting irregularities for each exposure field; An exposure apparatus comprising: means for calculating the amount of deviation from a reference plane; and memory means for storing the value of the amount of deviation for each exposure field.
JP1093815A 1989-04-12 1989-04-12 Aligner Pending JPH02271516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1093815A JPH02271516A (en) 1989-04-12 1989-04-12 Aligner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1093815A JPH02271516A (en) 1989-04-12 1989-04-12 Aligner

Publications (1)

Publication Number Publication Date
JPH02271516A true JPH02271516A (en) 1990-11-06

Family

ID=14092898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1093815A Pending JPH02271516A (en) 1989-04-12 1989-04-12 Aligner

Country Status (1)

Country Link
JP (1) JPH02271516A (en)

Similar Documents

Publication Publication Date Title
KR100811964B1 (en) Resist pattern forming apparatus and method thereof
JP2560371B2 (en) Substrate processing system
US7073542B2 (en) Liquid quantity determination unit, photolithography apparatus, and liquid quantity determination method
KR20140058335A (en) Method of removing coating film of substrate peripheral portion, substrate processing apparatus and storage medium
KR100719367B1 (en) Apparatus for manufacturing semiconductors and method for processing wafers
JP3172085B2 (en) Peripheral exposure equipment
JP2866831B2 (en) Laser processing equipment positioning method
US20200096321A1 (en) Substrate inspection method, substrate inspection apparatus and recording medium
JP3344275B2 (en) Imaging device for welds at the end of large diameter steel pipes
JPH02271516A (en) Aligner
US7426016B2 (en) Exposure apparatus and exposure method
US20180164696A1 (en) Optical processing apparatus and substrate processing apparatus
KR20060005546A (en) Baking apparatus having wafer detecting system
US6778266B2 (en) Semiconductor wafer tilt monitoring on semiconductor fabrication equipment plate
JPH1064809A (en) Device and method for exposure
JP6322840B2 (en) Resist film removal method, resist film removal apparatus, and storage medium
JPH06260394A (en) Exposure method and system for semiconductor substrate
US7394523B2 (en) Exposure apparatus and method of controlling exposure apparatus
KR100589108B1 (en) Exposure apparatus for preventing patterning error on a wafer
JPH05256621A (en) Pattern position measuring device
KR20230080767A (en) Method for treating substrate
JPH06112105A (en) Method and device for exposing semiconductor substrate
JP2862558B2 (en) Position detection device
KR100843960B1 (en) Wafer mis-centering alarm apparatus and operating method of semiconductor fabrication equipment using the same
JPH04333216A (en) Reduction projection aligner