JPH05256621A - Pattern position measuring device - Google Patents

Pattern position measuring device

Info

Publication number
JPH05256621A
JPH05256621A JP4052415A JP5241592A JPH05256621A JP H05256621 A JPH05256621 A JP H05256621A JP 4052415 A JP4052415 A JP 4052415A JP 5241592 A JP5241592 A JP 5241592A JP H05256621 A JPH05256621 A JP H05256621A
Authority
JP
Japan
Prior art keywords
sample
height
pattern position
position measuring
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4052415A
Other languages
Japanese (ja)
Inventor
Keiichiro Nomura
恵一郎 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP4052415A priority Critical patent/JPH05256621A/en
Publication of JPH05256621A publication Critical patent/JPH05256621A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a pattern position measuring device capable of eliminating the measurement error caused by the abnormal attitude state of a sample due to the sticking of foreign objects such as refuse. CONSTITUTION:A pattern position measuring device is provided with a stage 5 mounted with a sample formed with the preset pattern on the surface and movable on the nearly horizontal plane, a height detecting means 11 detecting the height of the sample surface from the horizontal plane at multiple positions of the sample surface, and a comparing means 12 judging whether the difference between the height detected by the height detecting means and the preset reference height is within the preset allowable range or not.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置製造用ある
いは液晶デバイス製造用露光装置等で用いるマスク、レ
チクルあるいはウエハ等の試料に形成されたパターンの
位置を検出するパターン位置測定装置に関し、特に試料
の異常な姿勢状態に起因した測定誤差を低減するための
改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pattern position measuring apparatus for detecting the position of a pattern formed on a sample such as a mask, a reticle or a wafer used in an exposure apparatus for manufacturing a semiconductor device or a liquid crystal device. The present invention relates to an improvement for reducing a measurement error caused by an abnormal posture state of a sample.

【0002】[0002]

【従来の技術】半導体露光装置等では、所定の回路パタ
ーンが形成されたマスクやレチクルを露光照射してパタ
ーンをウエハ上に焼付けて転写し半導体回路を形成す
る。このようなマスク、レチクルあるいはウエハは製造
後そのパターン形成精度等を検査するためにパターン位
置測定装置によりパターン位置(座標)が測定される。
2. Description of the Related Art In a semiconductor exposure apparatus or the like, a mask or reticle on which a predetermined circuit pattern is formed is exposed to light and the pattern is printed and transferred onto a wafer to form a semiconductor circuit. After manufacturing such a mask, reticle or wafer, the pattern position (coordinates) is measured by a pattern position measuring device in order to inspect the pattern forming accuracy and the like.

【0003】図6はこのようなパターン位置測定装置の
試料支持部の構成を示す。(a)は平面図、(b)は断
面図、(c)は試料支持状態の説明図である。マスクあ
るいはレチクル等の測定すべき試料1は、ホルダ2上に
設けられた4ヵ所の吸着突起3上に搭載される。各吸着
突起3の上面(吸着面)には図示しない真空装置に連結
された吸着ポート4が形成され、試料1の4隅を真空吸
着して固定保持する。この場合、試料1は(c)図に示
すように、両端単純支持梁の状態となり、重力により中
央部が下がり撓んだ状態となる。通常はこのような一定
の湾曲撓み状態でパターン位置測定が行なわれる。
FIG. 6 shows the structure of a sample support portion of such a pattern position measuring device. (A) is a plan view, (b) is a sectional view, and (c) is an explanatory view of a sample supporting state. A sample 1 to be measured, such as a mask or a reticle, is mounted on four suction protrusions 3 provided on a holder 2. An adsorption port 4 connected to a vacuum device (not shown) is formed on the upper surface (adsorption surface) of each adsorption projection 3, and the four corners of the sample 1 are vacuum adsorbed and fixedly held. In this case, the sample 1 is in the state of the simple support beams at both ends, as shown in FIG. Normally, the pattern position measurement is performed in such a constant curved bending state.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記パ
ターン位置測定装置の構成において、試料1と吸着突起
3との間にゴミ等の異物や傷等が介在すると、図7に示
すように、試料1はaで示す正常な撓み状態(基準姿
勢)からbで示す捩れが加わった撓み状態に姿勢が変化
する。このため測定すべきパターン(×印で示す)間の
距離が、本来LaであるべきところがLbに変化し測定
値に誤差を生ずる。この結果、正常試料を欠陥品と判別
したり逆に欠陥試料を正常品と判別する等測定結果の信
頼性を低下させていた。
However, in the structure of the pattern position measuring apparatus, if foreign matter such as dust or scratches are present between the sample 1 and the suction projection 3, as shown in FIG. The posture changes from the normal bending state (reference posture) shown by a to the bending state in which the twist is added as shown by b. For this reason, the distance between the patterns to be measured (indicated by X) changes to Lb from what should have been La, causing an error in the measured value. As a result, the reliability of the measurement result, such as distinguishing a normal sample from a defective product and vice versa, decreases the reliability of the measurement result.

【0005】本発明は上記従来技術の欠点に鑑みなされ
たものであって、試料支持部のゴミ等の異物付着による
試料の異常な姿勢状態に起因した測定誤差を低減可能な
パターン位置測定装置の提供を目的とする。
The present invention has been made in view of the above-mentioned drawbacks of the prior art, and provides a pattern position measuring apparatus capable of reducing a measurement error caused by an abnormal posture state of a sample due to adhesion of foreign matter such as dust on the sample support portion. For the purpose of provision.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するた
め、本発明に係るパターン位置測定装置は:表面に所定
のパターンが形成された試料を載置し、略水平面を移動
可能なステージと;前記試料表面の複数の位置で、前記
試料表面の前記水平面からの高さを検出する高さ検出手
段と;前記高さ検出手段により検出された高さと予め設
定されている基準の高さとの差が、所定の許容範囲内か
否かを判断する比較手段とを具備している。
To achieve the above object, a pattern position measuring apparatus according to the present invention comprises: a stage on which a sample having a predetermined pattern formed thereon is placed and which can move in a substantially horizontal plane; Height detection means for detecting the height of the sample surface from the horizontal plane at a plurality of positions on the sample surface; difference between the height detected by the height detection means and a preset reference height However, it has a comparison means for judging whether or not it is within a predetermined allowable range.

【0007】[0007]

【作用】試料表面の複数の位置で所定の水平面からの高
さを計測し、この計測値が基準となる正常試料の高さと
比較され、その差が許容範囲を越えていれば、試料のセ
ッティング状態が異常と判断する。
[Function] The height from a predetermined horizontal plane is measured at a plurality of positions on the surface of the sample, and the measured value is compared with the height of a normal sample serving as a reference. If the difference exceeds an allowable range, the sample is set. Judge that the condition is abnormal.

【0008】[0008]

【実施例】図1は本発明の実施例に係るパターン位置測
定装置の構成図である。測定すべきパターンが形成され
た試料(図示しない)は、前述のようにホルダ2の吸着
突起3上に真空吸着され固定保持される。このホルダ2
は水平面内でXY方向に移動可能なXYステージ5上に
固定して搭載される。XYステージ5は、X方向駆動モ
ータおよびY方向駆動モータを含むXY駆動装置6によ
りXY各方向に移動され、試料を指定された座標位置に
移動させる。このXY駆動装置6はCPU7により駆動
制御される。このXYステージ5に搭載されたホルダ2
の上方には対物レンズ9を含む焦点検出用光学系8が配
設される。この焦点検出用光学系8は、後述のように、
試料表面の複数点について、XY平面からの高さを検出
するためのものであり、CPU7により駆動制御され
る。対物レンズ9は、XY平面に垂直なZ方向のZ駆動
装置10により上下に移動可能であり、これにより試料
に照射する光束の焦点位置を変化させる。Z駆動装置1
0には高さ検出器11が接続され、Z駆動装置10の移
動量を検出して試料表面の高さを検出する。高さ検出器
11は比較判別回路12に接続され、測定した試料表面
の高さが所定の基準値と比較される。比較判別回路12
はCPU7に接続され、CPU7は比較判別回路12の
出力に応じて試料の姿勢状態を判別し異常であればアラ
ーム等を発する。
1 is a block diagram of a pattern position measuring apparatus according to an embodiment of the present invention. The sample (not shown) on which the pattern to be measured is formed is vacuum-sucked and fixedly held on the suction protrusion 3 of the holder 2 as described above. This holder 2
Is fixedly mounted on an XY stage 5 movable in the XY directions in a horizontal plane. The XY stage 5 is moved in each of the XY directions by an XY drive device 6 including an X-direction drive motor and a Y-direction drive motor, and moves the sample to a designated coordinate position. The XY drive device 6 is drive-controlled by the CPU 7. Holder 2 mounted on this XY stage 5
An optical system 8 for focus detection including an objective lens 9 is arranged above. The focus detection optical system 8 is, as described later,
It is for detecting the height from the XY plane at a plurality of points on the sample surface, and is drive-controlled by the CPU 7. The objective lens 9 can be moved up and down by a Z drive device 10 in the Z direction perpendicular to the XY plane, and this changes the focal position of the light beam with which the sample is irradiated. Z drive device 1
A height detector 11 is connected to 0 and detects the amount of movement of the Z drive device 10 to detect the height of the sample surface. The height detector 11 is connected to the comparison / discrimination circuit 12, and the measured height of the sample surface is compared with a predetermined reference value. Comparison discrimination circuit 12
Is connected to the CPU 7, and the CPU 7 determines the posture state of the sample according to the output of the comparison / determination circuit 12 and issues an alarm or the like if there is an abnormality.

【0009】上記構成のパターン位置測定装置の試料セ
ッティングシーケンスについて、図2のフローチャート
を用いて説明する。まず、測定すべき試料をホルダ上に
搭載し前述のように真空吸着により固定保持する(ステ
ップ13)。次に、焦点検出用光学系8を用いてセット
された試料の3次元姿勢(XY平面からの試料表面の高
さ)を測定する(ステップ14)。このとき、測定点
は、図5の+印に示すように、試料1の全面にわたって
XY各方向に対しそれぞれピッチPx、Pyで均一に測
定するように指示する。4点支持のホルダの場合、4ヵ
所の支持点(吸着突起3)付近を測定すれば、支持点へ
の異物付着による試料の姿勢変化は検出可能である。し
かしながら、試料全面を均一に測定すれば全体の形状を
3次元グラフィックで観察可能となり、全体の形状から
支持部の異常を容易に確実に検出できるため、図5のよ
うに測定点を試料全面均一に分布させることが望まし
い。また、試料によっては4点支持のホルダを使用でき
ない場合もあるため、試料全面を均一に測定して全体の
形状から異常部を検出することが望ましい。
A sample setting sequence of the pattern position measuring device having the above structure will be described with reference to the flowchart of FIG. First, the sample to be measured is mounted on the holder and fixed and held by vacuum suction as described above (step 13). Next, the three-dimensional posture (height of the sample surface from the XY plane) of the sample set using the focus detection optical system 8 is measured (step 14). At this time, the measurement points are instructed to be measured uniformly over the entire surface of the sample 1 at pitches Px and Py in each of the XY directions, as shown by the + mark in FIG. In the case of a holder supporting four points, the posture change of the sample due to the adhesion of foreign matter to the supporting points can be detected by measuring the vicinity of the four supporting points (suction protrusions 3). However, if the entire surface of the sample is measured uniformly, the entire shape can be observed with a three-dimensional graphic, and abnormalities of the supporting portion can be easily and reliably detected from the entire shape. Distribution is desirable. Further, depending on the sample, it may not be possible to use a holder supporting four points, so it is desirable to measure the entire surface of the sample uniformly and detect the abnormal portion from the overall shape.

【0010】各測定点で焦点検出用光学系8によりフォ
ーカシングを行ない、この焦点距離をZ駆動装置10の
移動量から高さ検出器11で読取り、各測定点の高さの
測定値とする。次に、測定した各値に対し、基準姿勢時
の値と比較しその差を求める(ステップ15)。この場
合、基準値となる基準姿勢時の高さは、試料のセッティ
ングと高さ測定を多数回繰り返し、統計的に求める。ま
たは、ホルダの吸着突起部および試料下面を完全にクリ
ーニングした状態で試料をセッティングし、このときの
高さを測定しこれを基準値としてもよい。このような基
準値は前述の全ての測定点に対応して予め計測されCP
U7内に保存されている。各測定値は、比較判別回路1
2により、各測定値と同じ測定点での基準値との間で減
算処理を行なうことにより、基準値との差が算出され
る。
Focusing is performed by the focus detection optical system 8 at each measurement point, and the focal length is read by the height detector 11 from the amount of movement of the Z drive device 10 and used as a measurement value of the height of each measurement point. Next, each measured value is compared with the value in the reference posture to obtain the difference (step 15). In this case, the height in the reference posture, which is the reference value, is statistically obtained by repeating the setting of the sample and the height measurement many times. Alternatively, the sample may be set with the suction protrusion of the holder and the lower surface of the sample completely cleaned, and the height at this time may be measured and used as a reference value. Such reference values are measured in advance corresponding to all the above-mentioned measurement points, and CP
It is stored in U7. Each measured value is the comparison / determination circuit 1
2, the difference from the reference value is calculated by performing subtraction processing between each measurement value and the reference value at the same measurement point.

【0011】次に、この算出結果が所定のセッティング
時の許容範囲内か否かが判別される(ステップ16)。
この場合、許容範囲は、試料の種類、サイズ、厚さおよ
び要求される座標測定精度により異なる。この許容範囲
を決定するには、測定値と基準値との差と座標測定精度
との関係を統計的に求めておき、この関係に基づいて決
定される。具体的には、試料をセッティングし、そのと
きの高さを測定しさらに座標を測定して高さに対応した
座標精度を求め、これを多数回繰り返すことにより、基
準値と測定値との間の差と座標測定精度との関係を求め
る。これにより必要とする座標測定精度に対応した測定
値と基準値との差が定まる。このようにして定めた結果
に適当なマージンを加えて許容範囲とする。
Next, it is judged whether or not the result of this calculation is within the allowable range at the time of predetermined setting (step 16).
In this case, the allowable range varies depending on the type of sample, size, thickness and required accuracy of coordinate measurement. In order to determine this allowable range, the relationship between the difference between the measured value and the reference value and the coordinate measurement accuracy is statistically obtained, and the relationship is determined based on this relationship. Specifically, set the sample, measure the height at that time, further measure the coordinates to find the coordinate accuracy corresponding to the height, and repeat this many times to find the difference between the reference value and the measured value. The relationship between the difference between and the coordinate measurement accuracy is obtained. As a result, the difference between the measured value and the reference value corresponding to the required coordinate measurement accuracy is determined. An appropriate margin is added to the result determined in this way to make it an allowable range.

【0012】判別ステップ16で、測定値と基準値との
差が許容範囲内であれば、試料は必要とする座標測定精
度を満足させる状態でホルダ上に搭載されているものと
判断して試料セッティングシーケンスを終了し、次のパ
ターン位置の測定工程のシーケンスに進む。一方、判別
ステップ16で、測定値と基準値との差が許容範囲を越
えていれば、試料とその支持部(吸着突起3)との間に
異物が介在し試料の姿勢が変化しているものと判断し、
CPU7は何等かのアラームを発してこの異常状態をオ
ペレータに知らせる。これにより、オペレータは試料と
ホルダとの間の接触部分をクリーニングしてゴミ等を除
去する(ステップ17)。その後、試料を再びホルダ上
にセットし(ステップ13)、以降のステップ14〜1
6を繰り返す。2回目の判別ステップ16で再び測定値
と基準値との差が許容範囲を越えている場合には、この
試料変形はゴミ等の付着が原因ではなく、試料自体が異
常変形しているものと判断し、欠陥試料として処理す
る。
If the difference between the measured value and the reference value is within the permissible range in the judgment step 16, it is judged that the sample is mounted on the holder in a state satisfying the required coordinate measurement accuracy. The setting sequence is ended, and the sequence of steps for measuring the next pattern position is started. On the other hand, if the difference between the measured value and the reference value exceeds the permissible range in the discrimination step 16, foreign matter is present between the sample and its supporting portion (suction protrusion 3), and the posture of the sample has changed. Judge that
The CPU 7 gives some alarm to inform the operator of this abnormal condition. As a result, the operator cleans the contact portion between the sample and the holder to remove dust and the like (step 17). Then, the sample is set on the holder again (step 13), and the subsequent steps 14 to 1 are performed.
Repeat 6 If the difference between the measured value and the reference value exceeds the permissible range again in the second determination step 16, this sample deformation is not caused by the adhesion of dust or the like, and the sample itself is abnormally deformed. Judge and treat as a defective sample.

【0013】次に、上記実施例における焦点検出用光学
系8の構成およびその作用について、図3および図4を
用いて簡単に説明する。図3は自動焦点検出装置の構成
を示す。レーザ光源21から出たレーザビームはビーム
エクスパンダ22によってビーム径が拡大され、ビーム
スプリッタ23を通過後、対物レンズ24によって収束
され被測定物体である試料25の表面上に収束結像す
る。このように試料を照射したレーザ光は試料表面で反
射または散乱し、この反射散乱光は、再び対物レンズ2
4を通り、ビームスプリッタ23で反射され、集光レン
ズ26でスポットに集光され再結像する。このスポット
位置(集光結像位置)にアパーチャ(またはピンホー
ル、スリット等)32を設ける。このアパーチャ32を
振動子27によって光軸方向に振動させる。この振動す
るアパーチャ32を通過する光信号を光電素子からなる
検知器28によって電気信号に変換する。この電気信号
はプリアンプ29を経て同期検波回路30に入力され
る。振動子27を駆動する信号は発振器31から参照信
号として発生され、この参照信号は同期検波回路30に
も入力される。試料面上にレーザ光の焦点が一致したと
き、振動アパーチャ32のの振動中心が、レーザ光のス
ポットの再結像位置に合っていたとする。このときの同
期検波回路30の出力はゼロボルトである。
Next, the structure and operation of the focus detection optical system 8 in the above embodiment will be briefly described with reference to FIGS. 3 and 4. FIG. 3 shows the configuration of the automatic focus detection device. The beam diameter of the laser beam emitted from the laser light source 21 is expanded by the beam expander 22, passes through the beam splitter 23, is converged by the objective lens 24, and is converged and imaged on the surface of the sample 25 which is the object to be measured. The laser light that irradiates the sample in this way is reflected or scattered on the surface of the sample, and this reflected scattered light is again reflected by the objective lens 2.
After passing through 4, the beam is reflected by the beam splitter 23, focused on a spot by the condenser lens 26, and re-imaged. An aperture (or pinhole, slit, etc.) 32 is provided at this spot position (condensing image forming position). The aperture 32 is vibrated by the vibrator 27 in the optical axis direction. The optical signal passing through the vibrating aperture 32 is converted into an electric signal by the detector 28 including a photoelectric element. This electric signal is input to the synchronous detection circuit 30 via the preamplifier 29. A signal that drives the oscillator 27 is generated as a reference signal from the oscillator 31, and this reference signal is also input to the synchronous detection circuit 30. It is assumed that when the focus of the laser light is on the sample surface, the vibration center of the vibration aperture 32 is aligned with the re-imaging position of the spot of the laser light. The output of the synchronous detection circuit 30 at this time is zero volt.

【0014】対物レンズ24と試料25との間の距離が
変化すると、図4に示したように焦点からのずれ量に応
じて、同期検波出力はSカーブと呼ばれる特性を示す。
このSカーブの中心部を用いて、試料表面の凹凸の量を
測定でき、表面形状を認識できる。対物レンズを光軸方
向に駆動するサーボ系を有する場合にはこれに同期検波
出力をフィードバックし、焦点からのずれ量をゼロにし
て、焦点合せを自動的に行なわせたり、また対物レンズ
の移動量を機械的に拡大して、その移動量から試料表面
の凹凸を検出することもできる。即ち、試料表面の高さ
を検出する場合には、サーボ機構(図1のZ駆動装置1
0)等によりSカーブの出力がゼロとなる位置に対物レ
ンズ(図1の9)を移動させ、この移動量を例えばエン
コーダを用いた高さ検出器11で検出し所定の初期値か
らの高さ変化を算出する。なお、図4の破線のSカーブ
は、アパーチャの中心位置が光軸とずれて光量が減少し
曲線の傾きが低下した状態を示す。
When the distance between the objective lens 24 and the sample 25 changes, the synchronous detection output exhibits a characteristic called an S curve, depending on the amount of deviation from the focus, as shown in FIG.
Using the central portion of this S curve, the amount of irregularities on the sample surface can be measured, and the surface shape can be recognized. If there is a servo system that drives the objective lens in the direction of the optical axis, the synchronous detection output is fed back to this to make the amount of deviation from the focus zero and automatically perform focusing, or to move the objective lens. It is also possible to mechanically expand the amount and detect the unevenness of the sample surface from the amount of movement. That is, when detecting the height of the sample surface, the servo mechanism (Z drive device 1 of FIG.
0) etc., the objective lens (9 in FIG. 1) is moved to a position where the output of the S curve becomes zero, and the amount of this movement is detected by a height detector 11 using an encoder, for example, and the height from a predetermined initial value is detected. Change is calculated. The S curve of the broken line in FIG. 4 shows a state in which the center position of the aperture deviates from the optical axis, the amount of light decreases, and the slope of the curve decreases.

【0015】なお、図1の構成において、比較判別回路
12はCPU7内の回路として構成してもよい。
In the configuration of FIG. 1, the comparison / discrimination circuit 12 may be configured as a circuit in the CPU 7.

【0016】[0016]

【発明の効果】以上説明したように、本発明において
は、パターン位置を測定すべき試料をホルダ上にセット
したとき、パターン位置の測定を開始する前に試料の姿
勢を測定して正常な姿勢からの誤差を検出しこれに基づ
いて試料支持部のゴミや傷等の有無を判別し、ゴミ等が
有る場合にはこれを取除いてからパターン位置の測定を
開始するようにシーケンスを構成しているため、試料の
異常な姿勢状態に起因するパターン位置測定の誤差が低
減し、測定結果の信頼性が向上する。
As described above, in the present invention, when the sample for which the pattern position is to be measured is set on the holder, the posture of the sample is measured before starting the measurement of the pattern position, and the normal posture is measured. Error is detected, and based on this, the presence or absence of dust or scratches on the sample support is determined.If there is dust, the sequence is configured to remove it and then start measuring the pattern position. Therefore, the error in the pattern position measurement due to the abnormal posture state of the sample is reduced, and the reliability of the measurement result is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係るパターン位置測定装置の構成図
である。
FIG. 1 is a configuration diagram of a pattern position measuring device according to the present invention.

【図2】 本発明に係るパターン位置測定装置の試料セ
ッティングのシーケンスを示すフローチャートである。
FIG. 2 is a flowchart showing a sample setting sequence of the pattern position measuring device according to the present invention.

【図3】 本発明の実施例で用いる自動焦点検出装置の
構成図である。
FIG. 3 is a configuration diagram of an automatic focus detection device used in an embodiment of the present invention.

【図4】 図3の自動焦点検出装置で検出されるSカー
ブの説明図である。
4 is an explanatory diagram of an S curve detected by the automatic focus detection device of FIG.

【図5】 測定すべき試料の高さ検出位置の説明図であ
る。
FIG. 5 is an explanatory diagram of a height detection position of a sample to be measured.

【図6】 ホルダ上に搭載された試料の撓み状態を説明
するための姿勢説明図である。
FIG. 6 is a posture explanatory view for explaining a bending state of a sample mounted on a holder.

【図7】 異常な姿勢状態でパターン位置を測定した場
合の試料の測定誤差の説明図である。
FIG. 7 is an explanatory diagram of measurement error of the sample when the pattern position is measured in an abnormal posture state.

【符号の説明】[Explanation of symbols]

1;試料、2;ホルダ、3;吸着突起、4;吸着ポー
ト、5;XYステージ、6;XY駆動装置、7;CP
U、8;焦点検出用光学系、9;対物レンズ、10;Z
駆動装置、11;高さ検出器、12、比較判別回路。
1; sample, 2; holder, 3; adsorption protrusion, 4; adsorption port, 5; XY stage, 6; XY drive device, 7; CP
U, 8; optical system for focus detection, 9; objective lens, 10; Z
Drive device, 11; Height detector, 12, Comparison discrimination circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 表面に所定のパターンが形成された試料
を載置し、略水平面を移動可能なステージと、 前記試料表面の複数の位置で、前記試料表面の前記水平
面からの高さを検出する高さ検出手段と、 前記高さ検出手段により検出された高さと予め設定され
ている基準の高さとの差が、所定の許容範囲内か否かを
判断する比較手段と、を具備したことを特徴とするパタ
ーン位置測定装置。
1. A stage on which a sample having a predetermined pattern formed thereon is placed and which can move in a substantially horizontal plane, and a height of the sample surface from the horizontal plane is detected at a plurality of positions on the sample surface. Height detecting means, and a comparing means for determining whether or not a difference between the height detected by the height detecting means and a preset reference height is within a predetermined allowable range. A pattern position measuring device characterized by:
JP4052415A 1992-03-11 1992-03-11 Pattern position measuring device Pending JPH05256621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4052415A JPH05256621A (en) 1992-03-11 1992-03-11 Pattern position measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4052415A JPH05256621A (en) 1992-03-11 1992-03-11 Pattern position measuring device

Publications (1)

Publication Number Publication Date
JPH05256621A true JPH05256621A (en) 1993-10-05

Family

ID=12914161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4052415A Pending JPH05256621A (en) 1992-03-11 1992-03-11 Pattern position measuring device

Country Status (1)

Country Link
JP (1) JPH05256621A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108723617A (en) * 2017-04-24 2018-11-02 株式会社迪思科 Laser processing
CN113251943A (en) * 2020-02-12 2021-08-13 三营超精密光电(晋城)有限公司 Measuring system and method based on light interference

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108723617A (en) * 2017-04-24 2018-11-02 株式会社迪思科 Laser processing
CN113251943A (en) * 2020-02-12 2021-08-13 三营超精密光电(晋城)有限公司 Measuring system and method based on light interference

Similar Documents

Publication Publication Date Title
JPH02236149A (en) Printed circuit inspection system
JP2523227Y2 (en) Foreign matter inspection device
JPS58120155A (en) Detecting device for extraneous substance on reticle
US5978078A (en) System and method for detecting particles on substrate-supporting chucks of photolithography equipment
JP3395797B2 (en) Exposure equipment
JP4365908B2 (en) Surface position detection apparatus, exposure apparatus, and device manufacturing method
JP2866831B2 (en) Laser processing equipment positioning method
JP3501672B2 (en) Surface image projection apparatus and method
US4365163A (en) Pattern inspection tool - method and apparatus
JP2001143991A (en) Surface position detector and device manufacturing method
JPH05256621A (en) Pattern position measuring device
JP3050746B2 (en) Laser repair device and its position checking method
JP3135063B2 (en) Comparative inspection method and apparatus
JP2647051B2 (en) Appearance inspection device
JP3218466B2 (en) Exposure method and apparatus
JP3223483B2 (en) Defect inspection method and device
JPH0769272B2 (en) Foreign matter inspection device
JPH09236425A (en) Face position detector
JP3056823B2 (en) Defect inspection equipment
JP3316829B2 (en) Comparative inspection method and device
JPH01282829A (en) Wafer prober
JPH0743323B2 (en) Surface foreign matter inspection device
JP3647120B2 (en) Scanning exposure apparatus and method, and device manufacturing method
JPH07209203A (en) Method and apparatus for inspecting appearance
JPS6180212A (en) Automatic focus detecting mechanism