JPH02269307A - Face type optical modulator - Google Patents

Face type optical modulator

Info

Publication number
JPH02269307A
JPH02269307A JP9121889A JP9121889A JPH02269307A JP H02269307 A JPH02269307 A JP H02269307A JP 9121889 A JP9121889 A JP 9121889A JP 9121889 A JP9121889 A JP 9121889A JP H02269307 A JPH02269307 A JP H02269307A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
quantum well
well layer
light
type optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9121889A
Other languages
Japanese (ja)
Inventor
Yuji Koga
甲賀 祐二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP9121889A priority Critical patent/JPH02269307A/en
Publication of JPH02269307A publication Critical patent/JPH02269307A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the crosstalk between each element by providing a multi-layer structure formed by placing a multiple quantum well layer between two reflecting mirrors on a semiconductor substrate, and integrating a face type optical modulating element in which the reverse side of the semiconductor substrate is worked like a convex lens on the same semiconductor substrate like a two-dimensional matrix. CONSTITUTION:A multi-layer structure formed by placing a multiple quantum well layer 7 formed by laminating alternately two kinds of semiconductors whose band gaps are different from each other between two reflecting mirrors 3, 8 is provided on a semiconductor substrate 9, and a face type optical modulating element 12 in which the reverse side of the semiconductor substrate 9 is formed like a convex lens is integrated on the same semiconductor substrate 9 like a two-dimensional matrix. In this state, when a voltage is applied to electrodes 4, 5, that which is small in the absorption in the multiple quantum well layer at the time of non-electric field becomes large, and a switching operation for varying the transmission intensity of light can be obtained. By this switching operation, light transmits through the semiconductor substrate 9 and receives a condensing action by a lens 10, and condensed to a photodetector 13. In such a way, a face type optical modulator for reducing an optical crosstalk between each element can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、固型光変調器に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to solid-state optical modulators.

〔従来の技術〕[Conventional technology]

従来、面型光変調素子としてはGaAsとGaAlAs
の薄膜を交互に積層した量子井戸層をp型およびn型の
GaAlAsからなるコンタクト層で挟んだpin構造
がアプライド・フィジックス・レターズ(入pplte
d )’bysics Letters)44巻、16
頁(1983)に報告されている0表面から入射した光
は量子井戸層を通って基板の裏側から出射する。この時
、電界の印加によって、実効的なバンドギャップが減少
するため、量子井戸の励起子の低エネルギー側の光に対
する吸収係数が大きくなることを利用してスイッチング
している。
Conventionally, GaAs and GaAlAs have been used as planar light modulators.
Applied Physics Letters has developed a pin structure in which a quantum well layer consisting of alternately laminated thin films is sandwiched between contact layers made of p-type and n-type GaAlAs.
d) 'bysics Letters) Volume 44, 16
(1983), light incident on the surface passes through the quantum well layer and exits from the back side of the substrate. At this time, since the effective band gap decreases due to the application of an electric field, switching is performed by utilizing the fact that the absorption coefficient of the excitons in the quantum well for light on the low energy side increases.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、以上に述べた従来の面型光変調素子を2
次元マトリックス状に集積し固型光変調器とした場合、
第2図(a)に示すように、出射光20は回折及び散乱
を受は固型光変調器12がら出射した後に広がり角を持
った光となり、隣接した固型光変調素子間の出射光が重
なりあってしまい各素子間のクロストークを悪化させて
しまう問題点を有していた。
However, the conventional planar light modulator described above is
When integrated into a dimensional matrix to form a solid-state optical modulator,
As shown in FIG. 2(a), the emitted light 20 undergoes diffraction and scattering, becomes light with a spread angle after being emitted from the solid-state optical modulator 12, and the emitted light 20 becomes light with a spread angle between adjacent solid-state optical modulators. There was a problem in that the elements overlapped with each other, worsening crosstalk between the elements.

本発明はこのような各素子間のクロストークをなくすこ
とを目的としたものである。
The present invention aims to eliminate such crosstalk between each element.

〔課題を解決するための手段〕[Means to solve the problem]

本発明では、互いにバンドギャップの異なる2種類の半
導体を交互に積層した多重量子井戸層を2つの反射鎖で
挟んで成る多層構造を半導体基板上に備え、前記半導体
基板裏面が凸レンズ状に形成された固型光変調素子が2
次元マトリックス状に同一の半導体基板−Eに集積され
ていることを特徴とする面型光変巽器の構造を採用して
いる。
In the present invention, a multilayer structure is provided on a semiconductor substrate in which a multi-quantum well layer in which two types of semiconductors having different band gaps are alternately laminated is sandwiched between two reflective chains, and the back surface of the semiconductor substrate is formed in the shape of a convex lens. 2 solid-state light modulators
A planar optical transformer structure is adopted, which is characterized by being integrated on the same semiconductor substrate -E in a dimensional matrix.

〔作用〕[Effect]

本発明は、2枚の平行度の高い鏡によって構成されたフ
ァブリ・ベロ共振器の間に多重量子井戸層を有した光学
的非線形材料を有するため、電極に電圧が印加されると
、無電界時において電子正孔の各々の波動関数の重なり
が小さいなめに多重量子井戸層における吸収が小さかっ
たものが電界が多重量子井戸層に印加されることで電子
・正孔の各々の波動関数の重なりが大きくなり入射光の
吸収が大きくなり、光の透過強度を変化させるスイッチ
ング動作を得ることができる。この場合光は反射鎖間で
多重反射を繰り返すので、光変調に与る多重量子井戸層
中での光路長が実効的に長くなり大きなコントラストが
得られる。
The present invention has an optically nonlinear material having a multiple quantum well layer between two highly parallel Fabry-Béro resonators, so when a voltage is applied to the electrodes, there is no electric field. At times, the overlap of the wave functions of electrons and holes is small, so absorption in the multiple quantum well layer is small, but when an electric field is applied to the multiple quantum well layer, the wave functions of electrons and holes overlap. increases, absorption of incident light increases, and a switching operation that changes the transmission intensity of light can be obtained. In this case, since the light undergoes multiple reflections between the reflection chains, the optical path length in the multi-quantum well layer, which contributes to light modulation, becomes effectively longer and a greater contrast can be obtained.

スイッチング動作によりファブリ・ペロ共振器部を出射
した光は半導体基板9を透過して第2図(b)に示すよ
うに半導体基板9に形成されたレンズ10により集光作
用を受は受光素子13へ集光するので各光変調素子間の
クロストークをなくすことができる。
The light emitted from the Fabry-Perot resonator section by the switching operation is transmitted through the semiconductor substrate 9 and is focused by the lens 10 formed on the semiconductor substrate 9, as shown in FIG. Since the light is focused on the light beam, crosstalk between each light modulation element can be eliminated.

なお、反射鎖は半導体層や誘電体層を積層、例えば、5
i02とSiNを交互に積層する。またはS i02と
a−Stを交互に積層する等、通常用いられる方法で構
成することができる。
Note that the reflective chain consists of a stack of semiconductor layers and dielectric layers, for example, 5 layers.
i02 and SiN are alternately stacked. Alternatively, it can be constructed by a commonly used method such as alternately stacking Si02 and a-St.

〔実施例〕〔Example〕

第1図は本発明の固型光変調器を構成する固型光変調素
子部の一実施例を示す図である。この固型光変調器は下
記の手順で製造される。まず、n型のInPからなる半
導体基板9上に有機金属気相成長法によって半導体多層
膜反射鎖8を形成する。この半導体多層膜反射鎖8は、
n型のInPと、rnPに格子整合が取れ、入射光に対
する吸収の小さいn型のInGaAsPとを入射光の1
/4波長の厚さで交互に50対積層して構成した。次い
で半導体多層膜反射鎖8の上に多重量子井戸層7を形成
する。この多重量子井戸層7は、アンドープのInP 
、及びInPに格子整合の取れたアンドープのInGa
Asを厚さ各々100人で交互に40対積層した。多重
量子井戸層7形成後、この上にp型のInPからなる半
導体層6を積層する。この後、InPからなる半導体基
板9を厚さ約100μmに研磨し、研磨面にフォトレジ
スト工程によって20μmφの円形のフォトレジスト膜
が2次元マトリックス状に配列したパターンを形成し、
化学エツチングによって半導体基板に円筒形の突起を作
り、フォトレジスト膜除去後に再度半導体基板を化学エ
ツチングすることで半導体基板に2次元マトリックス状
に配列したレンズ10を形成する。このレンズ10が固
型光変調素子の出射窓1となり、出射窓1に対向した位
置にある半導体層6の領域が入射窓2となり、固型光変
調素子が2次元マトリックス状に配列・形成されたこと
になる。入射窓に5i02/ a −Siから成る反射
鎖3を形成し、最後にp側及びn側の電極4,5を入射
窓2及び出射窓1の周囲に蒸着することで第1図に示し
た固型光変調素子が2次元マトリックス状に配置された
固型光変調器ができ上る。
FIG. 1 is a diagram showing an embodiment of a solid-state optical modulation element portion constituting a solid-state optical modulator of the present invention. This solid-state optical modulator is manufactured by the following procedure. First, a semiconductor multilayer reflective chain 8 is formed on a semiconductor substrate 9 made of n-type InP by metal organic vapor phase epitaxy. This semiconductor multilayer film reflective chain 8 is
N-type InP and n-type InGaAsP, which has lattice matching to rnP and has low absorption of incident light, are
50 pairs were alternately laminated with a thickness of /4 wavelength. Next, a multi-quantum well layer 7 is formed on the semiconductor multilayer reflective chain 8 . This multiple quantum well layer 7 is made of undoped InP.
, and undoped InGa lattice-matched to InP.
40 pairs of As were alternately laminated with a thickness of 100 layers each. After forming the multiple quantum well layer 7, a semiconductor layer 6 made of p-type InP is laminated thereon. After that, the semiconductor substrate 9 made of InP is polished to a thickness of about 100 μm, and a pattern in which circular photoresist films of 20 μm diameter are arranged in a two-dimensional matrix is formed on the polished surface by a photoresist process.
Cylindrical protrusions are formed on the semiconductor substrate by chemical etching, and after the photoresist film is removed, the semiconductor substrate is chemically etched again to form lenses 10 arranged in a two-dimensional matrix on the semiconductor substrate. This lens 10 becomes the exit window 1 of the solid-state light modulator, and the region of the semiconductor layer 6 located opposite to the exit window 1 becomes the entrance window 2, and the solid-state light modulators are arranged and formed in a two-dimensional matrix. That means that. A reflective chain 3 made of 5i02/a-Si is formed at the entrance window, and finally p-side and n-side electrodes 4 and 5 are deposited around the entrance window 2 and exit window 1, as shown in FIG. A solid-state optical modulator in which solid-state optical modulators are arranged in a two-dimensional matrix is completed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば2次元マトリックス状に集積した固型光
変調素子の出射窓にレンズが形成されているため、第2
図(b)に示す如く、各素子からの出射光20は受光素
子アレイ11の各受光素子13に各々集光されるので各
素子間の光学的なりロストークを低減した固型光変調器
が得られる。
According to the present invention, since the lens is formed in the exit window of the solid-state optical modulator integrated in a two-dimensional matrix, the second
As shown in Figure (b), since the emitted light 20 from each element is focused on each light receiving element 13 of the light receiving element array 11, a solid-state optical modulator with reduced optical loss talk between each element can be obtained. It will be done.

【図面の簡単な説明】 第1図は本発明の固型光変調器にかかる面発光変調素子
の一実施例の断面概略図、第2図(a)は従来の固型光
変調器を用いた場合の入射光の広がりを示した図、第2
図(b)は本発明による光の集光を示す図である。 1・・・出射窓、2・・・入射窓、3・・・反射鎖、4
.5・・・電極、6・・・半導体層、7・・・多重量子
井戸層、8・・・半導体反射jii層、90.・半導体
基板、10・・・レンズ、11・・・受光素子アレイ、
12・・・固型光変調器、13・・・受光素子。 代理人 弁理士  内 原  晋 躬 図 よjPr乙
[Brief Description of the Drawings] Fig. 1 is a schematic cross-sectional view of one embodiment of a surface emitting modulator according to the solid-state optical modulator of the present invention, and Fig. 2(a) shows a conventional solid-state optical modulator using Figure 2 shows the spread of incident light when
Figure (b) is a diagram showing light condensation according to the present invention. 1... Output window, 2... Entrance window, 3... Reflection chain, 4
.. 5... Electrode, 6... Semiconductor layer, 7... Multiple quantum well layer, 8... Semiconductor reflective jii layer, 90.・Semiconductor substrate, 10... Lens, 11... Light receiving element array,
12... Solid-state optical modulator, 13... Light receiving element. Agent Patent Attorney Uchihara ShinmanzuyojPr Otsu

Claims (1)

【特許請求の範囲】[Claims] 互いにバンドギャップの異なる2種類の半導体を交互に
積層した多重量子井戸層を2つの反射鎖で挟んで成る多
層構造を半導体基板上に備え、前記半導体基板裏面が凸
レンズ状に加工されている面型光変調素子が2次元マト
リックス状に同一の半導体基板上に集積されていること
を特徴とする面型光変調器。
A planar type comprising a multilayer structure on a semiconductor substrate in which a multi-quantum well layer in which two types of semiconductors with different band gaps are alternately laminated is sandwiched between two reflective chains, and the back surface of the semiconductor substrate is processed into a convex lens shape. A planar optical modulator characterized in that optical modulating elements are integrated on the same semiconductor substrate in a two-dimensional matrix.
JP9121889A 1989-04-10 1989-04-10 Face type optical modulator Pending JPH02269307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9121889A JPH02269307A (en) 1989-04-10 1989-04-10 Face type optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9121889A JPH02269307A (en) 1989-04-10 1989-04-10 Face type optical modulator

Publications (1)

Publication Number Publication Date
JPH02269307A true JPH02269307A (en) 1990-11-02

Family

ID=14020282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9121889A Pending JPH02269307A (en) 1989-04-10 1989-04-10 Face type optical modulator

Country Status (1)

Country Link
JP (1) JPH02269307A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07191287A (en) * 1993-12-27 1995-07-28 Nec Corp Optical switch
US5453860A (en) * 1992-07-24 1995-09-26 Matsushita Electric Industrial Co., Ltd. Spatial light modulator having a photoconductor with grooves and a quantum efficiency greater than unity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453860A (en) * 1992-07-24 1995-09-26 Matsushita Electric Industrial Co., Ltd. Spatial light modulator having a photoconductor with grooves and a quantum efficiency greater than unity
US5594567A (en) * 1992-07-24 1997-01-14 Matsushita Electric Industrial Co., Ltd. Spatial light modulator with a photoconductor having uneven conductivity in a lateral direction and a method for fabricating the same
JPH07191287A (en) * 1993-12-27 1995-07-28 Nec Corp Optical switch

Similar Documents

Publication Publication Date Title
EP0614256B1 (en) Tunable surface emitting semiconductor laser
JPH09172227A (en) Photoelectron quantum well device
EP2604574B1 (en) Transmissive image modulator using multi-fabry-perot resonant mode and multi-absorption mode
US20210013703A1 (en) Surface-emitting laser array, detection device, and laser device
JPS63186488A (en) Semiconductor integrated light emitting device
JPS6286881A (en) Light output device
US4067641A (en) Waveguide for integrated optical circuits
US5621564A (en) Semiconductor optical modulator
JP2007266541A (en) Multi-wavelength quantum -well type infrared-ray detector
JPH02269307A (en) Face type optical modulator
JP2005197650A (en) Light emitting element
JP2563991B2 (en) Optical filter
US20150138620A1 (en) Transmissive image modulator using multi-fabry-perot resonant mode and multi-absorption mode
JPH07162072A (en) Semiconductor laser having heterogeneous structure
JPS623221A (en) Optical modulator
JPH07231138A (en) Surface light-emitting semiconductor laser
KR100536780B1 (en) Photonic band gap device and optical apparatus employing the same
JPH0530254B2 (en)
JP7490719B2 (en) Photon source and method for making a photon source
EP4016762B1 (en) Laser comprising a distributed bragg reflector and method for manufacturing same
WO2023105591A1 (en) Optical circuit
JP2686219B2 (en) Photon band structure mirror
EP0965872A1 (en) An optically active device
JP2023552298A (en) Semiconductor laser and semiconductor laser manufacturing method
JPH01112226A (en) Optical logic element