JPH02268990A - Welding method - Google Patents

Welding method

Info

Publication number
JPH02268990A
JPH02268990A JP1091051A JP9105189A JPH02268990A JP H02268990 A JPH02268990 A JP H02268990A JP 1091051 A JP1091051 A JP 1091051A JP 9105189 A JP9105189 A JP 9105189A JP H02268990 A JPH02268990 A JP H02268990A
Authority
JP
Japan
Prior art keywords
welded
welding
gap
durability
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1091051A
Other languages
Japanese (ja)
Other versions
JPH07110429B2 (en
Inventor
Yoshio Jinbo
嘉雄 神保
Takashi Kumamoto
熊本 隆
Hideya Kamahori
釜堀 秀也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1091051A priority Critical patent/JPH07110429B2/en
Publication of JPH02268990A publication Critical patent/JPH02268990A/en
Publication of JPH07110429B2 publication Critical patent/JPH07110429B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)
  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

PURPOSE:To obtain a welded joint having an excellent joint strength and fatigue strength and to improve the durability of a weld zone by providing a gap of the spacing corresponding to the specific ratio of the thickness of one material to be welded in a welding section at the time of welding the one material to be welded and the other material to be welded. CONSTITUTION:The spacing (d) of the gap 4 provided in the welding section 3 of the one material 1 to be welded and the other material 2 to be welded which are disposed in parallel is specified to the range of 10 to 30% of the thickness of the one material 1 to be welded which is the irradiation side of a high-density energy heat source such as laser. The weld metal melted by the laser beam is eluted in the gap 4 in this way and the welding section of the gap 4 is sufficiently packed by the weld metal, by which the shearing strength of the joint is increased.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の目的】[Purpose of the invention]

(産業上の利用分野) 本発明は、例えば自動車用ロードホイールのリム部とデ
ィスク部とを接合するのに利用される溶接方法に係り、
さらに詳しくは継手強度、疲労強度の高い溶接継手が得
られ、溶接部の耐久性を向上することができる溶接方法
に関するものである。 (従来の技術) 高密度エネルギ熱源を用いた溶接方法のひとつであるレ
ーザ溶接法は、他の溶接法にくらべて。 ■大気中で非接触により溶接ができること、■熱影響が
少なく高品質の継手が得られること、■熱影響幅が小さ
く変形が少ないこと、■精密な溶接が可能であること、
などの特長を備えており、これらの特長を活してその適
用範囲が拡張されつつある。 例えば、自動車用ロードホイール(以下「ホイール」と
称する。)のリム部とディスク部との溶接は、昭和55
年4月20日に株式会社 山海室より発行された「自動
車工学全書19巻 自動車の製造法」第155頁に記載
されているように、従来よりスポット溶接が用いられて
いるが、車両の乗り心地向上、振動低減などのニズによ
り、近年ではレーザ溶接が検討されている。 このレーザ溶接を適用することにより、これまでのスポ
ット溶接において溶接スペースを確保するだめに必要で
あったディスク部の溶接フランジが不要となり、前記フ
ランジを不要とすることでホイールの軽量化が達成でき
る。このホイールは車両のばね下に位置するため、その
軽量化は乗り心地向上に極めて有効に作用する。また、
レーザ溶接は、前述のように溶接による変形量が小さく
、製品の寸法精度を向上させることができるため、車両
の振動低減にも大きく寄与するばかりでなく、スポット
溶接にくらべ溶接部の耐久性が向上することが確認され
ている。この耐久性向上は、圧縮残留応力が大きいこと
によるものと考えられている。 (発明が解決しようとする課B) しかしながら、最近の車両の高性能化の要求は極めて大
きいものがあり、前述のようなレーザ溶接を用いたホイ
ールにあっても、さらに優れた耐久性が求められている
のが現状であり、溶接部の耐久性を高めることがホイー
ル製造上の課題となっていた。 (発明の目的) 本発明は、上記の課題に着目してなされたもので、継手
強度、疲労強度に優れた溶接継手が得られ、溶接部の耐
久性を向上することができる溶接方法を提供することを
目的としている。 C発明の構成】 (課題を解決するための手段) 本発明者は、上記目的を達成するため、溶接継手の強度
に及ぼす溶接諸条件の影響について鋭意調査、検討した
結果、並べて配設した一方の被溶接材と他方の被溶接材
との間に若干の空隙を設けた上で溶接を行うことによっ
て、溶接による溶融金属が前記空隙内に溶は出し、当該
空隙を部分的に充填するため、継手強度が上昇するとい
う全く新しい知見を得るに到った。 本発明は、上記知見に基づくものであって、並べて配設
した一方の被溶接材と他方の被溶接材の前記一方の被溶
接材側からレーザビーム等の高密度エネルギ熱源を照射
して前記被溶接材を溶接するに際し、前記被溶接材の溶
接部位に、前記一方の被溶接材の板厚の10〜30%に
相当するlIilIllMidの空隙を設ける構成とし
たものであり、このような溶接方法の構成を前述した課
題を解決するための手段としたことを特徴としている。 (発明の作用) 以下に、上記知見を得るに到った実験結果と、それに基
づく本発明の構成および作用についてさらに詳しく説明
する。 第7図ないし第10図は、溶接継手の強度に及ぼす被溶
接材間の空隙の有無および隙間dの影響を調査した結果
の一例を示すものである。 この調査においては、先ず、板厚t1=2.9mm 、
@WI= 50mm 、長さり、=100mm(7)4
5キロ級熱延鋼板(JIS’  G3113SAPH4
5)からなる一方の被溶接材1と、板厚t2 w3.2
mm、Tl1lW2 =50mm、長さL2=toom
mの55キロ級高張力熱延鋼板からなる他方の被溶接材
2とを溶接部位3を中心にして上下に並べた状態とし、
前記一方の被溶接材、1と他方の被溶接材2の溶接部位
3にO〜1.2mmの範囲で空隙4の隙間dをそれぞれ
変化させた12組の溶接用供試体を準備した(第7図参
照)。 次いで、前記各溶接用供試体に対して、5kWのCO2
レーザ溶接機を用い、流量50文/minのアルゴンガ
スをアシストガスとして、出力5kW、溶接速度3m/
minの条件で一方の被溶接材1の側からレーザビーム
を照射し、溶接部位3において溶接することによって各
空隙4の隙間d毎に5個ずつの溶接継手を得た0次いで
前記各溶接継手の引張試験を行って引張り剪断強度を求
め、それぞれの平均値と前記空隙4の隙間dとの関係を
整理したところ、第8図に示す結果を得た。 第8図から判るように、前記重ね合わせ溶接継手の剪断
強度は、被溶接材1.2の溶接部位3に設けた空隙4の
隙間dが0.7mmまでは空隙4の隙間dの増大と共に
増加し、前記隙間dが0.25〜0.90mm、すなわ
ち、レーザビーム照射側である一方の被溶接材1の板厚
2.9mmの10〜30%に相当する範囲内のときに極
めて優れた剪断強度を示すことが明らかとなった。 これは、鋭い切欠きとなって破断時の亀裂の発生起点と
なっていた前記被溶接材1,2の溶接部位3に空隙4を
設けることによって、溶接時に溶融金属が溶は出し、前
記空隙4内を充填する結果、前記切欠き先端の鋭さが減
じ、応力集中が緩和されることによるものと考えられる
。 第9図(a)(b)(c)は、前記一方の被溶接材1お
よび他方の被溶接材2の間の空隙4の隙間dがそれぞれ
Omm、0.4mm、1.1mmの場合の重ね合わせ溶
接継手の溶接部の断面マクロ組織のスケッチを示し、第
1O図(a)(b)は隙間dがそれぞれOmm、0.4
mmの場合の溶接部の金属マクロ組織を示すもので、被
溶接材1.2が密着した状態の第9図(a)および第1
0図(a)においては、前記被溶接材1.2の合わせ目
5.5は、被溶接材1.2がレーザビームによって溶融
されて一体となった溶接金属6に接して鋭い切欠き部と
なっている。この状態で、前記被溶接材1.2が引張試
験によって第9図中左右方向に引張られると、その荷重
は、剪断応力として前記溶接金属6の前記切欠き部に集
中し、前記溶接金属6を容易に剪断するように作用する
。 これに対し、被溶接材1.2の間に適当量の隙間dを有
する空隙4がある場合には、第9図(b)および第10
図(b)に示すように、レーザビームによって溶融され
た溶接金属7の一部が前記空隙4に溶は出し、空隙4の
うちの溶接部分を充填する結果、前記切欠部先端の鋭さ
が緩和され、応力の集中が避けられると共に、前記溶接
金属7の応力状態が単純な剪断応力だけでなく、曲げや
引張応力が加わった状態で破断するため、前記第9図(
a)および第10図(a)の場合にくらべて、継手の剪
断強度が増加するものと考えられる。なお、このような
空隙4の効果は、空隙4の隙間dがレーザビーム照射側
である一方の被溶接材1の板厚(1+)の10%以上の
場合に得られるものであり、10%未満の場合には効果
が不十分である。 しかしながら、前記被溶接材1.2の溶接部位3に設け
た空隙4の隙間dがレーザビーム照射側である一方の被
溶接材1の板厚の30%を超えた場合には、第9図(C
)に示すように、レーザビームによって溶融された溶接
金属8が空隙4内に多量に溶は出すため、レーザビーム
照射側である一方の被溶接材1の表面が凹状に陥没して
前記一方の被溶接材1の板厚が実質的に減少することに
より、継手強度が低下する。 したがって、本発明に係る溶接方法における一方の被溶
接材1と他方の被溶接材2の溶接部位3に設ける空隙4
の隙間dは、レーザなどの高密度エネルギ熱源の照射側
である一方の被溶接材1の板厚の10〜30%の範囲に
限定される。 (実施例) 第1図は、サイズ14インチのホイールの断面図であり
1図に示すホイール10は、板厚2.9mmの45キロ
級熱延鋼板(JIS  G3113SAPH45)から
なる一方の被溶接材〔リム〕1と、板厚3.2mmの5
5キロ級高張力熱延鋼板からなる他方の被溶接材(ディ
スク)2とから形成され、前記リム1の内周に前記ディ
スク2を嵌合し、リム1の外周側より溶接部位3に高密
度エネルギ熱源としてレーザビームを照射することによ
り、リム1とディスク2とを接合してなるものである。 この実施例においては、前記リム1の側には。 第3図に拡大して示すように、当該リム1のロール成形
時に形成した0、5mm深さの凹部が前記溶接部位3に
設けてあり、この結果リム1とディスク2との間に隙間
d=0.5mmの空隙4が形成されるようになっている
。 このようなホイール10に対して5kWのC02レーザ
溶接機を用い、流量5ofL/minのアルゴンガスを
アシストガスとして出力5kW、溶接速度3m/min
の条件で、前記溶接部位3の円周上に等間隔で4ケ所、
それぞれ溶根長100mmにわたってリム1の側からレ
ーザビームを照射してリム1とディスク2とのレーザ溶
接を行った。 次に、溶接を終えたホイール10にタイヤ14を装着し
、第5図に示す非常にきびしい試験である半径方向負荷
耐久試験(ドラム耐久試験)によって溶接部の耐久性を
調査した。なお、前記ドラム耐久試験は、上下負荷W=
2000kgの条件で、ドラム15を図中矢印方向に回
転させ、リム1とディスク2の溶接部に亀裂が発生する
までの走行相当距離によって前記溶接部の耐久性を評価
するものである。その結果は、第6図に示すとおりであ
って、3回の繰返し試験の平均値として、耐久距離的6
000kmの良好な結果が得られた。 (比較例) 前記実施例と同一材料、同一サイズのホイールを前記実
施例と全く同一の溶接条件によって重ね合わせレーザ溶
接を行った。ただし、溶接個所には四部の形成はなく、
第2図および第4図に示すように、リム11とディスク
12とを密着させ。 溶接部位13において溶接を行った。 そして、前記実施例と同一条件でドラム耐久試験を実施
し、溶接部の耐久性を比較評価した。 その結果は、同じく第6図に示すとおりであって、平均
耐久距離は約2000 kmであり、本発明に係る溶接
方法によるホイールの耐久性が極めて優れていることが
確認された。 なお、上記実施例では、本発明に係る溶接方法を車両用
ホイールのリムとディスクの溶接に適用した場合につい
て説明したが、本発明に係る溶接方法は、前記ホイール
の溶接のみに限定される訳ではなく、上記のような一方
の被溶接材と他方の被溶接材とを並べて配設した溶接継
手を有する多くの部材に適用することにより、当該溶接
部の耐久性が向上するという効果を発揮できることは言
うまでもない。
(Industrial Application Field) The present invention relates to a welding method used to join, for example, a rim portion and a disk portion of an automobile road wheel.
More specifically, the present invention relates to a welding method capable of obtaining a welded joint with high joint strength and fatigue strength, and improving the durability of the welded part. (Prior Technology) Laser welding, which is one of the welding methods that uses a high-density energy heat source, is more effective than other welding methods. ■Being able to weld without contact in the atmosphere, ■Being able to obtain high-quality joints with little heat influence, ■Having a small heat influence width and causing little deformation, ■Being able to perform precise welding.
The scope of application is being expanded by taking advantage of these features. For example, welding of the rim part and disc part of an automobile road wheel (hereinafter referred to as "wheel") was started in 1975.
As described on page 155 of "Automotive Engineering Complete Book Volume 19: Automobile Manufacturing Methods" published by Sankai Muro Co., Ltd. on April 20, 2017, spot welding has been used for a long time, but it is Laser welding has been considered in recent years due to needs such as improving comfort and reducing vibration. By applying this laser welding, the welding flange on the disk part, which was necessary to secure welding space in conventional spot welding, is no longer required, and by eliminating the flange, the weight of the wheel can be reduced. . Since this wheel is located under the vehicle's springs, its weight reduction has an extremely effective effect on improving ride comfort. Also,
As mentioned above, laser welding causes less deformation due to welding and can improve the dimensional accuracy of the product, which not only greatly contributes to reducing vehicle vibration, but also increases the durability of the welded part compared to spot welding. It has been confirmed that this will improve. This improvement in durability is thought to be due to the large compressive residual stress. (Problem B that the invention seeks to solve) However, there is an extremely high demand for higher performance in recent vehicles, and even wheels using laser welding as described above are required to have even better durability. The current state of the wheel manufacturing process is to increase the durability of welded parts. (Objective of the Invention) The present invention was made in view of the above-mentioned problems, and provides a welding method capable of obtaining a welded joint with excellent joint strength and fatigue strength, and improving the durability of the welded part. It is intended to. C Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the inventor of the present invention has conducted extensive research and study on the influence of welding conditions on the strength of welded joints, and as a result, we have developed a method for arranging welded joints side by side. By performing welding after creating a slight gap between one material to be welded and the other material to be welded, the molten metal from welding will melt into the gap and partially fill the gap. We have obtained a completely new finding that the strength of the joint increases. The present invention is based on the above-mentioned knowledge, and the present invention is based on the above-mentioned findings, and includes irradiating one workpiece and the other workpiece arranged side by side with a high-density energy heat source such as a laser beam from the side of the workpiece to be welded. When welding the materials to be welded, a gap of lIilIllMid corresponding to 10 to 30% of the plate thickness of the one material to be welded is provided at the welding site of the materials to be welded, and such welding The method is characterized in that it is configured as a means for solving the above-mentioned problems. (Actions of the Invention) Below, the experimental results that led to the above knowledge and the structure and action of the present invention based on the results will be explained in more detail. FIGS. 7 to 10 show an example of the results of an investigation into the influence of the presence or absence of gaps between the materials to be welded and the gap d on the strength of welded joints. In this investigation, first, the plate thickness t1 = 2.9 mm,
@WI = 50mm, length, = 100mm (7) 4
5 kg class hot rolled steel plate (JIS' G3113 SAPH4
5) One of the materials to be welded 1 and the plate thickness t2 w3.2
mm, Tl1lW2 = 50mm, length L2 = toom
The other material to be welded 2 made of a 55 kg class high tensile strength hot-rolled steel plate of 55 kg is arranged vertically with the welding part 3 at the center,
Twelve sets of welding specimens were prepared in which the gap d of the void 4 was varied in the range of 0 to 1.2 mm at the welding site 3 of one of the welded materials 1 and the other welded material 2 (No. (See Figure 7). Next, 5kW of CO2 was applied to each of the welding specimens.
Using a laser welder, with argon gas at a flow rate of 50 m/min as assist gas, output of 5 kW, welding speed of 3 m/min.
A laser beam is irradiated from the side of one of the welded materials 1 under the condition of min, and five welded joints are obtained for each gap d of each gap 4 by welding at the welding site 3. A tensile test was conducted to determine the tensile shear strength, and the relationship between each average value and the gap d of the void 4 was summarized, and the results shown in FIG. 8 were obtained. As can be seen from Fig. 8, the shear strength of the lap welded joint increases as the gap d of the gap 4 provided at the welding part 3 of the welded material 1.2 increases until the gap d of the gap 4 is 0.7 mm. It is extremely excellent when the gap d is within a range of 0.25 to 0.90 mm, that is, equivalent to 10 to 30% of the plate thickness of 2.9 mm of one of the welded materials 1 on the laser beam irradiation side. It was revealed that the shear strength was higher than that of the steel. By providing a gap 4 in the welding area 3 of the welded materials 1 and 2, which had become a sharp notch and was the origin of cracks at breakage, the molten metal can melt out during welding, and the gap can be It is thought that this is because filling the inside of the notch reduces the sharpness of the tip of the notch and relieves stress concentration. FIGS. 9(a), (b), and (c) show cases where the gap d of the air gap 4 between the one welded material 1 and the other welded material 2 is Omm, 0.4mm, and 1.1mm, respectively. The sketches of the cross-sectional macrostructure of the welded part of the lap welded joint are shown in Figure 1O (a) and (b), where the gap d is Omm and 0.4, respectively.
Figure 9 (a) and Figure 1 show the metal macrostructure of the welded part in the case of 1.2 mm.
In Figure 0 (a), the seam 5.5 of the welded material 1.2 is a sharp notch where the welded material 1.2 is in contact with the weld metal 6 that has been melted and integrated by the laser beam. It becomes. In this state, when the material to be welded 1.2 is pulled in the left and right direction in FIG. acts to shear easily. On the other hand, if there is a gap 4 having an appropriate amount of gap d between the materials to be welded 1.2, then FIGS. 9(b) and 10
As shown in Figure (b), a part of the weld metal 7 melted by the laser beam melts into the gap 4 and fills the welded part of the gap 4, which reduces the sharpness of the tip of the notch. This avoids stress concentration, and the stress state of the weld metal 7 breaks not only under simple shear stress but also when bending or tensile stress is applied.
It is considered that the shear strength of the joint is increased compared to the cases in a) and FIG. 10(a). Note that such an effect of the void 4 is obtained when the gap d of the void 4 is 10% or more of the plate thickness (1+) of the workpiece 1 on the laser beam irradiation side, and is 10%. If it is less than that, the effect is insufficient. However, if the gap d of the void 4 provided in the welding area 3 of the welded material 1.2 exceeds 30% of the plate thickness of the one welded material 1 on the laser beam irradiation side, as shown in FIG. (C
), a large amount of weld metal 8 melted by the laser beam flows into the gap 4, so that the surface of one workpiece 1 on the laser beam irradiation side sinks into a concave shape, causing As the plate thickness of the material to be welded 1 is substantially reduced, the joint strength is reduced. Therefore, in the welding method according to the present invention, the gap 4 provided in the welding site 3 of one welded material 1 and the other welded material 2
The gap d is limited to a range of 10 to 30% of the plate thickness of one of the welded materials 1, which is the irradiation side of a high-density energy heat source such as a laser. (Example) Fig. 1 is a cross-sectional view of a 14-inch wheel. The wheel 10 shown in Fig. 1 has one welded material made of a 45 kg class hot-rolled steel plate (JIS G3113 SAPH45) with a plate thickness of 2.9 mm. [Rim] 1 and 5 with plate thickness 3.2mm
The disc 2 is fitted onto the inner periphery of the rim 1, and the welding area 3 is high from the outer periphery of the rim 1. The rim 1 and the disk 2 are joined together by irradiating a laser beam as a density energy heat source. In this embodiment, on the side of the rim 1. As shown in an enlarged view in FIG. 3, a recess with a depth of 0.5 mm formed during roll forming of the rim 1 is provided in the welding area 3, resulting in a gap d between the rim 1 and the disk 2. A gap 4 of =0.5 mm is formed. For such a wheel 10, a 5 kW C02 laser welding machine is used, an output of 5 kW is used, and a welding speed is 3 m/min using argon gas at a flow rate of 5 of L/min as an assist gas.
Under the conditions, 4 locations are equally spaced on the circumference of the welding area 3,
Laser welding between the rim 1 and the disk 2 was performed by irradiating a laser beam from the rim 1 side over a weld root length of 100 mm. Next, a tire 14 was attached to the welded wheel 10, and the durability of the welded portion was investigated by a very severe radial load durability test (drum durability test) shown in FIG. In addition, in the drum durability test, the vertical load W=
The drum 15 is rotated in the direction of the arrow in the figure under the condition of 2000 kg, and the durability of the welded part is evaluated by the travel equivalent distance until a crack occurs in the welded part between the rim 1 and the disk 2. The results are shown in Figure 6, and the average value of the three repeated tests was 6.
000km good results were obtained. (Comparative Example) Wheels made of the same material and of the same size as those in the above example were laminated and laser welded under exactly the same welding conditions as in the above example. However, there is no formation of four parts at the weld location,
As shown in FIGS. 2 and 4, the rim 11 and the disc 12 are brought into close contact with each other. Welding was performed at welding site 13. Then, a drum durability test was conducted under the same conditions as in the above example, and the durability of the welded portion was comparatively evaluated. The results are also shown in FIG. 6, and the average durability distance was approximately 2000 km, confirming that the durability of the wheel produced by the welding method according to the present invention is extremely excellent. In the above embodiment, the welding method according to the present invention is applied to welding the rim and disc of a vehicle wheel, but the welding method according to the present invention is limited only to welding the wheel. Instead, by applying it to many parts that have welded joints where one welded material and the other welded material are arranged side by side as described above, it has the effect of improving the durability of the welded part. It goes without saying that it can be done.

【発明の効果】【Effect of the invention】

以上説明してきたように、本発明に係る溶接方法は、並
べて配設した一方の被溶接材と他方の被溶接材の前記一
方の被溶接材側から高密度エネルギ熱源を照射して前記
被溶接材を溶接するに際し、前記被溶接材の溶接部位に
、前記一方の被溶接材の板厚の10〜30%に相当する
隙間dの空隙を設けた構成としたものであるから、継手
強度、疲労強度に優れた溶接継手が得られ、溶接部の耐
久性を向上することができるという優れた効果を発揮す
るものである。
As explained above, in the welding method according to the present invention, a high-density energy heat source is irradiated from the side of the one welded material and the other welded material arranged side by side. When welding the materials, a gap d corresponding to 10 to 30% of the thickness of the one material to be welded is provided at the welding part of the material to be welded, so the joint strength This provides excellent effects in that a welded joint with excellent fatigue strength can be obtained and the durability of the welded part can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る溶接方法の一実施例に用いたホイ
ールの形状を示す断面図、第2図は比較例に用いたホイ
ールの形状を示す断面図、第3図は第1図の溶接部位の
拡大図、第4図は第2図の溶接部位の拡大図、第5図は
ドラム耐久試験方法を示す概略説明図、第6図は本発明
の実施例および比較例におけるホイールの耐久性を比較
するグラフ、第7図は溶接継手の剪断強度と被溶接材間
の隙間dとの関係の調査に用いた引張試験片の形状を示
す説明図、第8図は溶接継手の剪断強度に及ぼす被溶接
材間の隙間dの影響を示すグラフ。 第9図(a)(b)(c)は被溶接材間の隙間dがそれ
ぞれOmm、0.4mm、1.1mmの場合の溶接部の
断面マクロ形状を示すスケッチ、第10図(a)(b)
は前記隙間dがそれぞれOmm、0.4mmの場合の溶
接部の金属マクロ組織を示す組織写真(5倍)である。 1・・・一方の被溶接材(リム)、2・・・他方の被溶
接材(ディスク)、3・・・溶接部位、4・・・空隙、
d・・・空隙の隙間。
FIG. 1 is a cross-sectional view showing the shape of a wheel used in an example of the welding method according to the present invention, FIG. 2 is a cross-sectional view showing the shape of a wheel used in a comparative example, and FIG. Fig. 4 is an enlarged view of the welding part in Fig. 2, Fig. 5 is a schematic explanatory diagram showing the drum durability test method, Fig. 6 is the durability of the wheel in the example of the present invention and the comparative example. Figure 7 is an explanatory diagram showing the shape of the tensile test piece used to investigate the relationship between the shear strength of welded joints and the gap d between welded materials. Figure 8 is the shear strength of welded joints. 2 is a graph showing the influence of the gap d between welded materials on Figures 9(a), (b), and (c) are sketches showing the cross-sectional macro shapes of welded parts when the gap d between the welded materials is Omm, 0.4mm, and 1.1mm, respectively, and Figure 10(a) (b)
are microstructure photographs (5x magnification) showing the metal macrostructures of the welded parts when the gap d is 0 mm and 0.4 mm, respectively. 1... One welded material (rim), 2... Other welded material (disc), 3... Welding site, 4... Gap,
d...Gap between voids.

Claims (1)

【特許請求の範囲】[Claims] (1)並べて配設した一方の被溶接材と他方の被溶接材
の前記一方の被溶接材側から高密度エネルギ熱源を照射
して前記被溶接材を溶接するに際し、前記被溶接材の溶
接部位に、前記一方の被溶接材の板厚の10〜30%に
相当する隙間dの空隙を設けることを特徴とする溶接方
法。
(1) When welding the welded materials by irradiating a high-density energy heat source from the side of the one welded material of one welded material and the other welded material arranged side by side, welding of the welded material A welding method characterized in that a gap d corresponding to 10 to 30% of the plate thickness of the one material to be welded is provided at the part.
JP1091051A 1989-04-10 1989-04-10 Welding method for steel automobile road wheels Expired - Lifetime JPH07110429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1091051A JPH07110429B2 (en) 1989-04-10 1989-04-10 Welding method for steel automobile road wheels

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1091051A JPH07110429B2 (en) 1989-04-10 1989-04-10 Welding method for steel automobile road wheels

Publications (2)

Publication Number Publication Date
JPH02268990A true JPH02268990A (en) 1990-11-02
JPH07110429B2 JPH07110429B2 (en) 1995-11-29

Family

ID=14015707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1091051A Expired - Lifetime JPH07110429B2 (en) 1989-04-10 1989-04-10 Welding method for steel automobile road wheels

Country Status (1)

Country Link
JP (1) JPH07110429B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523879A (en) * 1991-07-16 1993-02-02 Nec Kansai Ltd Method for joining two members
US7617605B2 (en) 2005-06-16 2009-11-17 Continental Automotive Systems Us, Inc. Component geometry and method for blowout resistant welds
JP2012183591A (en) * 2006-08-30 2012-09-27 Robert Bosch Gmbh Method for welding member having closed hollow cross section
JP2013160083A (en) * 2012-02-02 2013-08-19 Hitachi Automotive Systems Ltd Electromagnetic fuel injection valve

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174793A (en) * 1984-09-20 1986-04-17 プリマ インダストリ エス,ピ−,エ− Laser welding method of metal sheet to be protected coated with low evaporation temperature material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6174793A (en) * 1984-09-20 1986-04-17 プリマ インダストリ エス,ピ−,エ− Laser welding method of metal sheet to be protected coated with low evaporation temperature material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523879A (en) * 1991-07-16 1993-02-02 Nec Kansai Ltd Method for joining two members
US7617605B2 (en) 2005-06-16 2009-11-17 Continental Automotive Systems Us, Inc. Component geometry and method for blowout resistant welds
DE112006001508B4 (en) * 2005-06-16 2013-04-11 Continental Automotive Systems Us, Inc. (N. D. Gesetzen Des Staates Delaware) Method for producing a fuel injection valve and fuel injection valve
JP2012183591A (en) * 2006-08-30 2012-09-27 Robert Bosch Gmbh Method for welding member having closed hollow cross section
US8607457B2 (en) 2006-08-30 2013-12-17 Robert Bosch Gmbh Method for welding components with a closed hollow cross-section in such a way that a peripheral gap is produced between the two overlapping components
JP2013160083A (en) * 2012-02-02 2013-08-19 Hitachi Automotive Systems Ltd Electromagnetic fuel injection valve

Also Published As

Publication number Publication date
JPH07110429B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
KR101860128B1 (en) Method for laser welding one or more workpieces made of hardenable steel in a butt joint
JP6000947B2 (en) Hybrid arc / laser welding process for aluminized steel parts using gammagenic elements and a gas containing less than 10% nitrogen or oxygen
Sharma et al. Yb: YAG laser welding of TRIP780 steel with dual phase and mild steels for use in tailor welded blanks
JP6443319B2 (en) Lap laser spot welded joint and method of manufacturing the welded joint
CN108025401A (en) Electric arc fillet-welded joint and its manufacture method
JP2000197969A (en) Blank for integrally forming and forming method thereof
Cao et al. Microstructures and mechanical properties of laser offset welded 5052 aluminum to press-hardened steel
JP4299705B2 (en) Helicopter joint laser welding method for Sn or Pb plated steel sheet
JP4841970B2 (en) Lap laser welding method
JP6635235B1 (en) Lap laser welded joint, manufacturing method of lap laser welded joint, and skeletal parts for automobile
JP4854327B2 (en) Lap laser welding method
JP5000578B2 (en) Laser welding method for thin steel sheets
JPH02268990A (en) Welding method
JP2006021216A (en) Method for manufacturing tailored blank press formed parts
JP2010279991A (en) Method of lap-welding steel sheet by laser beam
JP4987453B2 (en) Lap laser welding joint of steel plates and lap laser welding method
JP6859105B2 (en) Laminated laser spot welded joint and manufacturing method of the welded joint
JP2004148333A (en) Method for enhancing fatigue strength of lap fillet joint
JP2650558B2 (en) Manufacturing method of high workability welded steel pipe
JP2000167673A (en) Tailored blank, and its manufacture
JP7368716B2 (en) Manufacturing method of resistance spot welding joints
JP2001259882A (en) Method of manufacturing for rim of large or medium sized steel wheel
JP7234639B2 (en) Flanged plate-wound laser-welded steel pipe and method for producing plate-wound laser-welded steel pipe with flange
JP6852797B2 (en) Laminated laser welded joints, manufacturing methods of lap laser welded joints and skeleton parts for automobiles
JPH1068021A (en) Production of joined structural member excellent in collision characteristic