JPH02267345A - Intake air flow measuring device for internal combustion engine with supercharging device - Google Patents

Intake air flow measuring device for internal combustion engine with supercharging device

Info

Publication number
JPH02267345A
JPH02267345A JP8771089A JP8771089A JPH02267345A JP H02267345 A JPH02267345 A JP H02267345A JP 8771089 A JP8771089 A JP 8771089A JP 8771089 A JP8771089 A JP 8771089A JP H02267345 A JPH02267345 A JP H02267345A
Authority
JP
Japan
Prior art keywords
intake air
time
intake
air amount
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8771089A
Other languages
Japanese (ja)
Inventor
Hiroshi Inagaki
浩 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP8771089A priority Critical patent/JPH02267345A/en
Publication of JPH02267345A publication Critical patent/JPH02267345A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the measuring accuracy of the intake air flow at the time of intake pulsation by detecting the event time of intake air flow change from a deceleration time intake pulsation cycle and enumerating the net intake air flow from the difference between the integrated value of the intake air flow until the flow direction inversion event time and that after the inversion event time. CONSTITUTION:The title device is provided with a transition event time detecting means 42 for detecting the first event time when the intake air flow detected by a hot-wire type air flow sensor 24 changes from its decreasing change to increasing change after the start of deceleration, at the time of deceleration judged from the output of a throttle switch 34 and an engine sensor 32. There are also provided with a detecting means 44 for detecting the event time when the intake air flow is inverted from the back flow state to the normal flow state and a discriminating means 46 for discriminating the event time when the intake air flow is inverted from the normal flow state to the back flow state on the basis of the intake pulsation cycle at the time of deceleration, with a transition event time as a starting point. The net intake air flow is enumerated by an enumerating means 50 from the difference between the integrated value of the intake air flow until the flow direction inversion event time by every cycle of the deceleration time intake pulsation and that after the inversion event time.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、過給装置付内燃機関の吸入空気量測定装置に
係り、特に過給装置より上流側の吸気通路に設けられ吸
気の流れ方向を識別不能な空気量検出手段よりの検出値
より吸入空気量を7IIll定する型式の吸入空気量測
定装置に係る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an intake air amount measuring device for an internal combustion engine equipped with a supercharging device, and in particular is provided in an intake passage upstream of a supercharging device to The present invention relates to a type of intake air amount measuring device that determines the amount of intake air from a detected value from an air amount detection means that cannot identify the air amount.

[従来の技術] 過給装置を有する内燃機関に於ては、過給状態時より急
減速が行われると、過給装置の応答遅れによりスロット
ル弁が閉じられた後も暫くの間過給が行われ、このため
過給装置より下流側の吸気通路の圧力が上昇し、これに
より吸気が過給装置より上流側へ逆流するようになり、
そしてこの逆流吸気は再び過給装置により吸引され、こ
れが繰返されることにより吸気脈動現象が2.3秒間に
亘って発生するようになる。
[Prior Art] In an internal combustion engine equipped with a supercharging device, if a sudden deceleration is performed from a supercharging state, supercharging will not be performed for a while even after the throttle valve is closed due to the response delay of the supercharging device. As a result, the pressure in the intake passage downstream of the supercharging device increases, which causes intake air to flow back upstream of the supercharging device,
Then, this backflow intake air is sucked in by the supercharging device again, and as this is repeated, an intake pulsation phenomenon occurs for 2.3 seconds.

空気量検出装置が熱線式吸入空気量センサの如く、吸気
の流れ方向を識別することができない型式のものである
と、上述の如き吸気脈動期間中は吸入空気量を正しく計
測することができなくなる。
If the air amount detection device is of a type that cannot identify the flow direction of intake air, such as a hot wire intake air amount sensor, it will not be possible to accurately measure the amount of intake air during the intake pulsation period as described above. .

上述の如き不具合に鑑み、空気量検出手段により検出さ
れる吸入空気量の変化から吸気の流れ方向が反転したこ
とを見出し、正流時の流量から逆流時の流量を減算する
ことにより正味吸入空気量を算出することが既に提案さ
れており、これは例えば特開昭59〜148821号公
報に示されている。
In view of the above-mentioned problems, we found that the flow direction of the intake air had reversed from the change in the amount of intake air detected by the air amount detection means, and calculated the net intake air by subtracting the flow rate during the reverse flow from the flow rate during the forward flow. It has already been proposed to calculate the amount, and this is shown, for example, in Japanese Patent Laid-Open Publication No. 148821/1983.

[発明が解決しようとする課題] 正味吸入空気量の測定のためには、吸気の流れ方向が反
転する時点として吸気の逆流開始時と逆流終了時、即ち
正流開始時とを各々検出する必要があり、従来の測定装
置に於ては、その各々を吸気脈動の各周期毎に空気量検
出手段により検出される吸入空気量の変化から見出して
いる。吸気脈動の振幅が比較的大きければ、吸気流れ方
向の反転時点は吸入空気量の変化より全て比較的正確に
見出されるが、しかし過給装置の応答遅れに起因する減
速時の吸気脈動は減速後の時間の経過と共に吸気脈動が
減衰するため、この場合には上述の如き測定装置では吸
気流れ方向の反転時点の全てが必ずしも正確に検出され
ず、このため正味注入空気量が正しく算出されないこと
がある。
[Problems to be Solved by the Invention] In order to measure the net intake air amount, it is necessary to detect the start of reverse flow of intake air and the end of reverse flow, that is, the start of normal flow, as the points at which the flow direction of intake air is reversed. In conventional measuring devices, each of these is detected from the change in the intake air amount detected by the air amount detection means for each cycle of the intake pulsation. If the amplitude of the intake pulsation is relatively large, the point of reversal of the intake flow direction can be found relatively accurately from the change in intake air amount. Since the intake pulsation attenuates over time, in this case, the measuring device described above will not necessarily accurately detect all the points at which the intake flow direction reverses, and therefore the net injected air amount may not be calculated correctly. be.

また上述の如き従来の正味吸入空気量測定装置に於ては
、吸入空気の流れが反転する全ての時点を吸入空気量の
変化より検出しなければならないため、この検出を行う
コンピュータのプログラムのワード数が増大すると云う
不具合がある。
In addition, in the conventional net intake air amount measuring device as described above, all points at which the intake air flow reverses must be detected from changes in the intake air amount. There is a problem that the number increases.

本発明は、過給装置の応答遅れに起因する減速時の吸気
脈動時の吸入空気量を正しく計測することができる吸入
空気量測定装置を提供することを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide an intake air amount measuring device that can accurately measure the amount of intake air during intake pulsation during deceleration due to response delay of a supercharging device.

[課題を解決するための手段] 上述の如き目的は、本発明によれば、過給装置より上流
側の吸気通路に設けられた空気量検出手段よりの検出値
より吸入空気量を測定する吸入空気量測定装置に於て、
内燃機関の減速開始後に於て前記空気量検出手段により
検出された吸入空気量が最初に減少変化より増大変化へ
変遷する時点を検出する変遷時点検出手段と、前記空気
量検出手段により検出される吸入空気量の変化から吸入
空気の流れが逆流状態より正流状態へ反転した時点を検
出する流れ方向反転時点検出手段と、前記変遷時点検出
手段により検出された変遷時点を起算時点として吸気系
諸元に応じて予め定められる減速時吸気脈動の周期をも
とに吸入空気の流れが正流状態より逆流状態へ反転した
時点を判別する流れ方向反転時点判別手段と、前記変遷
時点検出手段と前記流れ方向反転時点検出手段と前記流
れ方向反転時点判別手段の各々により見出される時点を
もとに減速時吸気脈動の一周期毎に流れ方向反転時点ま
での吸入空気量の積算値と流れ方向反転時点後の吸入空
気量の積算値とを求める積算手段と、前記減速時吸気脈
動の一周期終了時毎に前記積算手段により積算された流
れ方向反転時点までの吸入空気量の積算値と流れ方向反
転時点後の吸入空気量の積算値との差より正味吸入空気
量を算出する正味吸入空気量算出手段とを有する過給装
置付内燃機関の吸入空気量測定装置によって達成される
[Means for Solving the Problems] According to the present invention, the above-mentioned object is to provide an intake system that measures the amount of intake air based on the detected value from the air amount detection means provided in the intake passage upstream of the supercharging device. In the air amount measuring device,
transition point detection means for detecting the point in time when the intake air amount detected by the air amount detection means first changes from a decreasing change to an increasing change after the start of deceleration of the internal combustion engine; flow direction reversal point detection means for detecting the point in time when the flow of intake air is reversed from a reverse flow state to a forward flow state based on a change in the intake air amount; flow direction reversal point determining means for determining the point in time when the flow of intake air is reversed from a forward flow state to a reverse flow state based on a period of intake pulsation during deceleration that is predetermined depending on the source; Based on the time points found by each of the flow direction reversal point detection means and the flow direction reversal point determination means, the integrated value of the intake air amount up to the flow direction reversal point and the flow direction reversal point are determined for each cycle of intake pulsation during deceleration. an integrating means for calculating the integrated value of the subsequent intake air amount; and an integrated value of the intake air amount up to the time of flow direction reversal, which is integrated by the integrating means at the end of each cycle of the intake pulsation during deceleration, and the flow direction reversal. This is achieved by an intake air amount measuring device for an internal combustion engine with a supercharger, which has a net intake air amount calculation means for calculating the net intake air amount from the difference between the intake air amount and the integrated value after the point in time.

[発明の作用及び効果コ 本発明による吸入空気ffiδ−1定装置に於ては、過
給装置の応答遅れに起因する減速時の吸気脈動の周期は
機関回転数に依存せずに吸気通路の空気入口端からスロ
ットル弁までの吸気通路空間の諸元(長さ、容積、断面
積)により一義的に決まることに着目し、吸気系諸元に
応じて予め定められる減速時吸気脈動の周期より吸入空
気の流れが正流状態より逆流状態へ変化する時点を見出
すようになっており、このため本発明に於ては、正味吸
入空気量の算出のために吸気の流れ方向が反転する時点
を吸入空気量の変化より検出する必要があるのは吸気の
流れが逆流状態より正流状態へ反転する時点のみでよく
なる。このことから正味吸入空気量の計測のために必要
とされる吸入空気量の変化よりの検出項目は最初に吸入
空気が逆流し始めた時点と吸入空気の流れが正流状態よ
り逆流状態へ反転する時点のみになる。これにより吸気
脈動が時間の経過と共に減衰してその振幅が小さくなっ
ても正味吸入空気量が正しく計測される度合が従来のも
のに比して向上するようになり、その計測値の信頼性が
向上するようになる。
[Operations and Effects of the Invention] In the intake air ffi δ-1 constant device according to the present invention, the period of intake pulsation during deceleration caused by the response delay of the supercharging device is independent of the engine speed and Focusing on the fact that it is uniquely determined by the specifications (length, volume, cross-sectional area) of the intake passage space from the air inlet end to the throttle valve, the period of intake pulsation during deceleration is determined in advance according to the intake system specifications. The point at which the flow of intake air changes from a forward flow state to a reverse flow state is determined. Therefore, in the present invention, in order to calculate the net intake air amount, the point at which the flow direction of intake air is reversed is determined. It is only necessary to detect a change in the amount of intake air when the flow of intake air reverses from a reverse flow state to a forward flow state. Therefore, the detection items from the change in intake air amount required to measure the net intake air amount are the point when the intake air first begins to flow backwards, and the point at which the flow of intake air reverses from a forward flow state to a reverse flow state. only at the point in time. As a result, even if the intake pulsation attenuates over time and its amplitude becomes smaller, the degree to which the net intake air amount is accurately measured is improved compared to the conventional method, and the reliability of the measured value is improved. You will start to improve.

[実施例] 以下に添付の図を参照して本発明を実施例について詳細
に説明する。
[Example] The present invention will be described in detail below with reference to the accompanying drawings.

第1図は本発明による吸入空気量測定装置を用いられる
過給装置付内燃機関の一つの実施例を示している。第1
図に於て、10は内燃機関本体を、12は吸気ポートを
、14は排気ボートを、16は燃料インジェクタを、1
8はサージタンクを、20はスロットル弁を、22は過
給装置、特にそのコンプレッサ部分を、24は過給装置
22より上流側の吸気通路26に設けられた熱線式空気
量センサを、28はエアクリーナを各々示している。
FIG. 1 shows one embodiment of an internal combustion engine with a supercharging device that uses an intake air amount measuring device according to the present invention. 1st
In the figure, 10 is the internal combustion engine body, 12 is the intake port, 14 is the exhaust boat, 16 is the fuel injector, 1
8 is a surge tank, 20 is a throttle valve, 22 is a supercharging device, especially its compressor part, 24 is a hot wire type air amount sensor provided in the intake passage 26 upstream of the supercharging device 22, and 28 is a hot wire air amount sensor. Each air cleaner is shown.

燃料インジェクタ16による燃料噴射量の制御はマイク
ロコンピュータを含む電子制御装置30により行われる
ようになっている。電子制御装置30は、−膜内構造の
熱線式空気量センサ24より吸入空気量に関する情報を
、機関回転数センサ32より機関回転数に関する情報を
、スロットルスイッチ34よりスロットル弁20がアイ
ドル開度位置にあるか否かに関する情報を各々与えられ
、これら情報に従って燃料インジェクタ16による燃料
噴射量を制御するようになっている。
The amount of fuel injected by the fuel injector 16 is controlled by an electronic control device 30 including a microcomputer. The electronic control device 30 receives information regarding the intake air amount from the hot-wire type air amount sensor 24 having an internal membrane structure, information regarding the engine speed from the engine speed sensor 32, and information regarding the idle opening position of the throttle valve 20 from the throttle switch 34. The fuel injection amount by the fuel injector 16 is controlled according to this information.

電子制御装置30は第2図に示されている如き本発明に
よる吸入空気量測定装置40を含んでいる。
The electronic control unit 30 includes an intake air amount measuring device 40 according to the present invention as shown in FIG.

吸入空気量測定装置40は、変遷時点検出手段42と、
流れ方向反転時点検出手段44と、流れ方向反転時点判
別手段46と、積算手段48と、正味吸入空気量算出手
段50とを有している。
The intake air amount measuring device 40 includes a transition point detection means 42;
It has a flow direction reversal time point detection means 44, a flow direction reversal time point determination means 46, an integration means 48, and a net intake air amount calculation means 50.

変遷時点検出手段42は、スロットルスイッチ34によ
ってスロットル弁20がアイドル開度位置にあると検出
され且機関回転数センサ32により機関回転数が所定値
以上であると検出された時には減速時とみなし、減速開
始後に於て熱線式空気量センサ24により検出される吸
入空気量が最初に減少変化より増大変化へ変遷する時点
、即ち第3図にてA時点を検出するようになっている。
When the throttle switch 34 detects that the throttle valve 20 is at the idle opening position and the engine speed sensor 32 detects that the engine speed is equal to or higher than a predetermined value, the transition point detection means 42 determines that the deceleration is occurring. After the start of deceleration, the point in time when the intake air amount detected by the hot-wire air amount sensor 24 first changes from a decreasing change to an increasing change, that is, time A in FIG. 3 is detected.

流れ方向反転時点検出手段44は、熱線式空気量センサ
24により検出される吸入空気量の変化から吸入空気の
流れが逆流状態より正流状態へ反転する時点、即ち第3
図に於けるB時点を検出するようになっている。
The flow direction reversal point detection means 44 detects the point at which the flow of the intake air is reversed from the reverse flow state to the forward flow state based on the change in the intake air amount detected by the hot wire air amount sensor 24, that is, the third point.
Time point B in the figure is detected.

流れ方向反転時点判別手段46は、変遷時点検出手段4
2により検出された変遷時点Aを起算時点として、吸気
系諸元、即ち吸気通路の空気入口端であるエアクリーナ
28からスロットル弁2゜までの吸気通路の空間諸元(
長さ、容積、断面積)により一義的に決まる予め定めら
れた減速時吸気脈動の周期Tをもとに、吸入空気の流れ
が次に正流状態より逆流状態へ反転する時点、即ち第3
図にてC時点を検出するようになっている。
The flow direction reversal point determination means 46 is the transition point detection means 4.
Starting from the transition point A detected in step 2, the intake system specifications, that is, the spatial dimensions of the intake passage from the air cleaner 28, which is the air inlet end of the intake passage, to the throttle valve 2° (
Based on the predetermined period T of the intake pulsation during deceleration, which is uniquely determined by the length, volume, cross-sectional area), the point at which the intake air flow next reverses from the forward flow state to the reverse flow state, that is, the third
In the figure, time C is detected.

積算手段48は、変遷時点検出手段42により検出され
るA時点と流れ方向反転時点検出手段44により検出さ
れるB時点と流れ方向反転時点検出手段46により判別
されるC時点をもとに、減速時吸気脈動の一周期毎に流
れ方向反転時点までの吸入空気量の積算値N G゛、即
ちA時点或いはC時点よりB時点までの逆流状態時の吸
入空気量の積算値NGと、流れ方向反転時点後の吸入空
気量の積算値PC,即ちB時点よりC時点までの正流状
態時の吸入空気量の積算値PGとを求めるようになって
いる。
The integrating means 48 performs deceleration based on the time point A detected by the transition time point detection means 42, the time point B detected by the flow direction reversal time point detection means 44, and the time C determined by the flow direction reversal time point detection means 46. The cumulative value NG of the intake air amount up to the time when the flow direction is reversed for each period of intake pulsation, that is, the cumulative value NG of the intake air amount during the reverse flow state from time A or from time C to time B, and the flow direction The integrated value PC of the amount of intake air after the reversal point, that is, the integrated value PG of the amount of intake air in the normal flow state from time B to time C is determined.

正味吸入空気量算出手段50は、減速時吸気脈動の一周
期終了時毎に積算手段48により積算された流れ方向反
転時点までの吸入空気量の積算値NGと流れ方向反転時
点後の吸入空気量の積算値PGとの差により、正味吸入
空気ff1cGを算出するようになっている。この正味
吸入空気ff1cGに関する情報は燃料インジェクタ1
6による燃料噴対量を制御するためにその制御回路へ出
力される。
The net intake air amount calculating means 50 calculates the integrated value NG of the intake air amount up to the point of reversal of the flow direction, which is accumulated by the integrating means 48 at the end of each cycle of the intake pulsation during deceleration, and the amount of intake air after the point of reversal of the flow direction. The net intake air ff1cG is calculated from the difference between the integrated value PG and the integrated value PG. Information regarding this net intake air ff1cG is obtained from the fuel injector 1.
6 is output to its control circuit in order to control the fuel injection amount.

第4図は上述の如き構成より吸入空気量測定装置による
吸入空気量測定ルーチンを示している。
FIG. 4 shows a routine for measuring the intake air amount using the intake air amount measuring device configured as described above.

第4図に示された吸入空気ff1cJ定ルーチンは所定
時間毎の割込ルーチンとして実行され、最初のステップ
10に於ては、熱線式空気量センサ24よりの情報より
空気ff1Gを測定することが行われる。熱線式空気量
センサ24は吸気の流れ方向を識別することができない
から、熱線式空気量センサ24により検出される空気f
f1Gは正流状態の空気量と逆流状態の空気量とを含ん
でいる。
The intake air ff1cJ constant routine shown in FIG. It will be done. Since the hot wire type air amount sensor 24 cannot identify the flow direction of the intake air, the air f detected by the hot wire type air amount sensor 24
f1G includes the amount of air in the forward flow state and the amount of air in the reverse flow state.

ステップ10の次はステップ20へ進み、ステップ20
に於ては、逆流補正ロジック演算中であることを示すフ
ラッグFが1であるか否かの判別が行われる。F−1で
ある時、即ち演算中である時はステップ80へ進み、そ
うでない時はステップ30へ進む。
After step 10, proceed to step 20;
At this point, it is determined whether a flag F indicating that a backflow correction logic calculation is in progress is 1 or not. When F-1, that is, when the calculation is in progress, the process proceeds to step 80; otherwise, the process proceeds to step 30.

ステップ30に於ては、スロットルスイッチ34よりの
情報と機関回転数センサ32よりの情報をもとに、減速
状態であるか否かの判別が行われる。減速状態である時
はステップ40へ進み、そうでない時はステップ50へ
進む。
In step 30, it is determined whether or not the vehicle is in a deceleration state based on information from the throttle switch 34 and information from the engine speed sensor 32. If the vehicle is in a deceleration state, the process proceeds to step 40; otherwise, the process proceeds to step 50.

ステップ40に於ては、現在の空気ff1Gが減速開始
後の最小値G sinより小さいか否かの判別が行われ
る。Q < G 1nである時は尚も空気ff1Gが減
少している時であってこの時はステップ50へ進み、そ
うでない時、即ち空気ff1Gが減少変化より増大変化
へ変遷した時にはステップ6oへ進む。
In step 40, it is determined whether the current air ff1G is smaller than the minimum value G sin after the start of deceleration. When Q < G 1n, the air ff1G is still decreasing, in which case the process proceeds to step 50; otherwise, when the air ff1G changes from a decreasing change to an increasing change, the process proceeds to step 6o. .

ステップ50に於ては、現在の空気mGを新たに最小値
G minとすることが行われる。
In step 50, the current air mG is set to a new minimum value G min.

ステップ60に於ては、現在の空気mGと減速後の最初
の最小値G ilnとの差がΔGより大きくなったか否
かの判別が行われる。G−Gmln>ΔGである時は変
速後に於て空気ff1Gが明らかに最初に減少変化より
増大変化へ変遷した時点、即ちA時点であるとしてステ
ップ70へ進む。
In step 60, it is determined whether the difference between the current air mG and the first minimum value G iln after deceleration has become larger than ΔG. When G-Gmln>ΔG, it is assumed that the air ff1G clearly changes from a decreasing change to an increasing change after the gear shift, that is, at time A, and the process proceeds to step 70.

ステップ70に於ては、フラッグFを1とし、カウンタ
を0にリセットし、これのアップカウントを開始するこ
とが行われる。
In step 70, the flag F is set to 1, the counter is reset to 0, and counting up is started.

ステップ80は、ステップ7oにてフラッグFが1であ
ると判別された時に実行され、ステップ80に於ては、
機関回転数センサ32により検出される機関回転数の変
化より加速状態であるか否かの判別が行われる。加速状
態である時は逆流補正ロジック演算を中止すべくステッ
プ170へ進み、そうでない時は逆流補正ロジック演算
の開始のためにステップ90へ進む。
Step 80 is executed when flag F is determined to be 1 in step 7o, and in step 80,
Based on the change in the engine speed detected by the engine speed sensor 32, it is determined whether or not the engine is in an acceleration state. If the acceleration state is present, the process proceeds to step 170 to stop the backflow correction logic calculation, and if not, the process proceeds to step 90 to start the backflow correction logic calculation.

ステップ90に於ては、カウンタのカウント値CNTが
2N−1に等しいか否かの判別が行われる。2N−1は
予め定められた減速時吸気脈動の周期Tに対応する設定
値であり、CNT−2N−1である時は、第3図に於け
るC時点、即ち減速時吸気脈動の一周期終了時点であり
、この時はステップ180へ進み、そうでない時、即ち
周期中はステップ100へ進む。
In step 90, it is determined whether the count value CNT of the counter is equal to 2N-1. 2N-1 is a predetermined setting value corresponding to the period T of the intake pulsation during deceleration, and when CNT-2N-1 is set, it corresponds to the period C of the intake pulsation during deceleration at time C in FIG. This is the end point, in which case the process proceeds to step 180; otherwise, in other words during the cycle, the process proceeds to step 100.

ステップ100に於ては、現在の空気ff1Gが最小値
G minより小さいか否かの判別が行われる。
In step 100, it is determined whether the current air ff1G is smaller than the minimum value G min.

C; < G minである時はA時点或いはC時点よ
りB時点になる以前であり、即ち吸気が逆流している時
であり、この時はステップ110へ進み、そうでない時
はステップ130へ進む。
C: When < G min, it is before time A or time C reaches time B, that is, when the intake air is flowing backwards, and in this case, proceed to step 110, otherwise proceed to step 130. .

ステップ110に於ては、現在の空気量を新たな最小値
G sinとすることが行われる。ステップ110の次
はステップ120へ進む。
In step 110, the current air amount is set to a new minimum value G sin. After step 110, the process proceeds to step 120.

ステップ120に於ては、逆流時の吸入空気量の積算値
GNの積算(NG−NG十G)が行われる。ステップ1
20の次はステップ150へ進む。
In step 120, the integrated value GN of the amount of intake air during backflow is integrated (NG - NG0G). Step 1
After step 20, the process proceeds to step 150.

ステップ130に於ては、現在の空気ff1Gと最小値
G sinとの差が所定値ΔGより大きいが否がの判別
が行われる。G−Gmin>ΔGである時は吸入空気の
流れが逆流状態より正流状態へ明らかに反転した時点B
であるとしてステップ140へ進み、そうでない時はス
テップ120へ進む。
In step 130, it is determined whether the difference between the current air ff1G and the minimum value G sin is greater than a predetermined value ΔG. When G-Gmin>ΔG, it is the point B when the intake air flow clearly reverses from the reverse flow state to the forward flow state.
If so, the process proceeds to step 140; otherwise, the process proceeds to step 120.

ステップ140に於ては、正流時の吸入空気量の積算値
PGの積算(PG−PG十G)が行われる。ステップ1
40の次はステップ150へ進む。
In step 140, the integrated value PG of the amount of intake air during normal flow is integrated (PG-PG0G). Step 1
After step 40, the process proceeds to step 150.

ステップ150に於ては、カウンタのカウント値CNT
がOから2N−1間に於ける、即ち減速時吸気脈動の一
周期中に於ける空気ff1Gの最大値G2と最小値G、
とを記憶することが行われる。
In step 150, the counter count value CNT
is between O and 2N-1, that is, the maximum value G2 and minimum value G of air ff1G during one cycle of intake pulsation during deceleration,
and is memorized.

ステップ150の次はステップ160へ進む。After step 150, the process proceeds to step 160.

ステップ160に於ては、最大値G2と最小値G1との
差が所定値G set以下になったか否かの判別が行わ
れる。G 2− G 1 < G setである時は減
速時吸気脈動が終了したとしてステップ170へ進む。
In step 160, it is determined whether the difference between the maximum value G2 and the minimum value G1 has become equal to or less than a predetermined value G set. If G 2 - G 1 < G set, it is determined that the intake pulsation during deceleration has ended and the process proceeds to step 170.

ステップ170に於ては、フラッグFを0にすることが
行われる。
In step 170, flag F is set to 0.

ステップ180はC時点毎に実行され、ステップ180
に於ては、正流時の吸入空気量の積算値PGより逆流時
の吸入空気量の積算値GNを差弓いて正味吸入空気ff
1cGを算出することが行われる。またステップ180
に於ては、カウンタをリセットし、そしてこのカウンタ
のアップカウントを再開始し、更に積算値PGとNGを
それぞれ0にリセットすることが行われる。
Step 180 is executed every time point C, step 180
In this case, the net intake air ff is calculated by subtracting the cumulative value GN of the intake air amount during reverse flow from the cumulative value PG of the intake air volume during forward flow.
Calculation of 1cG is performed. Also step 180
In this case, the counter is reset, the up-counting of this counter is restarted, and the integrated values PG and NG are each reset to 0.

以上に於ては、本発明を特定の実施例について詳細に説
明したが、本発明は、これに限定されるものではなく、
本発明の範囲内にて種々の実施例が可能であることは当
業者にとって明らかであろう。
Although the present invention has been described in detail with respect to specific embodiments above, the present invention is not limited thereto.
It will be apparent to those skilled in the art that various embodiments are possible within the scope of the invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による吸入空気m DI定装置を用いら
れる過給装置付き内燃機関の一つの実施例を示す概略構
成図、第2図は本発明による吸入空気Q aP+定装置
の一つの実施例を示すブロック線図、第3図は過給装置
付き内燃機関に於ける減速時吸気脈動中に於ける吸入空
気の流れ方向の変化と空気量検出手段により検出される
吸入空気量の変化とスロットル弁の開弁量変化とを示す
タイムチャート、第4図は本発明による吸入空気量測定
装置の吸入空気ffi測定ルーチンを示すフローチャー
トである。 10・・・内燃機関本体、12・・・吸気ポート、14
排気ポート、16・・・燃料インジェクタ、18・・・
サージタンク、20・・・スロットル弁、22・・・過
給装置、24・・・熱線式空気量センサ、26・・・吸
気通路。 28・・・エアクリーナ、30・・・電子制御装置、3
2・・・機関回転数センサ、34・・・スロットルスイ
ッチ40・・・吸入空気量測定装置、42・・・変遷時
点検出手段、44・・・流れ方向反転時点検出手段、4
6・・・流れ方向反転時点判別手段、48・・・積算手
段、50・・・正味吸入空気量算出手段 特  許  出  願  人 代     理     人 トヨタ自動車株式会社
FIG. 1 is a schematic configuration diagram showing one embodiment of an internal combustion engine with a supercharging device using an intake air m DI constant device according to the present invention, and FIG. 2 is an embodiment of an intake air Q aP+ constant device according to the present invention. Figure 3 is a block diagram showing an example of changes in the flow direction of intake air during intake pulsation during deceleration in an internal combustion engine equipped with a supercharger, and changes in the intake air amount detected by the air amount detection means. FIG. 4 is a flowchart showing the intake air ffi measurement routine of the intake air amount measuring device according to the present invention. 10... Internal combustion engine body, 12... Intake port, 14
Exhaust port, 16...Fuel injector, 18...
Surge tank, 20... Throttle valve, 22... Supercharger, 24... Hot wire type air amount sensor, 26... Intake passage. 28... Air cleaner, 30... Electronic control device, 3
2... Engine rotation speed sensor, 34... Throttle switch 40... Intake air amount measuring device, 42... Transition point detection means, 44... Flow direction reversal point detection means, 4
6... Means for determining the time of flow direction reversal, 48... Integrating means, 50... Means for calculating net intake air amount Patent application Attorney Toyota Motor Corporation

Claims (1)

【特許請求の範囲】[Claims] 過給装置より上流側の吸気通路に設けられた空気量検出
手段よりの検出値より吸入空気量を測定する吸入空気量
測定装置に於て、内燃機関の減速開始後に於て前記空気
量検出手段により検出された吸入空気量が最初に減少変
化より増大変化へ変遷する時点を検出する変遷時点検出
手段と、前記空気量検出手段により検出される吸入空気
量の変化から吸入空気の流れが逆流状態より正流状態へ
反転した時点を検出する流れ方向反転時点検出手段と、
前記変遷時点検出手段により検出された変遷時点を起算
時点として吸気系諸元に応じて予め定められる減速時吸
気脈動の周期をもとに吸入空気の流れが正流状態より逆
流状態へ反転した時点を判別する流れ方向反転時点判別
手段と、前記変遷時点検出手段と前記流れ方向反転時点
検出手段と前記流れ方向反転時点判別手段の各々により
見出される時点をもとに減速時吸気脈動の一周期毎に流
れ方向反転時点までの吸入空気量の積算値と流れ方向反
転時点後の吸入空気量の積算値とを求める積算手段と、
前記減速時吸気脈動の一周期終了時毎に前記積算手段に
より積算された流れ方向反転時点までの吸入空気量の積
算値と流れ方向反転時点後の吸入空気量の積算値との差
より正味吸入空気量を算出する正味吸入空気量算出手段
とを有する過給装置付内燃機関の吸入空気量測定装置。
In an intake air amount measuring device that measures an intake air amount from a value detected by an air amount detecting means provided in an intake passage upstream of a supercharging device, the air amount detecting means a transition point detection means for detecting the point in time when the intake air amount detected by the above first changes from a decreasing change to an increasing change; and a transition point detection means for detecting the point in time when the intake air amount detected by the air amount first changes from a decreasing change to an increasing change; flow direction reversal point detection means for detecting the point in time when the flow direction is reversed to a more positive flow state;
The point in time when the flow of intake air reverses from a forward flow state to a reverse flow state based on the period of intake pulsation during deceleration, which is predetermined according to the intake system specifications, with the transition time detected by the transition time detection means as the starting point. flow direction reversal point determination means for determining the flow direction reversal time point determination means, the transition time point detection means, the flow direction reversal time point detection means, and the flow direction reversal time point determination means, each cycle of the intake pulsation during deceleration. an integrating means for calculating the integrated value of the intake air amount up to the time when the flow direction is reversed and the integrated value of the intake air amount after the time when the flow direction is reversed;
The net intake is calculated from the difference between the integrated value of the intake air amount up to the point of reversal of the flow direction, which is accumulated by the integrating means at the end of each cycle of the intake pulsation during deceleration, and the integrated value of the amount of intake air after the point of reversal of the flow direction. An intake air amount measuring device for an internal combustion engine with a supercharger, comprising a net intake air amount calculating means for calculating an air amount.
JP8771089A 1989-04-06 1989-04-06 Intake air flow measuring device for internal combustion engine with supercharging device Pending JPH02267345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8771089A JPH02267345A (en) 1989-04-06 1989-04-06 Intake air flow measuring device for internal combustion engine with supercharging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8771089A JPH02267345A (en) 1989-04-06 1989-04-06 Intake air flow measuring device for internal combustion engine with supercharging device

Publications (1)

Publication Number Publication Date
JPH02267345A true JPH02267345A (en) 1990-11-01

Family

ID=13922465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8771089A Pending JPH02267345A (en) 1989-04-06 1989-04-06 Intake air flow measuring device for internal combustion engine with supercharging device

Country Status (1)

Country Link
JP (1) JPH02267345A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120173126A1 (en) * 2009-11-25 2012-07-05 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP2013007330A (en) * 2011-06-24 2013-01-10 Toyota Motor Corp Air quantity estimation device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120173126A1 (en) * 2009-11-25 2012-07-05 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US8515650B2 (en) * 2009-11-25 2013-08-20 Toyota Jidosha Kabushiki Kaisha Control system of internal combustion engine
JP2013007330A (en) * 2011-06-24 2013-01-10 Toyota Motor Corp Air quantity estimation device for internal combustion engine

Similar Documents

Publication Publication Date Title
US7509845B2 (en) Throttle inlet absolute air pressure sensor for dirty air filter detection
JP3358387B2 (en) Diagnosis device for variable valve timing device
JP2916831B2 (en) Diagnosis device for air-fuel ratio control device
JP4048735B2 (en) Control device for internal combustion engine
JPH0331908B2 (en)
JP3544197B2 (en) Electronic control unit for internal combustion engine
JP2006057523A (en) Failure diagnosis device for engine control system
JPH02267345A (en) Intake air flow measuring device for internal combustion engine with supercharging device
KR920002456B1 (en) Fuel control system
JPH0765527B2 (en) Fuel control method
JP2003065138A (en) Atmospheric pressure detection method and device for controlling internal combustion engine
JP3407498B2 (en) Intake air flow rate detection device for internal combustion engine
JPH07167697A (en) Intake air flow rate detector for internal combustion engine
JPH0684743B2 (en) Deterioration detection device for hot wire type air flow meter
JP2858289B2 (en) Engine intake air flow rate detection device
KR100412716B1 (en) A method for diagnosing fail of an air-flow sensor of an engine
JPH04237851A (en) Air-fuel ratio sensor deterioration diagnostic device
JPH0729419U (en) Engine intake air flow rate detector
JPH07117023B2 (en) Engine controller
JP2789005B2 (en) Control device for internal combustion engine
JP2855401B2 (en) Engine intake air flow rate detection device
JPS6035145A (en) Engine acceleration correction device
JPH11200940A (en) Failure detector for engine temperature sensor
JPH0156256B2 (en)
JPH0710050Y2 (en) Electronically controlled fuel injection device for internal combustion engine