JPH0226606Y2 - - Google Patents

Info

Publication number
JPH0226606Y2
JPH0226606Y2 JP1984191558U JP19155884U JPH0226606Y2 JP H0226606 Y2 JPH0226606 Y2 JP H0226606Y2 JP 1984191558 U JP1984191558 U JP 1984191558U JP 19155884 U JP19155884 U JP 19155884U JP H0226606 Y2 JPH0226606 Y2 JP H0226606Y2
Authority
JP
Japan
Prior art keywords
grinding
grindstone
workpiece
grinding surface
tapered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1984191558U
Other languages
Japanese (ja)
Other versions
JPS61105550U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1984191558U priority Critical patent/JPH0226606Y2/ja
Publication of JPS61105550U publication Critical patent/JPS61105550U/ja
Application granted granted Critical
Publication of JPH0226606Y2 publication Critical patent/JPH0226606Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案はワークをテーパ状に研削加工する場合
に用いられるテーパ型砥石を備えた研削盤に関
し、特にその加工能率の改善に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a grinding machine equipped with a tapered grindstone used for grinding a workpiece into a tapered shape, and particularly relates to improving the processing efficiency thereof.

〔従来技術〕[Prior art]

従来、ワークをテーパ状に研削加工する場合
は、テーパ面と平行な砥石軸を有する研削盤を用
いたり(例えば実開昭59−1546号公報参照)、ま
たはワークの被加工面と同じテーパ状の砥石を備
えた研削盤により研削加工するように(例えば実
開昭54−71285号公報参照)しており、例えば円
筒状ワークの内面端部をテーパ状に加工する場合
は、砥石をその軸方向にワーク内の所定位置まで
挿入し、この状態で砥石を回転するとともにワー
クを回転しながらその軸直角方向に移動させて被
加工面の研削を行なつている。
Conventionally, when grinding a workpiece into a tapered shape, a grinding machine with a grinding wheel shaft parallel to the tapered surface was used (for example, see Utility Model Application Publication No. 1546/1983), or a grinding machine with a grinding wheel that had the same taper shape as the surface to be machined was used. Grinding is performed using a grinding machine equipped with a grinding wheel (for example, see Japanese Utility Model Application Publication No. 1971-71285). For example, when processing the inner edge of a cylindrical workpiece into a tapered shape, In this state, the grindstone is rotated and the workpiece is rotated and moved in a direction perpendicular to its axis to grind the surface to be machined.

また、軸方向に大きく往復動するテーパ砥石に
対し、その砥石軸にテーパ穴の軸線を平行させた
ワークを、上記砥石軸に垂直な平面に沿つて同期
的に直交二軸運動させて、テーパ砥石の外周全体
によつてテーパ穴を所定のピツチで三次元アルキ
メデス曲線を描かせながらテーパ加工をする研削
盤もある(例えば実開昭57−81055号公報参照)。
In addition, for a taper grindstone that reciprocates greatly in the axial direction, a workpiece with the axis of the taper hole parallel to the grindstone axis is synchronously moved orthogonally biaxially along a plane perpendicular to the grindstone axis. There is also a grinding machine that performs taper processing while drawing a three-dimensional Archimedean curve at a predetermined pitch in a tapered hole using the entire outer periphery of the grindstone (see, for example, Japanese Utility Model Application No. 81055/1983).

ところで、ワークの研削加工においては、ワー
クの被加工面の径等に応じた研削条件、例えば砥
石の周速でもつて加工する必要があり、そのため
同一のワークであれば、例えば同一の周速でもつ
て加工することとなる。一方、テーパ型の砥石は
そのテーパ面から先端部ほど周速は遅く、その基
部ほど速いから、従つてこのテーパ型砥石で加工
する場合は該砥石のテーパ面の上記研削条件に応
じた周速が得られる部分でもつて研削することと
なり、従つて従来、同一のワークを大量生産する
場合は、砥石のテーパ面の特定の部分でもつて研
削し、ワークの加工数量が上記研削面部分がドレ
ツシングを要する数量に達すると、砥石のテーパ
面全体をドレツシングするようにしていた。
By the way, when grinding a workpiece, it is necessary to perform the grinding under conditions such as the circumferential speed of the grinding wheel, depending on the diameter of the workpiece surface, etc. Therefore, for the same workpiece, for example, even if the circumferential speed is Then it will be processed. On the other hand, the circumferential speed of a tapered whetstone is slower from the tapered surface to the tip, and faster toward the base. Therefore, when processing with this tapered whetstone, the circumferential speed of the tapered surface of the whetstone must be adjusted according to the above grinding conditions. Therefore, in the past, when mass producing the same workpiece, grinding was performed on a specific part of the tapered surface of the grinding wheel, and the number of parts processed on the workpiece was increased so that the part on the ground surface could not meet the dressing. When the required quantity was reached, the entire tapered surface of the grindstone was dressed.

〔考案の目的〕[Purpose of invention]

本考案は、上記従来の状況においてなされたも
ので、加工能率を大きく向上できるとともに、砥
石の寿命を延長できるテーパ型砥石を備えた研削
盤を提供することを目的としている。
The present invention has been made in view of the above-mentioned conventional situation, and aims to provide a grinding machine equipped with a tapered grindstone that can significantly improve machining efficiency and extend the life of the grindstone.

〔考案の構成〕[Structure of the idea]

本考案者は、上記従来の研削盤において同一ワ
ークを多量生産する場合は、テーパ型砥石の研削
面の一部分のみを使用しており、またこの部分が
ドレツシングを要することとなると研削面全体を
ドレツシングするようにしており、そのため頻繁
にドレツシングを要して加工能率を低くしている
とともに、ドレツシングを要しない部分までドレ
ツシングして砥石の寿命を短くしている点に着目
したものである。そこで本考案は、上記目的を達
成するために、テーパ型砥石を備えた研削盤にお
いて、砥石の有効研削面幅をワークの被加工面幅
に応じた幅で軸方向に区分した研削面数を演算出
力する研削面区分数演算回路と、砥石のドレツシ
ング完了信号およびワークの所定数の加工完了信
号によつて砥石を区分移動させる研削面指示信号
を出力する計数回路と、砥石を回転駆動するとと
もに上記研削面区分数演算回路および計数回路か
ら出力される研削面指示信号によつて砥石を砥石
軸方向に区分移動させる砥石駆動装置と、ワーク
を回動駆動するとともに該ワークの軸直角方向に
切込移動させるワーク駆動装置と、砥石を軸方向
に区分してなる複数の研削面の各々により該研削
面に応じた研削条件でもつてワークが研削される
よう上記両駆動装置を制御する研削制御装置を備
えてなるものである。すなわち、上記砥石のテー
パ面が軸方向に区分されてなる複数の研削面の
各々により該研削面に応じた研削条件でもつてワ
ークを研削するようにしたものであり、これによ
り砥石の研削面全体を研削作業に有効に使用して
ドレツシングまでの加工できるワーク数を増大で
きるようにしたものである。
The present inventor believes that when mass producing the same workpiece using the conventional grinding machine described above, only a part of the grinding surface of the tapered grindstone is used, and if this part requires dressing, the entire grinding surface is dressed. This approach focused on the fact that dressing is required frequently, which lowers machining efficiency, and that areas that do not require dressing are also dressed, shortening the life of the grindstone. Therefore, in order to achieve the above-mentioned purpose, the present invention has developed a grinding machine equipped with a tapered grinding wheel, in which the effective grinding surface width of the grinding wheel is divided in the axial direction by a width corresponding to the width of the processed surface of the workpiece. A calculation circuit for calculating the number of grinding surface sections for calculation output, a counting circuit for outputting a grinding surface instruction signal for moving the grindstone section by section in accordance with a dressing completion signal for the grindstone and a predetermined number of machining completion signals for the workpiece, and a counting circuit for rotating and driving the grindstone. A grindstone drive device that moves the grindstone section by section in the direction of the grindstone axis based on the grinding surface instruction signal output from the grinding surface division number calculation circuit and the counting circuit; a workpiece drive device that moves the workpiece, and a grinding control device that controls both drive devices so that the workpiece is ground by each of the plurality of grinding surfaces formed by dividing the grindstone in the axial direction under grinding conditions according to the grinding surface. It is equipped with the following. That is, the workpiece is ground by each of the plurality of grinding surfaces formed by dividing the tapered surface of the grinding wheel in the axial direction, under grinding conditions corresponding to the grinding surface, and thereby the entire grinding surface of the grinding wheel is The number of workpieces that can be processed up to dressing can be increased by effectively using the grinding tool in grinding operations.

〔実施例〕〔Example〕

以下、本考案の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図ないし第5図は本考案の一実施例を説明
するためのもので、その概略構成を示す第1図に
おいて、1はベツドであり、該ベツド1の上面に
は砥石テーブル2が図示左右方向に摺動自在に載
置され、該砥石テーブル2の下面に固着されたメ
ネジボツクス(図示せず)には砥石テーブル移動
用ボールネジ3が螺合され、該ボールネジ3にそ
の出力軸が連結された砥石区分移動モータ4は上
記ベツド1に固着されている。また上記砥石テー
ブル2上にはホイールヘツドモータ5が装着さ
れ、該モータ5の出力軸にはテーパ型の砥石6が
連結されており、上記砥石テーブル2、各モータ
4,5等により、砥石6を回転駆動するととも
に、その軸方向に往復動させる砥石駆動装置7が
構成されている。
1 to 5 are for explaining one embodiment of the present invention. In FIG. 1 showing the schematic structure, 1 is a bed, and a whetstone table 2 is shown on the upper surface of the bed 1. A ball screw 3 for moving the grindstone table is screwed into a female screw box (not shown) which is placed slidably in the left and right direction and is fixed to the lower surface of the grindstone table 2, and its output shaft is connected to the ball screw 3. A grindstone section moving motor 4 is fixed to the bed 1. A wheel head motor 5 is mounted on the grindstone table 2, and a tapered grindstone 6 is connected to the output shaft of the motor 5. The grindstone table 2, each motor 4, 5, etc. A grindstone drive device 7 is configured to rotationally drive the grindstone and reciprocate in its axial direction.

また、上記ベツド1の上面の図示左側部には、
ワークテーブル8が図示上下方向に摺動自在に載
置され、該ワークテーブル8の下面に固着された
メネジボツクス(図示せず)にはワークテーブル
切込移動用ボールネジ9が螺合され、該ボールネ
ジ9にその出力軸が連結されたワークテーブル切
込移動用モータ10は上記ベツド1に固着されて
いる。また上記ワークテーブル8上には、ワーク
Wをチヤツクするための主軸台11が装着され、
また上記ワークテーブル8の主軸台11近傍には
駆動モータ12が装着され、該モータ12の出力
軸に固着された駆動プーリ12aと主軸台11の
従動プーリ11aとの間には駆動ベルト13が巻
回されており、これにより上記ワークWを回転駆
動するとともに、その軸直角方向に往復動させる
ワーク駆動装置14が構成されている。
In addition, on the left side of the upper surface of the bed 1 as shown in the figure,
A work table 8 is placed so as to be slidable in the vertical direction in the figure, and a ball screw 9 for moving the work table in a cut is screwed into a female screw box (not shown) fixed to the lower surface of the work table 8. A work table cutting movement motor 10 having an output shaft connected to the work table is fixed to the bed 1. Further, a headstock 11 for chucking the work W is mounted on the work table 8,
A drive motor 12 is mounted near the headstock 11 of the work table 8, and a drive belt 13 is wound between a drive pulley 12a fixed to the output shaft of the motor 12 and a driven pulley 11a of the headstock 11. This constitutes a workpiece driving device 14 that rotates the workpiece W and reciprocates it in a direction perpendicular to its axis.

また、上記ワークテーブル8には、砥石ドレツ
シング装置15が装着されており、これは揺動タ
イプのもので、その揺動アーム15aが駆動部1
5bに揺動駆動可能に支持されており、上記揺動
アーム15aにはドレツシング工具15cが取付
けられている。
Further, a grindstone dressing device 15 is attached to the work table 8, and this is of a swinging type, and its swinging arm 15a is attached to the drive unit 1.
5b, and a dressing tool 15c is attached to the swing arm 15a.

そして、上記各モータ4,5,10には研削制
御装置16の制御信号S2,S1,S3が入力さ
れており、該研削制御装置16は研削面区分数演
算回路17、計数回路18、砥石制御回路19及
びワーク制御回路20により構成されている。
Control signals S2, S1, and S3 from a grinding control device 16 are input to each of the motors 4, 5, and 10, and the grinding control device 16 includes a grinding surface segment number calculation circuit 17, a counting circuit 18, and a grinding wheel control device. It is composed of a circuit 19 and a workpiece control circuit 20.

上記研削面区分数演算回路17は、砥石6の有
効研削面幅をワークWの被加工面幅に応じた幅に
軸方向に区分し得る研削面数Nを演算出力するた
めのもので(第2図参照)、ワークWの被加工面
Waの幅loを研削するのに必要な砥石の単位研削
面幅lを設定するための単位研削面幅設定部17
aと、砥石6の有効研削面幅Lを設定するための
有効研削面幅設定部17bと、上記設定値l,L
から、研削面区分数N(=L/l)を演算する
(少数点以下切捨)研削面区分数演算部17cと
からなる。ここでNは研削面区分数を表すととも
に、研削面番号を表し、第2図の例では、区分数
N,N−1,N−2がそれぞれ研削面A,B,C
に対応する。
The grinding surface division number calculation circuit 17 is for calculating and outputting the number N of grinding surfaces that can divide the effective grinding surface width of the grinding wheel 6 into widths corresponding to the width of the workpiece surface of the workpiece W in the axial direction. (See Figure 2), the processed surface of the workpiece W
Unit grinding surface width setting section 17 for setting the unit grinding surface width l of the grindstone necessary for grinding the width lo of Wa
a, an effective grinding surface width setting section 17b for setting the effective grinding surface width L of the grindstone 6, and the above set values l, L.
A grinding surface section number calculating section 17c calculates the number of grinding surface sections N (=L/l) from the following (decimal points are rounded down). Here, N represents the number of grinding surface sections as well as the grinding surface number; in the example of FIG.
corresponds to

上記計数回路18は、砥石6の加工を行なうべ
き研削面を指示するための研削面指示信号Soを
出力するためのもので、砥石6がドレツシングさ
れたことを示すドレツシング信号が入力されると
上記区分数Nに対応する研削面番号Aを出力し、
1つのワークWの研削完了を示す加工完了信号の
数が研削面毎に設定されたワーク加工数に達する
と順次研削面番号B,C…を出力する。
The counting circuit 18 is for outputting a grinding surface instruction signal So for instructing the grinding surface of the grinding wheel 6 to be processed, and when a dressing signal indicating that the grinding wheel 6 has been dressed is inputted, the Output the grinding surface number A corresponding to the number of divisions N,
When the number of processing completion signals indicating the completion of grinding of one workpiece W reaches the number of workpiece processing set for each grinding surface, grinding surface numbers B, C, . . . are sequentially output.

上記砥石制御回路19は砥石6を研削面A,
B,Cに応じた回転速度で回転駆動するととも
に、砥石6をこれの研削面がワークWの被加工面
Waに位置するための加工移動量に応じて軸方向
に移動させるためのもので、ホイールヘツドモー
タ制御回路と、砥石区分移動モータ制御回路とか
らなる。上記ホイールヘツドモータ制御回路は第
3図に示すホイールヘツドモータ回転数マツプか
ら研削面A,B,Cに応じた回転数を読み出すホ
イールヘツドモータ回転数設定回路19aと、こ
の回転数を得るための駆動信号S1をホイールヘ
ツドモータ5に出力するホイールヘツドモータ駆
動回路19bとからなり、また上記砥石区分移動
モータ制御回路は、上記研削面A,B,Cに応じ
た砥石位置を演算出力する加工移動量演算回路1
9cと、この移動量を得るための駆動信号S2を
砥石区分移動モータ4に出力する砥石区分移動モ
ータ駆動回路19dとからなる。
The grindstone control circuit 19 controls the grindstone 6 to the grinding surface A,
The grinding wheel 6 is driven to rotate at a rotational speed corresponding to B and C, and the grinding surface of the grinding wheel 6 is the workpiece surface of the workpiece W.
This is for moving in the axial direction according to the machining movement amount for positioning at Wa, and consists of a wheel head motor control circuit and a grindstone section movement motor control circuit. The wheel head motor control circuit includes a wheel head motor rotation speed setting circuit 19a that reads out the rotation speed corresponding to the grinding surfaces A, B, and C from the wheel head motor rotation speed map shown in FIG. The wheel head motor drive circuit 19b outputs the drive signal S1 to the wheel head motor 5, and the grindstone segment movement motor control circuit controls the machining movement that calculates and outputs the grindstone position according to the grinding surfaces A, B, and C. Quantity calculation circuit 1
9c, and a grindstone segment movement motor drive circuit 19d that outputs a drive signal S2 to the grindstone segment movement motor 4 to obtain this movement amount.

上記ワーク制御回路20は、研削面A〜Cに応
じた切込速度でもつてワークWをその直角軸方向
に切込移動させるためのもので、これは第4図に
示す切込速度マツプから研削面A〜Cに応じた切
込速度を読み出す切込速度設定回路20aと、こ
の切込速度を得るための駆動信号S3をワークテ
ーブル切込移動モータ10に出力するワークテー
ブル切込移動モータ駆動回路20bとから構成さ
れている。
The workpiece control circuit 20 is for moving the workpiece W in the direction of the perpendicular axis at cutting speeds corresponding to the grinding surfaces A to C. This is based on the cutting speed map shown in FIG. A cutting speed setting circuit 20a that reads cutting speeds corresponding to surfaces A to C, and a work table cutting movement motor drive circuit that outputs a drive signal S3 for obtaining this cutting speed to the work table cutting movement motor 10. 20b.

次に動作について第1図ないし第5図を用いて
説明する。
Next, the operation will be explained using FIGS. 1 to 5.

本実施例装置では、研削面区分数Nを3、各研
削面A,B,Cにて加工可能なワーク数をn1,
n2,n3として説明する。
In this embodiment, the number of grinding surface sections N is 3, and the number of workpieces that can be machined on each grinding surface A, B, and C is n1.
This will be explained as n2 and n3.

ワークWを主軸台11にローデイングし、単位
研削面幅l及び有効研削面幅Lを設定すると、研
削面区分数演算回路17cにおいてN(=L/l)
=3が演算出力され、計数回路18においてドレ
ツシング信号が入力されると、該回路18から上
記研削面区分数3に対応する研削面番号Aが砥石
制御回路19及びワーク制御回路20に出力され
る。するとホイールヘツドモータ回転数マツプか
ら研削面Aに対応したホイールヘツドモータ回転
数m1が読み出され、ホイールヘツドモータ駆動
回路19bから上記回転数m1を得るための制御
信号S1がホイールヘツドモータ5に出力され、
またこれとともに加工移動量演算回路19cにお
いて、上記研削面AがワークWの被加工面Waに
対応するための砥石移動量が演算出力され、砥石
区分移動モータ駆動回路19dから上記移動量を
得るための制御信号S2が砥石区分移動モータ4
に出力される。また、上記切込速度設定回路20
aにおいて、切込速度マツプから研削面Aに対応
した切込速度v1が読み出され、ワークテーブル
切込移動モータ駆動回路20bから上記切込速度
v1を得るための制御信号S3がワークテーブル
切込移動モータ10に出力される。するとこれに
より砥石6はホイールヘツドモータ5により上記
回転数m1で回転駆動されつつ砥石区分移動モー
タ4により研削面AがワークWの被加工面Waに
位置するまで前進され、これにより砥石6の割出
しが完了する(第5図a,b参照)。この砥石割
出しが完了すると、ワークWは駆動モータ12に
より回転駆動されつつ、上記ワークテーブル切込
移動モータ10により上記切込速度v1により軸
直角方向に切込み移動される(第5図c参照)。
When the workpiece W is loaded onto the headstock 11 and the unit grinding surface width l and the effective grinding surface width L are set, the grinding surface section number calculation circuit 17c calculates N (=L/l).
=3 is calculated and output, and when the dressing signal is input to the counting circuit 18, the circuit 18 outputs the grinding surface number A corresponding to the grinding surface division number 3 to the grinding wheel control circuit 19 and the workpiece control circuit 20. . Then, the wheel head motor rotation speed m1 corresponding to the grinding surface A is read from the wheel head motor rotation speed map, and a control signal S1 for obtaining the above rotation speed m1 is output from the wheel head motor drive circuit 19b to the wheel head motor 5. is,
At the same time, the processing movement amount calculation circuit 19c calculates and outputs the grinding wheel movement amount for making the grinding surface A correspond to the processed surface Wa of the workpiece W, and obtains the movement amount from the grinding wheel classification movement motor drive circuit 19d. The control signal S2 of the grinding wheel section movement motor 4
is output to. In addition, the cutting speed setting circuit 20
At step a, the cutting speed v1 corresponding to the grinding surface A is read from the cutting speed map, and the cutting speed v1 corresponding to the grinding surface A is read out from the cutting speed map, and the cutting speed
A control signal S3 for obtaining v1 is output to the work table cutting movement motor 10. As a result, the grindstone 6 is rotated by the wheel head motor 5 at the rotational speed m1, and is advanced by the grindstone section movement motor 4 until the grinding surface A is located on the workpiece surface Wa of the workpiece W. The loading is completed (see Figures 5a and b). When this grindstone indexing is completed, the workpiece W is rotationally driven by the drive motor 12 and moved in the axis-perpendicular direction by the worktable cutting movement motor 10 at the cutting speed v1 (see Fig. 5c). .

そして上記ワークWの被加工面Waが所定の内
径寸法になると、切込み送りは終了し、ワークW
が元の位置に後退されるとともに、砥石6も元の
位置に後退され(第5図d,e参照)、またこの
時加工完了信号が計数回路18に入力される。
When the workpiece surface Wa of the workpiece W reaches a predetermined inner diameter dimension, the cutting feed ends, and the workpiece W
is retracted to its original position, and the grinding wheel 6 is also retracted to its original position (see FIGS. 5d and 5e), and at this time, a machining completion signal is input to the counting circuit 18.

上記第1番目のワークWの加工が終了すると、
これをアンローデイングして次のワークWがロー
デイングされ、上記と同様にして順次加工され
る。そして上記加工完了信号数が研削面Aにて加
工可能なワーク数n1に達すると、計数回路18
から研削面区分数2(=N−1)に対応する研削
面番号Bが出力される。するとホイールヘツドモ
ータ制御回路から研削面Bに対応したモータ回転
数m2を得るための制御信号S1が出力され、砥
石区分移動モータ制御回路から研削面Bが被加工
面Waに位置する移動量を得るための制御信号S
2が出力され、さらにワーク制御回路20から研
削面Bに対応した切込速度v2を得るための制御
信号S3が出力され、これにより研削面Bがワー
クWの被加工面Waに位置するよう砥石割出しが
行なわれ(第5図f,g参照)、しかる後上記切
込速度v2でもつて研削が行なわれる(第5図h
参照)。
When the machining of the first workpiece W is completed,
This is unloaded, and the next workpiece W is loaded and sequentially processed in the same manner as above. When the number of machining completion signals reaches the number n1 of workpieces that can be machined on the grinding surface A, the counting circuit 18
A grinding surface number B corresponding to the number of grinding surface divisions 2 (=N-1) is output from. Then, the wheel head motor control circuit outputs a control signal S1 to obtain the motor rotation speed m2 corresponding to the grinding surface B, and the grinding wheel section movement motor control circuit obtains the amount of movement of the grinding surface B to be located on the workpiece surface Wa. control signal S for
2 is output, and a control signal S3 for obtaining a cutting speed v2 corresponding to the grinding surface B is outputted from the workpiece control circuit 20, whereby the grinding wheel is adjusted so that the grinding surface B is positioned on the workpiece surface Wa of the workpiece W. Indexing is performed (see Figures 5 f and g), and then grinding is performed at the cutting speed v2 (see Figure 5 h).
reference).

そして加工完了信号数がn1+n2に達すると、
計数回路18から研削面番号Cが出力され、上記
と同様にして研削面CによりワークWが研削され
る。そしてワーク加工完了信号数がn1+n2+n3
に達すると、砥石6のドレツシングが行なわれ
る。この場合、ドレツシング装置の揺動アーム1
5aが略水平状態になり、この状態で砥石テーブ
ル2及びワークテーブル8が前進するとともに、
砥石6が回転駆動され、これにより砥石6の研削
面全体がテーパ状に整形され、これが終了すると
ドレツシング信号が計数回路18に入力され、該
回路18から再び研削面番号Aが出力される。
When the number of processing completion signals reaches n1+n2,
The grinding surface number C is output from the counting circuit 18, and the workpiece W is ground by the grinding surface C in the same manner as described above. And the number of workpiece machining completion signals is n1 + n2 + n3
When this point is reached, dressing of the grindstone 6 is performed. In this case, the swinging arm 1 of the dressing device
5a is in a substantially horizontal state, and in this state, the grindstone table 2 and work table 8 move forward,
The grindstone 6 is driven to rotate, thereby shaping the entire grinding surface of the grindstone 6 into a tapered shape. When this is completed, a dressing signal is input to the counting circuit 18, and the circuit 18 outputs the grinding surface number A again.

このように本実施例では、砥石6を軸方向に複
数の研削面A〜Cに区分し、各研削面に応じた加
工条件、例えば砥石回転数m1〜m3、切込速度v1
〜v3でもつて所定数n1〜n3のワークを加工し、
かつ全ての研削面A〜Cがドレツシングを必要と
する時期に研削面全体を同時にドレツシングする
ようにしたので、1回のドレツシングにて加工で
きるワーク数を増大して加工能率を大きく向上で
きる。また従来のように砥石の一部分にて研削し
て他の部分までドレツシングするということはな
く、その結果砥石の寿命を延長できる。
In this embodiment, the grinding wheel 6 is divided into a plurality of grinding surfaces A to C in the axial direction, and the machining conditions are set according to each grinding surface, for example, the number of rotations of the grinding wheel m1 to m3, the cutting speed v1
Even in ~v3, process a predetermined number of workpieces n1 to n3,
In addition, since the entire ground surface is dressed at the same time when all the ground surfaces A to C require dressing, the number of workpieces that can be processed in one dressing operation can be increased and processing efficiency can be greatly improved. Further, unlike the conventional method, it is not necessary to grind one part of the whetstone and then dress the other part, and as a result, the life of the whetstone can be extended.

なお、上記実施例では、砥石6の研削面を3つ
に区分した場合について説明したが、勿論この区
分数は3つに限定されるものではなく、ワークW
の被加工面Waの幅、砥石bの大きさ等によつて
適宜選択されるものである。また、上記実施例で
は研削条件として、砥石の回転速度、切込速度を
研削面毎に変える場合を例にとつて説明したが、
この研削条件は、これ以外にも種々考えられ、例
えば1つの研削面においても加工ワーク数が増加
するにつれて切れ味が低下することからのワーク
数の増加につれて上記切込速度等を変えることが
考えられる。
In the above embodiment, a case has been described in which the grinding surface of the grindstone 6 is divided into three sections, but of course the number of sections is not limited to three, and the workpiece W
The width of the processed surface Wa, the size of the grindstone b, etc. are selected as appropriate. In addition, in the above embodiment, the grinding conditions were explained using an example in which the rotational speed of the grindstone and the cutting speed were changed for each grinding surface.
Various other grinding conditions may be considered.For example, the cutting speed may be changed as the number of workpieces increases, since the sharpness of the grinding surface decreases as the number of workpieces increases. .

また、上記実施例ではワークの内面を研削する
場合について説明したが、本考案はワークの外面
を研削する場合にも適用できる。
Furthermore, although the above embodiment describes the case where the inner surface of the workpiece is ground, the present invention can also be applied to the case where the outer surface of the workpiece is ground.

さらにまた、本考案は、テーパ型の砥石を備え
た研削盤に関するものであるが、砥石の研削面を
軸方向に区分するという考え方は、円柱状の砥石
にて円筒状のワークの内面又は外面を研削する場
合にも応用できるものである。
Furthermore, although the present invention relates to a grinding machine equipped with a tapered type grinding wheel, the idea of dividing the grinding surface of the grinding wheel in the axial direction is based on the idea that a cylindrical grinding wheel can be used to cut the inner or outer surface of a cylindrical workpiece. It can also be applied to grinding.

〔考案の効果〕[Effect of idea]

以上のように本考案に係るテーパ型砥石を備え
た研削盤によれば、砥石の研削面を軸方向に複数
に区分し、各研削面に応じた研削条件でもつて研
削するようにしたので、砥石の1回のドレツシン
グにて加工できるワーク数を増大して加工能率を
大きく向上できる効果があり、また砥石のドレツ
シング回数を低減して砥石の寿命を延長できる効
果がある。
As described above, according to the grinding machine equipped with the tapered grindstone according to the present invention, the grinding surface of the grinding wheel is divided into a plurality of sections in the axial direction, and grinding is performed under grinding conditions according to each grinding surface. This has the effect of increasing the number of workpieces that can be processed with one dressing of the grindstone, greatly improving processing efficiency, and also has the effect of reducing the number of dressings of the grindstone, thereby extending the life of the grindstone.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の一実施例によるテーパ型砥石
を備えた研削盤の構成図、第2図はその研削面区
分数を説明するための図、第3図はその研削面と
ホイールヘツドモータ回転数との関係を示す図、
第4図はその研削面と切込速度との関係を示す
図、第5図aないしhはその動作を説明するため
の図である。 6……砥石、7……砥石駆動装置、14……ワ
ーク駆動装置、16……研削制御装置、A〜C…
…研削面、W……ワーク。
Fig. 1 is a configuration diagram of a grinding machine equipped with a tapered grindstone according to an embodiment of the present invention, Fig. 2 is a diagram for explaining the number of grinding surface sections, and Fig. 3 is a diagram showing the grinding surface and the wheel head motor. Diagram showing the relationship with rotation speed,
FIG. 4 is a diagram showing the relationship between the grinding surface and the cutting speed, and FIGS. 5 a to 5 h are diagrams for explaining the operation. 6... Grinding wheel, 7... Grinding wheel drive device, 14... Work drive device, 16... Grinding control device, A to C...
...Grinding surface, W...Work.

Claims (1)

【実用新案登録請求の範囲】 テーパ型砥石を備えワークのテーパ面を研削す
るようにした研削盤において、 上記砥石の有効研削面幅をワークの被加工面幅
に応じた幅で軸方向に区分した研削面数を演算出
力する研削面区分数演算回路と、 上記砥石のドレツシング完了信号およびワーク
の所定数の加工完了信号によつて砥石を区分移動
させる研削面指示信号を出力する計数回路と、 上記テーパ型砥石を回転駆動するとともに上記
研削面区分数演算回路および計数回路から出力さ
れる研削面指示信号によつて砥石を砥石軸方向に
区分移動させる砥石駆動装置と、 ワークを回動駆動するとともに該ワークの軸直
角方向に切込移動させるワーク駆動装置と、 上記砥石を軸方向に区分してなる複数の研削面
の各々により該研削面に応じた研削条件でもつて
ワークが研削されるよう上記両駆動装置を制御す
る研削制御装置とを備えたことを特徴とするテー
パ型砥石を備えた研削盤。
[Scope of Claim for Utility Model Registration] In a grinding machine equipped with a tapered grindstone for grinding the tapered surface of a workpiece, the effective grinding surface width of the grindstone is divided in the axial direction by a width corresponding to the width of the processed surface of the workpiece. a grinding surface section number calculation circuit that calculates and outputs the number of grinding surfaces that have been ground, and a counting circuit that outputs a grinding surface instruction signal that moves the grindstone section by section according to the dressing completion signal of the grindstone and the machining completion signal of a predetermined number of workpieces; a grindstone drive device that rotationally drives the tapered grindstone and moves the grindstone section by section in the direction of the grindstone axis based on the grinding surface instruction signal output from the grinding surface division number calculation circuit and the counting circuit; and a grindstone drive device which rotationally drives the workpiece. and a work drive device that moves the work in a direction perpendicular to the axis of the work, and a workpiece that is ground by each of the plurality of grinding surfaces formed by dividing the grindstone in the axial direction under grinding conditions according to the grinding surface. A grinding machine equipped with a tapered grindstone, characterized in that it is equipped with a grinding control device that controls both of the above drive devices.
JP1984191558U 1984-12-18 1984-12-18 Expired JPH0226606Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1984191558U JPH0226606Y2 (en) 1984-12-18 1984-12-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1984191558U JPH0226606Y2 (en) 1984-12-18 1984-12-18

Publications (2)

Publication Number Publication Date
JPS61105550U JPS61105550U (en) 1986-07-04
JPH0226606Y2 true JPH0226606Y2 (en) 1990-07-19

Family

ID=30748998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1984191558U Expired JPH0226606Y2 (en) 1984-12-18 1984-12-18

Country Status (1)

Country Link
JP (1) JPH0226606Y2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20100667A1 (en) 2010-12-17 2012-06-18 Bayer Materialscience Ag COMPOSITION OF POLYMERS WITH HIGH STABILITY HEAT ABSORPTION CHARACTERISTICS TO THE ATMOSPHERIC AGENTS.
IT1403380B1 (en) 2010-12-17 2013-10-17 Bayer Materialscience Ag COMPOSITION OF POLYMERS WITH HIGH STABILITY HEAT ABSORPTION CHARACTERISTICS TO THE ATMOSPHERIC AGENTS.
EP4092070A1 (en) 2021-05-17 2022-11-23 Covestro Deutschland AG Reduction of the content of specific salts of sulfonic acid, sulfonamide or sulfonimide derivatives in wastewater
EP4092075A1 (en) 2021-05-17 2022-11-23 Covestro Deutschland AG Flame retardant composition comprising 0.040% to 0.095% by weight of a flame retardant
CN117396536A (en) 2021-05-31 2024-01-12 科思创德国股份有限公司 Thermoplastic polycarbonate compositions
CN117529526A (en) 2021-06-18 2024-02-06 科思创德国股份有限公司 Flame retardant polycarbonate compositions with high CTI
KR20240037249A (en) 2021-07-27 2024-03-21 코베스트로 도이칠란트 아게 Hydrolysis-resistant polycarbonate composition
KR20240037983A (en) 2021-08-04 2024-03-22 코베스트로 도이칠란트 아게 Polycarbonate compositions with high CTI
WO2023131585A1 (en) 2022-01-10 2023-07-13 Covestro Deutschland Ag Polycarbonate composition and shaped articles made therefrom
WO2023180228A1 (en) 2022-03-25 2023-09-28 Covestro Deutschland Ag Polycarbonate compositions having a high cti
WO2023180227A1 (en) 2022-03-25 2023-09-28 Covestro Deutschland Ag Polycarbonate compositions having a high cti
WO2023198594A1 (en) 2022-04-14 2023-10-19 Covestro Deutschland Ag Thermally conductive flame-proof polycarbonate compositions having a high comparative tracking index
WO2023202910A1 (en) 2022-04-19 2023-10-26 Covestro Deutschland Ag Method for producing a plastic compound having improved properties
EP4357418A1 (en) 2022-10-18 2024-04-24 Covestro Deutschland AG Polycarbonate composition
WO2024068402A1 (en) 2022-09-28 2024-04-04 Covestro Deutschland Ag Polycarbonate composition
WO2024081222A1 (en) 2022-10-10 2024-04-18 Lumileds Llc Over moulded led module with integrated heatsink and optic
WO2024081008A1 (en) 2022-10-10 2024-04-18 Lumileds Llc Over moulded led module with integrated heatsink and optic
EP4378492A1 (en) 2022-12-01 2024-06-05 Covestro Deutschland AG Medical device with high intralipid resistance made from polycarbonate material

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5471285U (en) * 1977-10-28 1979-05-21
JPS5781055U (en) * 1981-09-24 1982-05-19

Also Published As

Publication number Publication date
JPS61105550U (en) 1986-07-04

Similar Documents

Publication Publication Date Title
JPH0226606Y2 (en)
US4864779A (en) Grinding method and apparatus of orientation flat
US4621463A (en) Method of grinding cams on a camshaft
JP2811515B2 (en) Non-circular work grinding method and apparatus
JP3490534B2 (en) Non-circular workpiece grinding method and apparatus
EP0093352B1 (en) Method of forming cam by grinding
US4587765A (en) Method of an apparatus for grinding work surface
JP3800360B2 (en) Processing method of involute tooth profile
JPS6362650A (en) Polishing machine
CN105563300A (en) Rotary elastomer and grinding-polishing equipment
JP2579469B2 (en) Semiconductor wafer dicing method and apparatus
JPS6411421B2 (en)
JP2002103192A (en) Aspheric curved surface machining method
JPS6348663B2 (en)
JP3155676B2 (en) Non-circular body grinding apparatus and grinding method
JP2002239887A (en) Polygonal workpiece grinding method and device
US3412643A (en) Profile milling method
JP2590976B2 (en) Whetstone shaping device
JPH07308820A (en) Gear horning method and device therefor
JPS63105887A (en) Centerless grinding machine and its dressing method
JP3170483B2 (en) Curved surface processing method
SU656813A1 (en) Numerically controlled vertical grinder
JP3591783B2 (en) Drive control device for CNC jig grinding machine
JP3130770B2 (en) Non-circular grinding machine
JP2892407B2 (en) Cam grinding method