JPH02264848A - Inspection of optical disk recording medium - Google Patents

Inspection of optical disk recording medium

Info

Publication number
JPH02264848A
JPH02264848A JP8618689A JP8618689A JPH02264848A JP H02264848 A JPH02264848 A JP H02264848A JP 8618689 A JP8618689 A JP 8618689A JP 8618689 A JP8618689 A JP 8618689A JP H02264848 A JPH02264848 A JP H02264848A
Authority
JP
Japan
Prior art keywords
image
image signal
recording medium
substrate
illumination light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8618689A
Other languages
Japanese (ja)
Inventor
Nobuyuki Adachi
安達 延行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP8618689A priority Critical patent/JPH02264848A/en
Publication of JPH02264848A publication Critical patent/JPH02264848A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve yield by performing subtraction processing at every mutually corresponding pixels between the second image signal and the image signal carrying a mask image due to the first image signal and detecting a flaw on the basis of the difference signal. CONSTITUTION:Illumination light 13 is emitted from a light source 11 to illuminate an optical disk 10 so as to form an angle of about 45 deg. within the plane vertical to the surface of the disk with respect to the tangential direction of a group 11c. The part of this disk 10 is imaged by a television camera 15 and an image signal S1 is inputted to an image processor 16. Next, the signal S1 is subjected to binarization processing in the processor 16 and an image signal S1' is inputted to an image display means 17. When foreign matter is present on the surface of the substrate of the optical disk 10, illumination light 13 is scattered and the part of the foreign matter is imaged as a specifically bright part. When the threshold value of binarization processing is set appropriately, the bright image showing the foreign matter is displayed on the means 17 and the size of the image thereof, that is, the size of the foreign matter can be discriminated by utilizing the scale in the means 17.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光ディスクにおける欠陥を検査する方法、特
に詳細には基板表面の欠陥と、該基板上に形成された記
録層の表面の欠陥とを区別して検出できるようにした光
ディスク記録媒体の検査方法に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for inspecting defects in an optical disc, and more specifically, to inspecting defects on the surface of a substrate and defects on the surface of a recording layer formed on the substrate. The present invention relates to an inspection method for an optical disc recording medium that can distinguish and detect.

(従来の技術) 各種情報を記録した再生専用の光ディスクは、アドレス
情報等の制御用情報および記録情報を担持するビット列
が、同心円状あるいは渦巻状に延びるように配設されて
なる。また、追記型の光ディスクや消去書換可能な光デ
ィスク(本明細書では、光磁気ディスクも含めて広く光
ディスクと称することとする)においても、上記アドレ
ス情報等の制御用情報を担持するピットや案内用グルー
プが設けられ、それらは上述と同様に配設される。
(Prior Art) A read-only optical disk on which various information is recorded has bit strings carrying control information such as address information and recording information arranged so as to extend concentrically or spirally. In addition, even in write-once optical disks and erasable/rewritable optical disks (herein referred to broadly as optical disks, including magneto-optical disks), there are also pits and guides that carry control information such as the address information. Groups are provided and they are arranged as described above.

上述のような各種光ディスク記録媒体における欠陥を検
査する方法として、例えば特開昭59−9546号公報
に示されるように、記録媒体に光を照射し、上述のビッ
ト列やグループ等の光学的なトラックによって回折され
たこの光を検出し、その検出結果に基づいて欠陥を検査
する方法が公知となっている。また一方、例えば特開昭
61−214248号公報に示されるように、記録媒体
を2次元的に撮像し、それによって得られた画像信号に
基づいて欠陥検査を行なうことにより、欠陥検査の高速
化を図った方法も公知となっている。
As a method for inspecting defects in various optical disc recording media as described above, for example, as shown in Japanese Patent Laid-Open No. 59-9546, the recording medium is irradiated with light and optical tracks such as the above-mentioned bit strings and groups are detected. A method is known in which this light diffracted by a laser beam is detected and defects are inspected based on the detection results. On the other hand, as shown in Japanese Patent Application Laid-Open No. 61-214248, for example, the speed of defect inspection can be increased by capturing a two-dimensional image of a recording medium and performing defect inspection based on the image signal obtained thereby. Methods aiming at this are also known.

(発明が解決しようとする課題) ところで、光ディスク記録媒体は、透明なPC(ポリカ
ーボネイト)等の基板上に記録層が形成され、欠陥はこ
の基板の露出した表面(記録層と反対側の表面)に生じ
たものと、記録層の表面(基板に接する面)に生じたも
のに大別される。
(Problem to be Solved by the Invention) In an optical disc recording medium, a recording layer is formed on a transparent substrate such as PC (polycarbonate), and defects occur on the exposed surface of this substrate (the surface opposite to the recording layer). There are two main types: those that occur on the surface of the recording layer (the surface in contact with the substrate) and those that occur on the surface of the recording layer (the surface in contact with the substrate).

この2P4i類の欠陥のうちの前者は後者と比べると、
同程度の大きさであれば、光ディスク使用の上で致命的
なものとなる確率が低い。すなわち、光ディスク記録媒
体に信号を記録するための記録ビームやそこから信号を
読み取る読取ビームは、基板表面部分を通過する際には
比較的ビーム径が太きく、該基板内を通過するにつれて
紋られた上で記録層に到達するので、基板表面の欠陥の
像は記録層上で著しく小さくなるからである。この点を
考慮すると、上記2種類の欠陥を明確に区別して検出し
、基板表面の欠陥に関しては比較的大サイズの不良判定
しきい値を設定し、記録層表面の欠陥に関しては比較的
小サイズの不良判定しきい値を設定し、各種類の欠陥の
サイズがそれぞれのしきい値を上回ったら、その記録媒
体を不良品と判定するのが好ましい。
Compared to the latter, the former of these 2P4i-type defects is
If the size is about the same, there is a low probability that it will be fatal to the use of the optical disc. In other words, the recording beam for recording signals on an optical disk recording medium and the reading beam for reading signals from the optical disk recording medium have a relatively large beam diameter when passing through the surface portion of the substrate, and become distorted as they pass through the substrate. This is because the image of a defect on the substrate surface becomes significantly smaller on the recording layer because it reaches the recording layer after reaching the recording layer. Considering this point, the above two types of defects should be clearly distinguished and detected, and a relatively large defect judgment threshold value should be set for defects on the substrate surface, and a relatively small defect judgment threshold should be set for defects on the surface of the recording layer. It is preferable to set a defective determination threshold value for each type of defect, and to determine that the recording medium is defective when the size of each type of defect exceeds the respective threshold value.

しかしながら、従来の欠陥検査方法では、上記2種類の
欠陥を区別して検出することは不可能であった。そのた
め従来は、上述の不良判定しきい値として一律に、記録
層表面の欠陥を考慮した比較的小サイズの値を採用して
いた。しかしそのようにすれば当然ながら、致命的とな
るほどには大きくない基板表面の欠陥も不良判定の根拠
とされるので、欠陥検査が不必要に厳しくなるいわゆる
過検を招くことになる。
However, with conventional defect inspection methods, it has been impossible to distinguish and detect the above two types of defects. For this reason, conventionally, a relatively small value that takes into account defects on the surface of the recording layer has been uniformly adopted as the above-mentioned defect determination threshold. However, if this is done, defects on the surface of the substrate that are not large enough to be fatal will of course be used as the basis for determining the defect, which will lead to so-called over-inspection, which will make the defect inspection unnecessarily strict.

そこで本発明は、上記2種類の欠陥を区別して検出する
ことができる光ディスク記録媒体の検査方法を提供する
ことを目的とするものである。
Therefore, it is an object of the present invention to provide an optical disc recording medium inspection method that can distinguish and detect the above two types of defects.

(課題を解決するための手段及び作用)本発明による光
ディスク記録媒体の検査方法は、先に述べたように透明
な基板上に記録層が形成され、この記録層に同心円状あ
るいは渦巻状に延びる光学的なトラックが設けられてな
る光ディスク記録媒体の欠陥を検査する方法において、
基板の記録層設置側と反対の表面側から記録媒体に、ト
ラック接線方向に対して記録媒体表面と垂直な面内で角
度をなす方向から第1の照明光を照射し、 この第1の照明光が照射された記録媒体の部分を撮像手
段で撮像して第1の画像信号を得、この第1の画像信号
に基づいて基板表面上の欠陥を検出し、 基板の記録層設置側と反対の表面側から記録媒体に、デ
ィスク半径方向に対して記録媒体表面と垂直な面内で角
度をなす方向から第2の照明光を照射し、 この第2の照明光照射による回折像を撮像手段で撮像し
て第2の画像信号を得るとともに、上記第1の画像信号
による画像を、それにおける基板表面上の1点が、第2
の照明光による該1点の記録層表面への投射点と一致す
るように変換し、 この変換画像と、上記第1の画像信号による画像とを合
成してマスク像を形成し、 上記第2の画像信号とこのマスク像を担う画像信号との
間で、相対応する画素毎に減算処理を行ない、その差信
号に基づいて上記記録層表面上の欠陥を検出することを
特徴とするものである。
(Means and Effects for Solving the Problems) As described above, in the method for inspecting an optical disk recording medium according to the present invention, a recording layer is formed on a transparent substrate, and a recording layer is formed on the recording layer in a concentric or spiral manner. In a method for inspecting defects in an optical disc recording medium provided with optical tracks,
irradiating the recording medium with first illumination light from the surface side of the substrate opposite to the recording layer installation side from a direction forming an angle in a plane perpendicular to the recording medium surface with respect to the track tangential direction; A first image signal is obtained by imaging the portion of the recording medium irradiated with light by an imaging means, and a defect on the substrate surface is detected based on the first image signal, and a defect on the substrate surface opposite to the recording layer installation side is detected. A second illumination light is irradiated onto the recording medium from the surface side of the disc from a direction forming an angle in a plane perpendicular to the surface of the recording medium with respect to the radial direction of the disk, and a diffraction image due to the irradiation of the second illumination light is captured by an imaging means. to obtain a second image signal, and one point on the substrate surface in the image based on the first image signal is a second image signal.
converting the image so that it coincides with the projection point of the illumination light onto the surface of the recording layer, and combining this converted image with the image based on the first image signal to form a mask image; A subtraction process is performed for each corresponding pixel between the image signal of the mask image and the image signal that carries the mask image, and defects on the surface of the recording layer are detected based on the difference signal. be.

(実 施 例) 以下、図面に示す実施例に基づいて本発明の詳細な説明
する。
(Example) Hereinafter, the present invention will be described in detail based on an example shown in the drawings.

第1図は、本発明の方法によって光ディスク記録媒体の
欠陥検査を行なう装置を示すものである。
FIG. 1 shows an apparatus for inspecting optical disc recording media for defects using the method of the present invention.

本例における記録媒体は、追記型光ディスク10である
。この光ディスク10は第2図に詳しく示すように、前
記PC等の基板10a上に反射膜等からなる記録層10
bが形成されてなり、この記録層10bには例えば同心
円状に延びる多数の案内用グループIOcが形成されて
いる。欠陥検査に際してこの光ディスク10は、第1図
中上記基板10aが上側に位置する状態に置かれる。
The recording medium in this example is a write-once optical disc 10. As shown in detail in FIG. 2, this optical disc 10 has a recording layer 10 made of a reflective film etc. on a substrate 10a of the PC or the like.
b is formed, and a large number of guiding groups IOc extending concentrically, for example, are formed on this recording layer 10b. At the time of defect inspection, the optical disc 10 is placed in such a state that the substrate 10a is located on the upper side in FIG.

この光ディスク10には、まず第1の光源11から第1
の照明光13が照射される。この光源11としては、例
えばキセノンランプ等のストロボ照明ランプが用いられ
る。またこの第1の照明光13は、上記グループI(l
cの接線方向に対してディスク表面と垂直な面内で例え
ば45″程度の角度をなす方向から照射される。この第
1の照明光13が照射された上記光ディスクIOの部分
は、CCDカメラ等のテレビカメラ15によって撮像さ
れる。このテレビカメラ15は一例として画素数40万
程度のもので、光ディスクIO上の約1010X8の領
域10dを撮像する。
This optical disc 10 is first provided with a first light source 11 and a first light source 11.
illumination light 13 is emitted. As this light source 11, for example, a strobe illumination lamp such as a xenon lamp is used. Further, this first illumination light 13 is transmitted to the group I (l
It is irradiated from a direction forming an angle of, for example, about 45'' in a plane perpendicular to the disk surface with respect to the tangential direction of c.The part of the optical disk IO that is irradiated with this first illumination light 13 is illuminated by a CCD camera, etc. The image is taken by a television camera 15. This television camera 15 has, for example, about 400,000 pixels, and images an area 10d of approximately 1010×8 on the optical disk IO.

上記テレビカメラ15が出力する画像信号(ビデオ信号
)Slは、画像処理装置16に入力される。
An image signal (video signal) Sl output from the television camera 15 is input to an image processing device 16.

この画像処理装置1Gは、上記画像信号S1に基づいて
、前記基板LOa表面の欠陥を検出する。以下、その処
理の手順を説明する。画像処理装置16はA/D変換器
や画像メモリを内蔵し、デジタル化した画像信号S1を
2値化処理し、その処理後の画像信号Sl’をCRT等
の画像表示手段■7に人力する。第2図に示すように、
もし上記光ディスク10の基板10aの表面に異物Aが
存在すると、その部分において上記第1の照明光13が
散乱する。つまりこの異物Aの部分は、その周囲部分に
比べて特異的に明るい部分として撮像される。そこで上
記2値化処理のしきい値を適切に設定しておけば、第4
図(1)に示すように、上記異物Aを示す明るい(例え
ば白の)像Paが暗い(例えば黒の)背景部H内に存在
する画像が、前記画像表示手段17に表示されることに
なる。この像Paの大きさすなわち異物Aの大きさは、
例えば上記画像表示手段17内に表示されたスケールを
利用して判別することができるし、あるいは公知の求積
アルゴリズムを前記画像処理装置16に組み込んで、自
動的に求めることも可能である。この異物へつまり基板
表面欠陥については、例えば直径500μm相当と比較
的大サイズのしきい1直を設定し、このしきい値を超え
る大きさの基板表面欠陥が存在する場合は、その光ディ
スク10を不良品と判定する。
This image processing device 1G detects defects on the surface of the substrate LOa based on the image signal S1. The procedure for this process will be explained below. The image processing device 16 has a built-in A/D converter and image memory, binarizes the digitized image signal S1, and manually outputs the processed image signal Sl' to an image display means 7 such as a CRT. . As shown in Figure 2,
If foreign matter A exists on the surface of the substrate 10a of the optical disc 10, the first illumination light 13 will be scattered at that portion. In other words, this part of the foreign object A is imaged as a part that is uniquely brighter than the surrounding parts. Therefore, if the threshold value of the binarization process described above is set appropriately, the fourth
As shown in FIG. 1, an image in which a bright (e.g., white) image Pa representing the foreign substance A exists in a dark (e.g., black) background H is displayed on the image display means 17. Become. The size of this image Pa, that is, the size of the foreign object A, is
For example, it can be determined using the scale displayed in the image display means 17, or it can be automatically determined by incorporating a known quadrature algorithm into the image processing device 16. Regarding substrate surface defects caused by foreign particles, a relatively large threshold size, for example, equivalent to a diameter of 500 μm, is set, and if a substrate surface defect with a size exceeding this threshold exists, the optical disc 10 is The product is determined to be defective.

なお、上記画像処理装置1Gは、以上説明した2値化画
像を担う画像信号Sl’ を、後述する記録層表面欠陥
検査のために内部メモリに記憶しておく。
The image processing device 1G stores the image signal Sl' carrying the binary image described above in an internal memory for inspection of recording layer surface defects, which will be described later.

第2図に示すように光ディスクlOにおいては、前記記
録層10bの表面に異物Cが存在して欠陥となることも
ある。以下、この異物Cの検出について説明する。この
欠陥検出に際して、前記第1の光illは消灯され、そ
れとは別の第2の光源12が点灯されて、第2の照明光
14が光ディスク10に照射される。この第2の光源1
2も、上記第1の光源11と同様のものである。この第
2の照明光■4は、光ディスク10の半径方向に対して
ディスク表面と垂直な市内で例えば45″程度の角度を
なす方向から照射される。このような方向から照射され
た第2の照明光14は、一定間隔で規則的に並ぶ前記グ
ループLOcに上って回折し、その回折像が前記テレビ
カメラ15によって撮像される。
As shown in FIG. 2, in the optical disc 1O, foreign matter C may be present on the surface of the recording layer 10b, resulting in a defect. Detection of this foreign substance C will be explained below. When detecting this defect, the first light ill is turned off, a separate second light source 12 is turned on, and the second illumination light 14 is irradiated onto the optical disc 10. This second light source 1
2 is also similar to the first light source 11 described above. This second illumination light (4) is irradiated from a direction that is perpendicular to the disk surface and forms an angle of, for example, about 45'' with respect to the radial direction of the optical disc 10. The illumination light 14 is diffracted by the groups LOc arranged regularly at regular intervals, and the diffraction image thereof is captured by the television camera 15.

このときテレビカメラ15が出力する画像信号S2も、
前述の画像処理装置16に入力される。上記回折像は照
度ムラが大きいので、この場合は欠陥部分を検出するた
めに、その輪郭部分が抽出される。すなわち画像処理装
置16は上記画像信号S2に対して微分処理等を施し、
回折像の濃度変化が著しく大きい部分を抽出する。次に
該画像処理装置1Bは、この微分処理後の画像信号に対
して所定のしきい値に基づいて2値化処理を行ない、画
像信号S20を得る。上記の回折像には第2図に示した
基板10a表面の異物Aと、記録層10b表面の異物C
とに加えて、上記異物Aの記録層10b表面への射影B
が示されるようになる。そこで、もし上記微分処理と2
値化処理後の画像信号S2゜に基づいて前記画像表示手
段17において画像を表示すれば、第4図(4)に示す
ように、上記異物A1射影Bおよび異物Cの各輪郭EB
、EbbおよびECが示されることになる。なおこの輪
郭抽出画像信号S2oに対して、適宜輪郭強調処理を施
すようにしてもよい。画像処理装置1Gは上記画像信号
S2.を、−たんその内部メモリに記憶させる。
At this time, the image signal S2 outputted by the television camera 15 is also
The image is input to the image processing device 16 described above. Since the above-mentioned diffraction image has large illuminance unevenness, in this case, in order to detect the defective portion, its outline portion is extracted. That is, the image processing device 16 performs differential processing etc. on the image signal S2,
Extracts the portion of the diffraction image where the density change is significantly large. Next, the image processing device 1B performs binarization processing on the differentially processed image signal based on a predetermined threshold value to obtain an image signal S20. The above diffraction image shows foreign matter A on the surface of the substrate 10a and foreign matter C on the surface of the recording layer 10b shown in FIG.
In addition, projection B of the foreign matter A onto the surface of the recording layer 10b
will be shown. Therefore, if the above differential processing and 2
If an image is displayed on the image display means 17 based on the image signal S2° after the value processing, each outline EB of the foreign object A1 projection B and foreign object C will be displayed as shown in FIG.
, Ebb and EC will be shown. Note that this contour extracted image signal S2o may be subjected to contour enhancement processing as appropriate. The image processing device 1G receives the image signal S2. is stored in the -tan's internal memory.

なお、上記異物A1射影Bおよび異物Cの部分を通過す
るラインに沿った上記画像信号S2の変化の様子は、第
3図に示すようなものとなる。図示される通りこの画像
信号S2は、基板108表面の異物Aを担う高レベル(
高輝度)部分Saと、記録層10bの表面の異物Cを担
う低レベル部分Scとに加えて、射影Bを担う低レベル
部分sbとを有する。もしこの低レベル部分sbが生じ
なければ、しきい値処理をすることにより、基板108
表面の異物Aと記録層10b表面の異物Cとを区別して
検出することができるが、実際は上記の通りであるから
、そのようなしきい値処理による区別は不可能である。
The image signal S2 changes along a line passing through the projection B of the foreign object A1 and the projection B of the foreign object C, as shown in FIG. As shown in the figure, this image signal S2 has a high level (
In addition to a high-brightness portion Sa, a low-level portion Sc that is responsible for the foreign matter C on the surface of the recording layer 10b, and a low-level portion sb that is responsible for the projection B. If this low level portion sb does not occur, the substrate 108 can be
Although foreign matter A on the surface and foreign matter C on the surface of the recording layer 10b can be detected separately, in reality, as described above, it is impossible to distinguish them by such threshold processing.

次に前記画像処理装置16は、内部メモリに記憶させて
おいた前記画像信号Sl’ に対して、該信号Sl’ 
による画像(第4図(1)のもの)上の一点を、前記第
2の照明光■4照射による該1点の記録層10b表面へ
の投影点と一致させる変換処理を行なう。この変換処理
後の画像信号S1”に基づいて画像再生すれば、もし第
4図(1)の画像に前述のような像Paが存在する場合
、このRPaは変換処理後にはX軸方向にΔL(第2図
参照)だけ移動して第4図(2)に示す変換像Pa’ 
となり、第4図(4)の画像における射影Bの輪郭Eb
と位置が揃うようになる。なお上記の移動量ΔLは、前
記第2の照明光14の基板10a表面に対する照射角度
をθ、この基板10aの厚さと屈折率をそれぞれdln
としたとき、 とすればよい。
Next, the image processing device 16 processes the image signal Sl' stored in the internal memory.
A conversion process is performed to match one point on the image (shown in FIG. 4 (1)) with the point projected onto the surface of the recording layer 10b by the second illumination light (4). If the image is reproduced based on the image signal S1'' after this conversion process, if the image Pa as described above exists in the image shown in FIG. (See Figure 2) and the transformed image Pa' shown in Figure 4 (2).
Then, the contour Eb of projection B in the image of Fig. 4 (4)
The positions will be aligned. Note that the above movement amount ΔL is determined by θ being the irradiation angle of the second illumination light 14 with respect to the surface of the substrate 10a, and dln being the thickness and refractive index of the substrate 10a, respectively.
When , you can write .

次に画像処理装置16は、上記画像信号Sl’ と81
“とを合成して、第4図(3)に示すように、像Paと
Pa’がともに示される画像を担う画像信号Sloを生
成する。なおこの場合、上記像PaとPa’ とを多少
膨張させる処理を行なってお(のが好ましい。
Next, the image processing device 16 processes the image signals Sl' and 81
As shown in FIG. 4 (3), an image signal Slo is generated which carries an image in which both images Pa and Pa' are shown. In this case, the images Pa and Pa' are It is preferable to perform an expansion process.

次に画像処理装置16は、内部メモリに記憶しておいた
前記画像信号S2.と上記画像信号S18との間で、相
対応する画素毎に 5sub −82o −51゜ なる減算処理を行なう。こうして得られた差信号S s
ubは前記画像表示手段17に入力され、画像表示に供
せられる。こうして表示される画像は第4図(5)に示
すように、同図(4)に示した輪郭EaおよびEbが消
去され、前記記録層10b表面の異物Cの輪郭Ecのみ
が抽出されたものとなる。したがってこの場合も、先に
述べた基板1(la裏表面欠陥のサイズ検出と同様にし
て、記録層10b表面の欠陥のサイズを検出することが
できる。この記録層表面欠陥については、例えば直径5
0μm相当と比較的小サイズのしきい値を設定し、この
しきい値を超える大きさの記録層表面欠陥が存在する場
合は、その光ディスクIOを不良品と判定する。
Next, the image processing device 16 processes the image signal S2. and the image signal S18, a subtraction process of 5 sub -82o -51 degrees is performed for each corresponding pixel. The difference signal S s obtained in this way
ub is input to the image display means 17 and is provided for image display. The image thus displayed is, as shown in FIG. 4 (5), in which the contours Ea and Eb shown in FIG. becomes. Therefore, in this case as well, the size of the defect on the surface of the recording layer 10b can be detected in the same manner as the size detection of the defect on the back surface of the substrate 1 (la) described above.
A relatively small threshold value equivalent to 0 μm is set, and if there is a recording layer surface defect with a size exceeding this threshold value, the optical disc IO is determined to be a defective product.

(発明の効果) 以上詳細に説明した通り本発明の光ディスク記録媒体の
検査方法においては、光ディスク記録媒体の基板表面欠
陥と、記録層表面欠陥とを明確に区別して検出すること
ができる。したがって本方法によれば、上記2種類の各
欠陥毎に最適な不良判定しきい値を設定して、記録媒体
の不良判定を行なうことが可能となり、前述した過検を
抑えて、光ディスク記録媒体製造の歩留りを改善するこ
とができる。
(Effects of the Invention) As described above in detail, in the optical disc recording medium inspection method of the present invention, substrate surface defects and recording layer surface defects of an optical disc recording medium can be clearly distinguished and detected. Therefore, according to this method, it is possible to set the optimal defect judgment threshold for each of the above two types of defects and judge the recording medium as defective, thereby suppressing the above-mentioned over-detection and Manufacturing yield can be improved.

また本発明の方法によれば、上記2種類の欠陥を区別し
て検出できるから、欠陥発生原因の解析を行なう場合に
は、その解析精度を高める効果も得られる。
Furthermore, according to the method of the present invention, since the two types of defects described above can be detected separately, it is possible to improve the accuracy of analysis when analyzing the cause of defect occurrence.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施する装置の一例を示す概略斜
視図、 第2図は本発明に係る光ディスクの断面形状と欠陥状態
を示す概略図、 第3図は本発明方法の一ステップにおいて得られる画像
信号の変化の様子を示すグラフ1、第4図は本発明方法
の各ステップにおいて得られる画像信号に1よる画像を
説明する説明図である。 10・・・光ディスク   10a・・・基板10b・
・・記録層    10c・・・グループ11・・・第
1の光源   12・・・第2の光源13・・・第1の
照明光  14・・・第2の照明光!5・・・テレビカ
メラ  16・・・画1蒙処理装置17・・・画像表示
手段 第1図 第4図 (+) 第3図
FIG. 1 is a schematic perspective view showing an example of an apparatus for carrying out the method of the present invention, FIG. 2 is a schematic diagram showing the cross-sectional shape and defect state of an optical disk according to the present invention, and FIG. 3 is a diagram showing one step of the method of the present invention. Graph 1 showing changes in the obtained image signal and FIG. 4 are explanatory diagrams illustrating an image based on the image signal obtained in each step of the method of the present invention. 10... Optical disk 10a... Substrate 10b.
...Recording layer 10c...Group 11...First light source 12...Second light source 13...First illumination light 14...Second illumination light! 5... Television camera 16... Image processing device 17... Image display means Fig. 1 Fig. 4 (+) Fig. 3

Claims (1)

【特許請求の範囲】 透明な基板上に記録層が形成され、この記録層に同心円
状あるいは渦巻状に延びる光学的なトラックが設けられ
てなる光ディスク記録媒体の欠陥を検査する方法であっ
て、 前記基板の記録層設置側と反対の表面側から前記記録媒
体に、トラック接線方向に対して記録媒体表面と垂直な
面内で角度をなす方向から第1の照明光を照射し、 この第1の照明光が照射された記録媒体の部分を撮像手
段で撮像して第1の画像信号を得、この第1の画像信号
に基づいて前記基板表面上の欠陥を検出し、 前記基板の記録層設置側と反対の表面側から前記記録媒
体に、ディスク半径方向に対して記録媒体表面と垂直な
面内で角度をなす方向から第2の照明光を照射し、 この第2の照明光照射による回折像を撮像手段で撮像し
て第2の画像信号を得るとともに、前記第1の画像信号
による画像を、それにおける基板表面上の1点が、前記
第2の照明光による該1点の記録層表面への投射点と一
致するように変換し、 この変換画像と、前記第1の画像信号による画像とを合
成してマスク像を形成し、 前記第2の画像信号とこのマスク像を担う画像信号との
間で、相対応する画素毎に減算処理を行ない、その差信
号に基づいて前記記録層表面上の欠陥を検出することを
特徴とする光ディスク記録媒体の検査方法。
[Scope of Claims] A method for inspecting defects in an optical disc recording medium, in which a recording layer is formed on a transparent substrate, and optical tracks extending concentrically or spirally are provided on the recording layer, comprising: irradiating the recording medium with a first illumination light from a direction forming an angle in a plane perpendicular to the recording medium surface with respect to the track tangential direction from the surface side of the substrate opposite to the recording layer installation side; A portion of the recording medium irradiated with the illumination light is imaged by an imaging means to obtain a first image signal, a defect on the surface of the substrate is detected based on the first image signal, and a defect on the surface of the substrate is detected; A second illumination light is irradiated onto the recording medium from the surface side opposite to the installation side from a direction forming an angle in a plane perpendicular to the recording medium surface with respect to the disk radial direction, and by this second illumination light irradiation. A second image signal is obtained by capturing a diffraction image with an imaging means, and one point on the substrate surface in the image based on the first image signal is recorded by the second illumination light. converting the image so that it coincides with the projection point on the layer surface, combining this converted image with an image based on the first image signal to form a mask image, and combining the second image signal and this mask image. 1. A method for inspecting an optical disk recording medium, comprising performing subtraction processing for each corresponding pixel with an image signal, and detecting defects on the surface of the recording layer based on the difference signal.
JP8618689A 1989-04-05 1989-04-05 Inspection of optical disk recording medium Pending JPH02264848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8618689A JPH02264848A (en) 1989-04-05 1989-04-05 Inspection of optical disk recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8618689A JPH02264848A (en) 1989-04-05 1989-04-05 Inspection of optical disk recording medium

Publications (1)

Publication Number Publication Date
JPH02264848A true JPH02264848A (en) 1990-10-29

Family

ID=13879739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8618689A Pending JPH02264848A (en) 1989-04-05 1989-04-05 Inspection of optical disk recording medium

Country Status (1)

Country Link
JP (1) JPH02264848A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168793A (en) * 2000-11-30 2002-06-14 Fuji Photo Film Co Ltd Surface defect inspection device and surface defect inspection method
JP2005114630A (en) * 2003-10-09 2005-04-28 Sony Corp Irregular pattern inspecting apparatus and irregular pattern inspection method
JP2016009035A (en) * 2014-06-23 2016-01-18 株式会社キーエンス Enlargement observation device, enlarged image observation method, enlarged image observation program and computer readable recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002168793A (en) * 2000-11-30 2002-06-14 Fuji Photo Film Co Ltd Surface defect inspection device and surface defect inspection method
JP2005114630A (en) * 2003-10-09 2005-04-28 Sony Corp Irregular pattern inspecting apparatus and irregular pattern inspection method
JP4581370B2 (en) * 2003-10-09 2010-11-17 ソニー株式会社 Irregular pattern inspection apparatus and irregular pattern inspection method
JP2016009035A (en) * 2014-06-23 2016-01-18 株式会社キーエンス Enlargement observation device, enlarged image observation method, enlarged image observation program and computer readable recording medium

Similar Documents

Publication Publication Date Title
CN101163960B (en) Method for inspecting a foreign matter on mirror-finished substrate
US7295301B2 (en) Dual stage defect region identification and defect detection method and apparatus
JPH01313741A (en) Method and device for inspecting surface of disk
US5648850A (en) Method and device for quality control of objects with polarized light
JPH0814544B2 (en) Floppy disk inspection method
US20100246356A1 (en) Disk surface defect inspection method and apparatus
US5917933A (en) Method and device for carrying out the quality control of an object
US8634070B2 (en) Method and apparatus for optically inspecting a magnetic disk
TW200527405A (en) Appearance inspector
JPH02264848A (en) Inspection of optical disk recording medium
JP3025946B2 (en) Method and apparatus for measuring surface roughness of object
JPH11515108A (en) Double-sided optical disk surface inspection device
JPS63284455A (en) Surface defect inspection device
JPH10253543A (en) Instrument and method for visual examination of substrate
JPH0868760A (en) Surface laser flaw detector
JPS60125510A (en) Defect examining device of disc body
JPH0311403B2 (en)
JP3216669B2 (en) Optical disk defect inspection method
JP3487760B2 (en) How to inspect a disk
JPS62267650A (en) Method and device for detecting defect in face plate
JP3070748B2 (en) Method and apparatus for detecting defects on reticle
JPS5973711A (en) Configuration defect inspecting device
JPH10143801A (en) Optical test method of magnetic disk
JP2631745B2 (en) Optical disk defect inspection method
JPS599546A (en) Defect detector for information recording body