JPH02259601A - Reflecting film and reflector - Google Patents

Reflecting film and reflector

Info

Publication number
JPH02259601A
JPH02259601A JP8002689A JP8002689A JPH02259601A JP H02259601 A JPH02259601 A JP H02259601A JP 8002689 A JP8002689 A JP 8002689A JP 8002689 A JP8002689 A JP 8002689A JP H02259601 A JPH02259601 A JP H02259601A
Authority
JP
Japan
Prior art keywords
glass
vapor deposition
layer
low dielectric
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8002689A
Other languages
Japanese (ja)
Inventor
Teiji Sakida
崎田 悌司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP8002689A priority Critical patent/JPH02259601A/en
Publication of JPH02259601A publication Critical patent/JPH02259601A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

PURPOSE:To increase the reflectance and adhesion of the film and to optionally change the wavelength characteristic of reflection by interposing a multilayer dielectric layer consisting of the film of alternate low dielectric layer and high dielectric layer between glass and aluminum layers. CONSTITUTION:A low dielectric and a high dielectric or a high dielectric and a low dielectric are alternately laminated in >=4 layers, and an aluminum layer is further formed. Namely, TiO2, 2 is formed on glass 1 by vapor deposition, and SiO2 3 is then formed by vapor deposition. TiO2 4 is then formed by vapor deposition, and then SiO2 5 is formed by vapor deposition. Al 6 is further formed by sputtering or vapor deposition. As a result, the maximum reflectance can be obtained at a specified incident angle. By this method, a reflecting film having good adhesion to the glass 1, with high reflectivity and with the reflecting characteristics for each wavelength easily adjustable is obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、赤外線等の特に長い波長を持つ電磁波を反射
する反射膜及び反射体に係わる。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a reflective film and a reflector that reflect electromagnetic waves having particularly long wavelengths such as infrared rays.

〈従来の技術〉 従来この様な波長の電磁波の反射膜または反射体の構造
としては、ガラス上にアルミニウム層を設け、その上に
低誘電体層と高誘電体層もしくは高誘電体層と低誘電体
層が交互に多層形成されている構造、およびガラス上に
銅層とクロふ層が順に形成されている構造、およびガラ
ス上にアルミニウム層が形成されている構造などが公知
である。
<Prior art> Conventionally, the structure of a reflective film or reflector for electromagnetic waves of such wavelengths is to provide an aluminum layer on glass, and then layer a low dielectric layer and a high dielectric layer or a high dielectric layer and a low dielectric layer on top of the aluminum layer. Known structures include a structure in which dielectric layers are alternately formed in multiple layers, a structure in which a copper layer and a black layer are sequentially formed on glass, and a structure in which an aluminum layer is formed on glass.

〈発明が解決しようとする課題〉 上述の構造のうち、ガラス上にアルミニウム層を設け、
その上に低誘電体層と高誘電体層もしくは高誘電体層と
低誘電体層が交互に多層形成される構造では、アルミニ
ウム層の厚さがあまり厚いとそのアルミニウム層の上に
形成された多層誘電体層が働かず、アルミニウム層の反
射率のみに左右される。また、アルミニウム層が薄いと
多N誘電体層は働くが、反面アルミニウム層自体の反射
効果が働かず、結局低い反射率しか得られない。
<Problem to be solved by the invention> Of the above structures, an aluminum layer is provided on the glass,
In a structure in which a low dielectric layer and a high dielectric layer or a high dielectric layer and a low dielectric layer are alternately formed on top of the aluminum layer, if the aluminum layer is too thick, the aluminum layer may be formed on top of the aluminum layer. Multi-layer dielectric layers do not work, and only the reflectance of the aluminum layer depends. Furthermore, if the aluminum layer is thin, the multi-N dielectric layer will work, but on the other hand, the reflection effect of the aluminum layer itself will not work, resulting in only a low reflectance.

また、ガラス上に銅層とクロム層が順に形成されている
構造では確かに反射率は向上する。しかし、銅層はガラ
スとの接着性に劣り、欠けやはがれが住じ易い。
Furthermore, a structure in which a copper layer and a chromium layer are sequentially formed on glass certainly improves reflectance. However, the copper layer has poor adhesion to glass and is prone to chipping and peeling.

また、銅層とクロム層の構成もしくはアルミニラムの単
層構成では反射効果を得る為には、それ相応の膜厚を必
要としており、スポット光を反射させたときにスポット
形の変形や光軸のずれが発生する。また、これらの材料
は材料特有の反射に対する波長カーブしか得られず、所
望の波長の電磁波の反射率を最大としたり、所望の波長
の電磁波のみを下げるという事は出来ない。
In addition, in a copper layer and chromium layer configuration or a single layer aluminum layer configuration, a corresponding film thickness is required in order to obtain a reflection effect, and when the spot light is reflected, the spot shape may be deformed or the optical axis may be shifted. Misalignment occurs. In addition, these materials only provide a wavelength curve for reflection specific to the material, and it is not possible to maximize the reflectance of electromagnetic waves of a desired wavelength or to reduce only the electromagnetic waves of a desired wavelength.

従って、反射率が高く膜密着力が強く、膜厚が薄く反射
の波長特性を任意に変えられる反射膜もしくは反射体が
求められていた。
Therefore, there has been a need for a reflective film or reflector that has high reflectance, strong film adhesion, is thin, and can arbitrarily change the wavelength characteristics of reflection.

〈課題を解決するための手段〉 上述の課題に鑑み、低誘電体層と高誘電体層の交互膜か
らなる多層誘電体層を、ガラスとアルミニウム層との間
にはさみ込む構成とするものである。
<Means for solving the problems> In view of the above-mentioned problems, a multilayer dielectric layer consisting of alternating films of low dielectric layers and high dielectric layers is sandwiched between glass and aluminum layers. be.

もちろんここでいうガラスはフロートガラス、石英ガラ
ス、光ファイバー 一般ガラスなど種類は問わない、ま
た、多層誘電体の層数を問うものでもない、また、高誘
電体としてはttot、ZrO,。
Of course, the type of glass mentioned here does not matter, such as float glass, quartz glass, optical fiber general glass, etc., and the number of layers of multilayer dielectric does not matter, and examples of high dielectric materials include ttot, ZrO, etc.

HfORなどが代表的であり、低誘電体としては510
8、MgF、などが代表的である。
HfOR is typical, and 510 is a low dielectric material.
8, MgF, etc. are representative.

〈作用〉 反射膜の接着性が良好なため、欠け、はがれ等の製造プ
ロセス中のトラブルを防ぐことが出来る。
<Function> Since the reflective film has good adhesion, troubles during the manufacturing process such as chipping and peeling can be prevented.

また、銅層とクロム層、との積層構造の場合と比べても
、同等の反射率を得るのに多層誘電体部分の厚みで1μ
m以下の厚さで充分であり、数十μm径の微小スポット
光を反射させてもスポット形の変形や光軸のずれがあま
り起こらない、更に、多層誘電体の膜厚や層の数を変え
ることにより、波長別の反射特性の設計がある程度迄可
能である。
Also, compared to the case of a laminated structure of a copper layer and a chromium layer, the thickness of the multilayer dielectric part is 1μ to obtain the same reflectance.
A thickness of less than 1.5 m is sufficient, and even when reflecting a minute spot of light with a diameter of several tens of μm, the spot shape does not deform or the optical axis shifts much. By changing the wavelength, it is possible to design the reflection characteristics for each wavelength to a certain extent.

〈実施例〉 ガラス(1)上にTiO□(2)を蒸着により1.31
 Xλ(1300ns)厚だけ形成する0次にSiO□
(3)を蒸着により、1.26Xλ(1300nm)厚
だけ形成する。次に、T i Oz (4)を蒸着によ
り、1.23xλ(1300nm)厚だけ形成する。
<Example> TiO□ (2) was deposited on glass (1) to give a concentration of 1.31
Zero-order SiO□ formed by Xλ (1300ns) thickness
(3) is formed by vapor deposition to a thickness of 1.26Xλ (1300 nm). Next, T i Oz (4) is formed by vapor deposition to a thickness of 1.23×λ (1300 nm).

次にS i Ow (5)を蒸着により、1.24Xλ
(1300nm)厚だけ形成する0次にA I (6)
をスパッタもしくは蒸着により250nm厚だけ形成す
る。こうすると第1図の様に入射角45°、波長の電磁
波(7)(λ−1350nm )で最大の反射率が得ら
れる。
Next, S i Ow (5) was evaporated to 1.24Xλ
(1300nm) thickness (0-order A I (6)
is formed to a thickness of 250 nm by sputtering or vapor deposition. In this case, as shown in FIG. 1, the maximum reflectance can be obtained at an incident angle of 45° and a wavelength of electromagnetic waves (7) (λ-1350 nm).

次にこの膜Aとアルミニウム単層II!(膜厚・200
nm)Bの反射率分光カーブシュミレーシ四ンを第2図
に示す。
Next, this film A and aluminum single layer II! (Film thickness: 200
FIG. 2 shows a reflectance spectral curve simulation of B (nm)B.

〈発明の効果〉 本発明により、ガラスとの密着性が良く、しかも高い反
射率で、しかも波長別の反射特性の調整が容易な反射膜
もしくはそれをガラス上に作成した反射体を得る事が出
来る。
<Effects of the Invention> According to the present invention, it is possible to obtain a reflective film that has good adhesion to glass, has a high reflectance, and can easily adjust the reflection characteristics for each wavelength, or a reflector made of the same on glass. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す電磁波入射概念図、
第2図は波長別の反射特性図である。 1・・・ガラス  2,4・・・Ti1t  3. 5
・・・S五〇冨6・・・Al    7・・・電磁波 A・・・本実施例の反射特性カーブ B・・・アルミニウム単層の反射特性カーブ特  許 
 出  願  人 凸版印刷株式会社 代表者 鈴木和夫 第1図 一7tL  &   <九7ybン 第2図
FIG. 1 is a conceptual diagram of electromagnetic wave incidence showing an embodiment of the present invention;
FIG. 2 is a reflection characteristic diagram for each wavelength. 1...Glass 2, 4...Tilt 3. 5
... S50 6 ... Al 7 ... Electromagnetic wave A ... Reflection characteristic curve of this example B ... Reflection characteristic curve of aluminum single layer patent
Applicant Toppan Printing Co., Ltd. Representative Kazuo Suzuki Figure 1-7tL &<97ybn Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)低誘電体と高誘電体もしくは高誘電体と低誘電体
が交互に合計四層もしくはそれ以上の層が積層され、更
にアルミニウム層が形成されている反射膜。
(1) A reflective film in which a total of four or more layers of a low dielectric material and a high dielectric material or a high dielectric material and a low dielectric material are alternately laminated, and an aluminum layer is further formed.
(2)ガラス上に低誘電体と高誘電体もしくは高誘電体
と低誘電体が交互に合計四層もしくはそれ以上の層とア
ルミニウム層が積層されている反射体。
(2) A reflector in which a total of four or more layers of a low dielectric material and a high dielectric material or a high dielectric material and a low dielectric material are alternately laminated on glass, and an aluminum layer.
JP8002689A 1989-03-30 1989-03-30 Reflecting film and reflector Pending JPH02259601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8002689A JPH02259601A (en) 1989-03-30 1989-03-30 Reflecting film and reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8002689A JPH02259601A (en) 1989-03-30 1989-03-30 Reflecting film and reflector

Publications (1)

Publication Number Publication Date
JPH02259601A true JPH02259601A (en) 1990-10-22

Family

ID=13706769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8002689A Pending JPH02259601A (en) 1989-03-30 1989-03-30 Reflecting film and reflector

Country Status (1)

Country Link
JP (1) JPH02259601A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50123446A (en) * 1974-03-15 1975-09-27

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50123446A (en) * 1974-03-15 1975-09-27

Similar Documents

Publication Publication Date Title
US4367921A (en) Low polarization beam splitter
EP0577732B1 (en) Infrared filter
US5333090A (en) Optical coating for reflecting visible and longer wavelength radiation having grazing incidence angle
JPH10268130A (en) Light absorbing filter
JP2002286909A (en) Antireflection coating for uv ray
US5022726A (en) Magnesium film reflectors
JPH02287301A (en) Reflecting mirror consisting of multilayered film of dielectric material having non-dependency on incident angle and having high reflecetivity
JPH02259601A (en) Reflecting film and reflector
JPS58223101A (en) Production of polygonal mirror
JP3031625B2 (en) Heat ray absorbing reflector
JPS6177018A (en) Filter
JPH06186403A (en) Multilayer film optical member
JP2002372602A (en) Antireflection coating and optical element using the same
JP2814595B2 (en) Multilayer reflector
JPH05346496A (en) Multilayer film reflecting mirror
JP2935765B2 (en) Manufacturing method of dichroic mirror
JPH03295834A (en) Heat ray reflecting glass
JP3064630B2 (en) Multilayer reflector
JP2000235107A (en) Semi-transmissive reflection plate
JP2003177210A (en) Antireflection film for ir region
JP3344022B2 (en) Optical device and optical pickup
JPH07280999A (en) Multilayer film x-ray reflector
JP2001337210A (en) Optical reflection mirror
JPH02189503A (en) Optical parts
JPH0643305A (en) Optical coupler film