JPH02259409A - Beta-ray thickness gage - Google Patents

Beta-ray thickness gage

Info

Publication number
JPH02259409A
JPH02259409A JP8070989A JP8070989A JPH02259409A JP H02259409 A JPH02259409 A JP H02259409A JP 8070989 A JP8070989 A JP 8070989A JP 8070989 A JP8070989 A JP 8070989A JP H02259409 A JPH02259409 A JP H02259409A
Authority
JP
Japan
Prior art keywords
basis weight
sheet
measurement
sample
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8070989A
Other languages
Japanese (ja)
Inventor
Kenji Isozaki
磯崎 健二
Tetsuya Fujita
藤田 哲哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP8070989A priority Critical patent/JPH02259409A/en
Publication of JPH02259409A publication Critical patent/JPH02259409A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Abstract

PURPOSE:To enable execution of frame correction when a sheet is interposed, by a method wherein a sample having a basis weight in proximity to the basis weight of the sheet is inserted into a gap between a ray source element and a detecting element and basis weight values of the sample at a calibration reference point and each measuring point are determined. CONSTITUTION:A sheet flows in the direction vertical to the surface of paper in the region of a measuring width L. An arithmetic control element 22 drives a motor 19 through a drive circuit 20 and thereby a ray source element 17 and a detecting element 17 are driven rightward. Said control element 22 always monitors the positions of the ray source element 17 and the detecting element 18 by taking in outputs of an encoder. When the ray source element 17 and the detecting element 18 come to a measuring point set within the measuring width L, the control element 22 opens a gate circuit 23. A beta-ray detection data signal from the detecting element 18 is taken in the control element 22 through an A/D converter 24. Using the beta-ray detection data signal picked up at each detecting point and a correction value obtained from frame correction, subsequently, the basis weight of the sheet at the detecting point is computed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、β線を発生する線源部と、シートを挾んで対
向する検出部と、前記線源部と検出部とをシートの幅方
向にスキャンさせる駆動部とを備え、前記シートの坪量
(単位面積当りの重量)や厚さを測定するβ線厚さ計に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention includes a radiation source section that generates β-rays, a detection section that faces each other with a sheet in between, and a radiation source section and a detection section that are connected to each other by a width of the sheet. The present invention relates to a β-ray thickness meter that measures the basis weight (weight per unit area) and thickness of the sheet, and includes a drive unit that scans in the direction.

(従来の技術) 先ず、図面を用いてβ線厚さ計の説明を行う。(Conventional technology) First, the β-ray thickness meter will be explained using drawings.

第2図はβ線厚さ計の構成図である。FIG. 2 is a block diagram of the β-ray thickness meter.

図中、1及び2は垂直フレーム、3及び4は水平フレー
ムで、これらでO形フレーム5が構成されている。6は
シート(例えば、紙やプラスチックフィルムシート)、
7はβ線を発生する線源部、8は検出部である。線源部
7及び検出部8は、適度の間隙をもって水平フレーム3
及び4に設置され、水平フレーム3,4上のLlとL2
の間を同期して往復走行するようになっている。
In the figure, 1 and 2 are vertical frames, 3 and 4 are horizontal frames, and these constitute an O-shaped frame 5. 6 is a sheet (for example, paper or plastic film sheet),
7 is a radiation source section that generates β rays, and 8 is a detection section. The radiation source section 7 and the detection section 8 are mounted on the horizontal frame 3 with an appropriate gap.
and Ll and L2 on the horizontal frames 3 and 4.
It is designed to travel back and forth synchronously.

ここで、β線を用いた坪量の検出原理を説明する。線源
部7から出て検出部8で検出されるβ線の強度は、シー
ト6を透過することによって減衰するが、この減衰の割
合は、シート6がない場合のβ線の強度と比べて下記の
ような相関関係がある。
Here, the principle of basis weight detection using β rays will be explained. The intensity of the β-rays emitted from the radiation source section 7 and detected by the detection section 8 is attenuated by passing through the sheet 6, but the rate of this attenuation is compared to the intensity of the β-rays without the sheet 6. There is a correlation as shown below.

1ml、、e−’°1            ・・・
■ここで、■・・・透過β線強度 101・・・シート6がない時のβ線強度μ・・・吸収
係数 p・・・シート6の坪量 ■式のような相関関係を利用して、設定された測定点(
例えば、シートの幅方向において数百点)におけるシー
ト6の坪量(単位面積当りの重量)を計測するようにし
ている。又、シート6の厚さは、シート6の坪量を密度
で除算するすることにより得られる。
1ml,,e-'°1...
■Here, ■...Transmitted β-ray intensity 101...β-ray intensity when sheet 6 is not present μ...Absorption coefficient p...Basic weight of sheet 6■Using a correlation such as the formula the set measurement point (
For example, the basis weight (weight per unit area) of the sheet 6 is measured at several hundred points in the width direction of the sheet. Further, the thickness of the sheet 6 can be obtained by dividing the basis weight of the sheet 6 by the density.

(発明が解決しようとする課題) 上記構成の従来例において、O型フレーム5の水平フレ
ーム3,4の長さが長くなると、撓み等により水平フレ
ーム3.4間の間隙が一定していない。
(Problems to be Solved by the Invention) In the conventional example with the above configuration, when the length of the horizontal frames 3 and 4 of the O-shaped frame 5 becomes long, the gap between the horizontal frames 3 and 4 is not constant due to bending or the like.

従って、線源部7と測定部8との間の間隙(測定ギャッ
プ)が、必ずしも全幅にわたって一定ではない。測定ギ
ャップの大きさが変化すると、測定ギャップにおける空
気層の厚さが変化する等の理由により、センサの測定値
に誤差が生じる。それゆえ、各測定点において、得られ
た測定値に補正を加える処理(フレーム補正)が必要で
ある。
Therefore, the gap (measurement gap) between the radiation source section 7 and the measurement section 8 is not necessarily constant over the entire width. When the size of the measurement gap changes, an error occurs in the measured value of the sensor due to reasons such as changes in the thickness of the air layer in the measurement gap. Therefore, at each measurement point, a process (frame correction) that adds correction to the obtained measurement value is required.

従来、この様なフレーム補正は、測定ギャップに空気層
しか介在しない状態で、各測定点での測定値を求め、そ
の値と、校正基準点での測定値との差分を、各測定点に
おけるフレーム補正量としていた。これは、測定ギャッ
プの大きさの変化によって生ずる誤差が、主として空気
層の厚さの変化によってのみ生じると考えられていたた
めである。
Conventionally, such frame correction was performed by obtaining the measured value at each measurement point with only an air layer in the measurement gap, and calculating the difference between that value and the measurement value at the calibration reference point at each measurement point. It was used as a frame correction amount. This is because it was thought that errors caused by changes in the size of the measurement gap were mainly caused only by changes in the thickness of the air layer.

しかしながら、測定ギャップに実際にシート6が介在す
る場合には、空気層のみで行ったフレーム補正量では、
実際に生じた誤差量を正しく補正できないことがあると
いう問題点があった。
However, when the sheet 6 actually exists in the measurement gap, the amount of frame correction performed only with the air layer is
There is a problem in that it may not be possible to correctly correct the amount of error that actually occurs.

この−例を第3図を用いて説明する。この図は各坪量の
シートにおいてのZ特性を示している。
This example will be explained using FIG. This figure shows the Z characteristics for sheets of each basis weight.

(a)はシートがOg/ゴの場合、(b)はシートが1
02g/rrrの場合、(c)はシートが504g/r
rrの場合を示し、線分Eは規定の測定ギャップを示し
ている。また、2はシートの流れ方向をX1シートの幅
方向をYとした時のフレーム方向であり、BWは坪量で
ある。よって、第3図は2方向の変化、すなわち、測定
ギャップの変化に対する坪量指示値の変化を示している
(a) when the sheet is Og/Go, (b) when the sheet is 1
In the case of 02g/rrr, (c) the sheet is 504g/r
The case of rr is shown, and the line segment E shows the prescribed measurement gap. Further, 2 is the frame direction when the flow direction of the sheet is X1 and the width direction of the sheet is Y, and BW is the basis weight. Therefore, FIG. 3 shows the change in two directions, ie, the change in the basis weight indication value with respect to the change in the measurement gap.

(a)のように、シートがOg/nf(シートが介在し
ない場合)の場合は、最初に規定された測定ギャップE
と、Z特性が最適になる測定ギャップとは略一致してい
るが、(b)、  (C)と実際にシートが介在し、坪
量が多くなるにしたがって、当初規定された測定ギャッ
プEと、Z特性が最適になる測定ギャップとは違いがあ
ることが分かる。
As in (a), when the sheet is Og/nf (when there is no intervening sheet), the initially defined measurement gap E
, and the measurement gap that optimizes the Z characteristics are almost the same, but as the sheet actually intervenes in (b) and (C) and the basis weight increases, the measurement gap E that was specified at the beginning becomes different. , it can be seen that there is a difference from the measurement gap at which the Z characteristic becomes optimal.

すなわち、測定ギャップにシートが介在する場合には、
測定ギャップの大きさが変化することで生じる誤差量は
シートが介在しない場合の誤差量とは異なる。従って、
空気層で求めた補正量では適切な補正とはならない。
In other words, if there is a sheet in the measurement gap,
The amount of error caused by changing the size of the measurement gap is different from the amount of error when there is no intervening sheet. Therefore,
The amount of correction obtained using the air layer is not an appropriate correction.

本発明は上記問題点に鑑みてなされたもので、その目的
は、シートが介在する場合に適切なフレーム補正ができ
るβ線厚さ計を提供することにある。
The present invention has been made in view of the above-mentioned problems, and an object thereof is to provide a β-ray thickness meter that can perform appropriate frame correction when a sheet is present.

(課題を解決するための手段) 上記課題を解決する本発明は、β線を発生する線源部と
、シートを挾んで対向する検出部と、前記線源部と検出
部とをシートの幅方向にスキャンさせる駆動部とを備え
、前記シートの坪量(単位面積当りの重量)や厚さを測
定するβ線厚さ計において、実際測定するシートの坪量
付近の坪量を有するサンプルを前記線源部と検出部との
間隙に挿入し、校正基準点及び各測定点での前記サンプ
ルの坪量値を求め、前記各測定点における前記サンプル
の坪量の計測値と前記校正点でのサンプル坪量の計測値
との差分を算出し、実際の坪量測定の際に、前記各差分
を用いて、前記各測定点での坪量値の補正を行うように
したものである。
(Means for Solving the Problems) The present invention for solving the above problems has a radiation source section that generates β-rays, a detection section that faces each other with a sheet in between, and a radiation source section and a detection section that are connected to each other by a width of the sheet. In the β-ray thickness meter, which is equipped with a drive unit that scans in the direction, and measures the basis weight (weight per unit area) and thickness of the sheet, a sample having a basis weight close to the basis weight of the sheet to be actually measured is The sample is inserted into the gap between the radiation source section and the detection section, the basis weight value of the sample at the calibration reference point and each measurement point is determined, and the basis weight value of the sample at each measurement point and the basis weight value at the calibration point are calculated. The difference between the measured value of the sample basis weight and the sample basis weight is calculated, and during actual basis weight measurement, the basis weight values at each of the measurement points are corrected using the respective differences.

(作用) 本発明のβ線厚さ計において、校正基準点及び各測定点
でのサンプルの坪量値を求め、前記各測定点における前
記サンプルの坪量の計測値と前記校正点でのサンプル坪
量の計測値との差分を算出し、実際の坪量測定の際に、
前記各差分を用いて、前記各測定点での坪量値の補正を
行う。
(Function) In the β-ray thickness meter of the present invention, the basis weight value of the sample at the calibration reference point and each measurement point is determined, and the measured value of the basis weight of the sample at each measurement point and the sample at the calibration point are calculated. Calculate the difference between the measured value of basis weight and use it during actual basis weight measurement.
The basis weight values at each of the measurement points are corrected using each of the differences.

(実施例) 次に図面を用いて本発明の一実施例を説明する。(Example) Next, one embodiment of the present invention will be described using the drawings.

第1図は本発明の一実施例を示す構成図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

図において、11及び12は垂直フレーム、13及び1
4は水平フレームで、これらで0形フレーム15が構成
されている。17はβ線を発生する線源部、18は検出
部である。線源部17及び検出部18は、適度の間隙を
もって水平フレーム13及び14に設置され、これらは
モータ19によって水平フレーム13.14上の測定幅
りを同期して往復走行するようになっている。
In the figure, 11 and 12 are vertical frames, 13 and 1
Reference numeral 4 indicates a horizontal frame, which constitutes a type 0 frame 15. 17 is a radiation source section that generates β rays, and 18 is a detection section. The radiation source section 17 and the detection section 18 are installed on the horizontal frames 13 and 14 with a suitable gap between them, and are moved back and forth synchronously across the measurement width on the horizontal frames 13 and 14 by a motor 19. .

20はモータ19の駆動回路、21はモータ19の回転
にともなってパルスを発生するエンコーダ、22は各種
データ(検出部18からのβ線検出データやエンコーダ
21からのモータ19の回転偏位データ等)を取り込ん
で、演算(シートの坪量や厚さの演算、線源部17.検
出部18の位置演算等)を行う演算制御部である。23
は線源部17.検出部18が所定の測定点に来たときに
検出部18からのβ線検出データを通すゲート回路、2
4はゲート回路23から出されたβ線検出データ(アナ
ログ信号)をディジタル信号に変換するA/D変換器で
ある。
20 is a drive circuit for the motor 19; 21 is an encoder that generates pulses as the motor 19 rotates; 22 is various data (β-ray detection data from the detector 18, rotational deviation data of the motor 19 from the encoder 21, etc.); ) and performs calculations (calculation of the basis weight and thickness of the sheet, calculation of the positions of the radiation source section 17 and detection section 18, etc.). 23
is the radiation source section 17. a gate circuit that passes β-ray detection data from the detection unit 18 when the detection unit 18 reaches a predetermined measurement point;
4 is an A/D converter that converts the β-ray detection data (analog signal) output from the gate circuit 23 into a digital signal.

次に、フレーム補正を説明する。Next, frame correction will be explained.

先ず、校正基準点Bに線源部17.検出部18があると
きに、測定ギャップGにサンプルホルダ25に載せたサ
ンプル26をセットする。このサンプル26の坪量値は
装置の測定坪量範囲の中間値付近のものが好ましい。
First, the radiation source section 17. is placed at the calibration reference point B. When the detection section 18 is present, the sample 26 placed on the sample holder 25 is set in the measurement gap G. The basis weight value of this sample 26 is preferably near the middle value of the basis weight measurement range of the device.

次に、B点で統計的変動を考慮して一定時間サンプル2
6の坪量をn1定し、その平均値をMB、とする。
Next, at point B, sample 2 is
The basis weight of No. 6 is defined as n1, and its average value is defined as MB.

サンプル26を載せたまま、線源部17.検出部18を
往復走行させ、測定幅り内にある多数の測定点毎にサン
プルの坪量を測定する。このとき、0型フレーム15に
構造的な撓み等があると、構成基準点Bでの坪量とは異
なった値となる。
With the sample 26 placed thereon, the radiation source section 17. The detection unit 18 is moved back and forth, and the basis weight of the sample is measured at each of a large number of measurement points within the measurement width. At this time, if the type 0 frame 15 has structural deflection or the like, the basis weight at the configuration reference point B will be a different value.

この各測定点ごとに求めた測定値と、校正基準点での測
定値MB、との差分を演算制御部内のメモリに記憶させ
ておく。
The difference between the measured value obtained for each measuring point and the measured value MB at the calibration reference point is stored in a memory within the arithmetic control section.

往路での差分・・・MBI  MP 復路での差分・・・MBI  M11 サンプル26を載せたまま、往復走行を多数回(本実施
例においては20回)連続して行い、各測定点での往路
分、復路骨の差分を各測定点ごとに積算し、演算制御部
22に格納する。ここで、差分をとったのは、メモリを
節約するためである。
Difference on the outward trip...MBI MP Difference on the return trip...MBI M11 With the sample 26 on it, repeat the round trip many times (20 times in this example), and measure the outward trip at each measurement point. , and the difference between the return bone and the return bone are accumulated for each measurement point and stored in the arithmetic control unit 22 . Here, the reason for taking the difference is to save memory.

往路分・・・Σ (M B I  M p + )・・
・■復路骨 Σ (M a r  M a +)・・・
■次に、ドリフトを考慮して、線源部17.検出部18
を再び構成基準点Bに移動させ、一定時間サンプル26
を測定し、その平均値をMB2とする。
Outbound portion...Σ (M B I M p + )...
・■ Return bone Σ (M a r M a +)...
■Next, taking into account drift, the radiation source section 17. Detection section 18
is moved to the configuration reference point B again, and the sample 26 is held for a certain period of time.
are measured, and the average value is defined as MB2.

そして、■、■式より、 Σ MF、・・・■ Σ MB、・・・■ を演算し、各測定点ごとのフレーム補正量として、(M
Bl+MB2) / 2−1 / n −Σ M F、
−・・■(MBI+MB2)/2  1/n・ Σ M
 B 、−・−■番■l を求め、演算制御部22に格納し、以後の各n1定点ご
との補正量として用いる。
Then, calculate Σ MF, ...■ Σ MB, ...■ from formulas ■ and ■, and as the frame correction amount for each measurement point, (M
Bl + MB2) / 2-1 / n -Σ MF,
−・・■(MBI+MB2)/2 1/n・Σ M
B, -.-■No.■l are determined, stored in the arithmetic control unit 22, and used as the correction amount for each n1 fixed point thereafter.

次に、実際の坪量測定時における作動を説明する。Next, the operation during actual basis weight measurement will be explained.

シートは測定幅りの領域で紙面に対して垂直方向に流れ
ている。演算制御部22は駆動回路20を介してモータ
19を駆動し、第1図の状態から、線源部17及び検出
部18を図において右方向に駆動する。演算制御部22
はエンコーダ出力を取り込んで常に線源部17及び検出
部18の位置をモニタしている。そして、線源部17及
び検出部18が測定幅り内に設定された測定点にくると
、演算制御部22はゲート回路23を開く、そして、検
出部18からのβ線検出データ信号はA/D変換器24
を介して演算制御部22へ取り込まれる。
The sheet flows in a direction perpendicular to the plane of the paper in an area of the measured width. The arithmetic control section 22 drives the motor 19 via the drive circuit 20, and drives the radiation source section 17 and the detection section 18 rightward in the figure from the state shown in FIG. Arithmetic control unit 22
constantly monitors the positions of the radiation source section 17 and the detection section 18 by taking in the encoder output. Then, when the radiation source section 17 and the detection section 18 come to a measurement point set within the measurement width, the calculation control section 22 opens the gate circuit 23, and the β-ray detection data signal from the detection section 18 is /D converter 24
The data is taken into the arithmetic control section 22 via.

演算制御部22は各検出点ごとに拾い読みされたβ線検
出データ信号とフレーム補正で得られた補正量を用いて
、検出点でのシートの坪量を演算する。
The calculation control unit 22 calculates the basis weight of the sheet at the detection point using the β-ray detection data signal read at each detection point and the correction amount obtained by frame correction.

上記構成によれば、従来のフレーム補正に比べて、実際
に使用する測定範囲での適切なフレーム補正が可能とな
る。また、測定坪量範囲の下限。
According to the above configuration, as compared to conventional frame correction, it is possible to perform appropriate frame correction in the measurement range actually used. Also, the lower limit of the measurement basis weight range.

上限付近では正しいフレーム補正量との間に過不足が生
じるが、その量は、従来の空気層のみで行ったフレーム
補正量との差に比べて小さく、実用上は問題がない。
Although an excess or deficiency occurs between the correct frame correction amount near the upper limit, this amount is small compared to the difference between the frame correction amount and the conventional frame correction amount performed using only the air layer, and there is no problem in practical use.

(発明の効果) 以上説明したように、本発明によれば、校正基準点及び
各測定点でのサンプルの計測値と前記校正点でのサンプ
ル坪量値との差分を算出し、実際の坪量測定の際に、前
記各差分を用いて、前記各測定点での坪量値の補正を行
うようにしたことにより、シートが介在する場合に適切
なフレーム補正ができるシートの坪量測定装置を実現で
きる。
(Effects of the Invention) As explained above, according to the present invention, the difference between the measurement value of the sample at the calibration reference point and each measurement point and the sample basis weight value at the calibration point is calculated, and the actual basis weight is calculated. A sheet basis weight measuring device that can perform appropriate frame correction when a sheet is present by correcting the basis weight value at each measurement point using each of the differences when measuring the quantity. can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2図はシー
トの坪量測定装置の構成図、第3図は各坪量のシートに
おいてのZ特性を示す図である。 これらの図において、 1.2.11.12・・・垂直フレーム3.4.13.
14・・・水平フレーム5.15・・・0型フレーム 6・・・シート      7.17・・・線源部8.
18・・・検出部   19・・・モータ20・・・駆
動回路    21・・・エンコーダ22・・・演算制
御部 24・・・A/D変換器 23・・・ゲート回路
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a block diagram of a sheet basis weight measuring device, and FIG. 3 is a diagram showing Z characteristics for sheets of various basis weights. In these figures: 1.2.11.12...vertical frame 3.4.13.
14...Horizontal frame 5.15...0 type frame 6...Seat 7.17...Radiation source part 8.
18...Detection unit 19...Motor 20...Drive circuit 21...Encoder 22...Arithmetic control unit 24...A/D converter 23...Gate circuit

Claims (1)

【特許請求の範囲】 β線を発生する線源部と、シートを挾んで対向する検出
部と、前記線源部と検出部とをシートの幅方向にスキャ
ンさせる駆動部とを備え、前記シートの坪量(単位面積
当りの重量)や厚さを測定するβ線厚さ計において、 実際測定するシートの坪量付近の坪量を有するサンプル
を前記線源部と検出部との間隙に挿入し、校正基準点及
び各測定点での前記サンプルの坪量値を求め、 前記各測定点における前記サンプルの坪量の計測値と前
記校正点でのサンプル坪量の計測値との差分を算出し、 実際の坪量測定の際に、前記各差分を用いて、前記各測
定点での坪量値の補正を行うようにしたことを特徴とす
るβ線厚さ計。
[Scope of Claims] A radiation source unit that generates β-rays, a detection unit that faces each other with the sheet in between, and a drive unit that scans the radiation source unit and the detection unit in the width direction of the sheet, In a β-ray thickness meter that measures the basis weight (weight per unit area) and thickness of a sheet, a sample having a basis weight close to the basis weight of the sheet to be actually measured is inserted into the gap between the radiation source section and the detection section. Then, determine the basis weight value of the sample at the calibration reference point and each measurement point, and calculate the difference between the measurement value of the sample basis weight at each measurement point and the measurement value of the sample basis weight at the calibration point. The β-ray thickness meter is characterized in that, during actual basis weight measurement, each of the differences is used to correct the basis weight value at each of the measurement points.
JP8070989A 1989-03-31 1989-03-31 Beta-ray thickness gage Pending JPH02259409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8070989A JPH02259409A (en) 1989-03-31 1989-03-31 Beta-ray thickness gage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8070989A JPH02259409A (en) 1989-03-31 1989-03-31 Beta-ray thickness gage

Publications (1)

Publication Number Publication Date
JPH02259409A true JPH02259409A (en) 1990-10-22

Family

ID=13725862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8070989A Pending JPH02259409A (en) 1989-03-31 1989-03-31 Beta-ray thickness gage

Country Status (1)

Country Link
JP (1) JPH02259409A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013076662A (en) * 2011-09-30 2013-04-25 Sumitomo Kinzoku Technol Kk Monitoring device of clearance between linear induction motor and reaction plate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965252A (en) * 1972-10-23 1974-06-25
JPS5860363A (en) * 1981-10-06 1983-04-09 Nec Corp Operation hysteresis storing system for logical device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965252A (en) * 1972-10-23 1974-06-25
JPS5860363A (en) * 1981-10-06 1983-04-09 Nec Corp Operation hysteresis storing system for logical device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013076662A (en) * 2011-09-30 2013-04-25 Sumitomo Kinzoku Technol Kk Monitoring device of clearance between linear induction motor and reaction plate

Similar Documents

Publication Publication Date Title
FI89105C (en) FOERFARANDE OCH SYSTEM FOER STANDARDISERING AV YTVIKTSMAETARE
JPS6235054B2 (en)
JP5423705B2 (en) Radiation inspection equipment
JPH02259409A (en) Beta-ray thickness gage
CN101571384B (en) Zero calibration device and measuring method thereof
KR101524454B1 (en) A Device and Method for measuring Activity concentrations of Radon decay products
JP2002055049A (en) Continuous measuring apparatus
JPS61155803A (en) Width measuring instrument
JP2011196753A (en) Radiation measurement method
JP3565973B2 (en) Radiation counting device
EP0195168B1 (en) Basis weight gauge standardizing method and system
JPH0422276Y2 (en)
JPS6255549A (en) Beta rays absorption type continuous floating dust measuring apparatus
JPH0447651Y2 (en)
JP2971772B2 (en) Fluorescent glass dosimeter measuring device
JP2520973Y2 (en) Basis weight
JPH0629758B2 (en) How to calibrate the basis weight
JP2671293B2 (en) X-ray analyzer
JPS5825289Y2 (en) Air layer density change compensation device for radiation thickness gauge
JPS6275366A (en) Radiation detector
JPH04319644A (en) Density measuring method and density measuring instrument using thereof
JP2663629B2 (en) Automatic calibration method for dissolved oxygen meter
JP2805956B2 (en) Thickness measuring device
JP3563922B2 (en) Radiation measurement device
Shaukatullah et al. Hot film anemometer calibration and use in fluids at varying background temperature