JPS5825289Y2 - Air layer density change compensation device for radiation thickness gauge - Google Patents

Air layer density change compensation device for radiation thickness gauge

Info

Publication number
JPS5825289Y2
JPS5825289Y2 JP1976116782U JP11678276U JPS5825289Y2 JP S5825289 Y2 JPS5825289 Y2 JP S5825289Y2 JP 1976116782 U JP1976116782 U JP 1976116782U JP 11678276 U JP11678276 U JP 11678276U JP S5825289 Y2 JPS5825289 Y2 JP S5825289Y2
Authority
JP
Japan
Prior art keywords
air layer
temperature
pressure
measured
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1976116782U
Other languages
Japanese (ja)
Other versions
JPS5335056U (en
Inventor
正弘 塘
Original Assignee
横河電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横河電機株式会社 filed Critical 横河電機株式会社
Priority to JP1976116782U priority Critical patent/JPS5825289Y2/en
Publication of JPS5335056U publication Critical patent/JPS5335056U/ja
Application granted granted Critical
Publication of JPS5825289Y2 publication Critical patent/JPS5825289Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は透過形放射線厚さ計において、温度および圧力
による空気層の密度変化による誤差を補償する装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for compensating for errors caused by changes in the density of an air layer due to temperature and pressure in a transmission type radiation thickness meter.

放射線厚さ計を利用して物の厚さを測定する場合、被測
定体と線源あるいは検出器間の空気層の密度変化はその
まま測定誤差となる。
When measuring the thickness of an object using a radiation thickness meter, changes in the density of the air layer between the object to be measured and the radiation source or detector directly result in measurement errors.

特に、透過形の放射線厚さ計の場合、被測定体な介して
線源側ヘッドと検出側ヘッドが対向配置されているが、
線源および検出器と被測定体間の各空気層の温度は等し
くなく、被測定物の乾燥時の余熱の影響によって、この
温度差は5〜30度もあり、しかも変化することは普通
である。
In particular, in the case of a transmission-type radiation thickness meter, the radiation source head and the detection head are placed opposite each other with the object to be measured interposed therebetween.
The temperature of each air layer between the radiation source, the detector, and the object to be measured is not equal, and due to the influence of residual heat from drying the object to be measured, this temperature difference can be as much as 5 to 30 degrees, and it is normal for it to change. be.

密度はボイル・シャルルの法則によって温度に逆比例す
るので温度による密度変化の影響を補償する必要がある
Since density is inversely proportional to temperature according to the Boyle-Charles law, it is necessary to compensate for the influence of density change due to temperature.

一方、大気圧の変動は24時間に24mbar程度のゆ
るやかな変動で、一般にはオートゼロ機構(定時的に零
点修正を行なう機構)を、たとえば1時間ごとに動作さ
せるので、上述のようなゆるやかな大気圧の変動の影響
は取除かれる。
On the other hand, atmospheric pressure fluctuates slowly by about 24 mbar in 24 hours, and the auto-zero mechanism (a mechanism that periodically adjusts the zero point) is generally operated every hour, so the gradual fluctuations mentioned above The effects of atmospheric pressure fluctuations are removed.

しかしながら、装置の調整後および補修後に装置自体の
安定性をチェックする場合には、8時間程度のロングラ
ンが行なわれ、オートゼロ機構は動作させない、この場
合は約6mbarの変動が見込まれることになる。
However, when checking the stability of the device itself after adjustment and repair, a long run of about 8 hours is performed and the auto-zero mechanism is not operated, in which case a fluctuation of about 6 mbar is expected.

密度はボイル・シャルルの法則により圧力に比例するの
で前記6mbarの変動は標準大気圧に対しては
本釣0.6%013 の変動になる。
Density is proportional to pressure according to the Boyle-Charles law, so the above 6 mbar fluctuation is relative to standard atmospheric pressure.
This is a fluctuation of 0.6%013 for main fishing.

このような大気圧変動による空気圧密度の変化の影響を
小さくするためには線源と検出器間の間隔を狭くすれば
よいが、被測定体のバタソキ、線源のシャッタ機構を入
れねばならない等の制約があり、短いものでたとえば約
33 mm (線源がプロメジウム−147の場合)で
この空気層の厚さ33rIrrnは坪量で表わせば42
.9fAr?に相当する。
In order to reduce the influence of changes in air pressure density due to atmospheric pressure fluctuations, it is possible to narrow the distance between the radiation source and the detector, but this may require the use of a shutter mechanism for the radiation source, etc. For example, if the short one is about 33 mm (when the radiation source is Promedium-147), the thickness of this air layer is 33 rIrrn, which is 42 mm in terms of basis weight.
.. 9fAr? corresponds to

この場合、大気圧が0.6%変動するとすれば約0.2
61/7−となり、装置の測定誤差が0.2tメー貝内
を要求される高精度の装置においては、安定性チェック
中の気圧変化を気圧計でチェックし、補正計算を行なっ
て装置の安定性を検査しなげればならないので不便であ
る。
In this case, if atmospheric pressure fluctuates by 0.6%, approximately 0.2
61/7-, and in high-precision devices that require a device measurement error of within 0.2 tons, the change in atmospheric pressure during the stability check is checked with a barometer, and correction calculations are performed to ensure the stability of the device. This is inconvenient because it requires a sex test.

また、装置のオートゼロ機構の作動の周期は一般に1時
間ごとであるので、この間の急激な圧力変化については
補正はできない。
Furthermore, since the auto-zero mechanism of the device generally operates every hour, it is not possible to correct sudden pressure changes during this period.

また、一般に、この種の装置においては、被測定体は装
置の検出器部分を連続して通過する。
In addition, in general, in this type of device, the object to be measured continuously passes through the detector portion of the device.

また、検出器部分目?も被測定体に直角方向に被測定休
の幅の範囲で往復運動するが、この移動に伴う圧力変化
及びその移動速度もかならずしも一定でなく、このため
検出器部分においては圧力変動が生ずる。
Also, the detector part? Although the sensor reciprocates in the direction perpendicular to the object to be measured within the range of the distance to be measured, the pressure change accompanying this movement and the speed of movement are not always constant, and therefore pressure fluctuations occur in the detector section.

一方、オートゼロ機構においては、被測定体の存在しな
い位置において作動させねばならないので、この速度変
動による圧力変動は補正し得ない。
On the other hand, since the auto-zero mechanism must be operated at a position where the object to be measured does not exist, pressure fluctuations caused by this speed fluctuation cannot be corrected.

なお、オートゼロ機構は検出器部分の窓に耐着するゴミ
と、ゴ定時ごとの気圧による態度変化と、線源の補正を
主目的とするもので、上記の様なオン・ラインの空気密
度の変化の補正はできない。
The main purpose of the auto-zero mechanism is to correct dust that adheres to the detector window, attitude changes due to atmospheric pressure at regular intervals, and radiation sources. Changes cannot be corrected.

本考案はこの点に着目してなされたもので、本考案の目
的は温度および気圧の変動による空気層の密度変化によ
る誤差を補償し、測定精度を向上しうる放射線厚さ計の
空気層密度変化補償装置を提供するにある。
The present invention was developed with this in mind.The purpose of the present invention is to compensate for errors caused by changes in air layer density due to changes in temperature and pressure, and to improve the measurement accuracy of the air layer density of a radiation thickness meter. To provide a change compensation device.

以下図面により本考案を説明する。The present invention will be explained below with reference to the drawings.

第1図は本考案の一実施例の構成訣明図である。FIG. 1 is a schematic diagram of an embodiment of the present invention.

図において、1は被測定体でたとえば軽量の紙やプラス
チックで、図の左右方向に連続して流れる。
In the figure, reference numeral 1 denotes an object to be measured, such as lightweight paper or plastic, which flows continuously in the left-right direction of the figure.

2は線源側ヘッド、3は検出器側ヘッドで被測定体1を
介して対向配置され、測定時には図の垂直方向に被測定
体の幅の範囲を往復運動する。
Reference numeral 2 denotes a source-side head, and 3 a detector-side head, which are disposed opposite to each other with the object to be measured 1 interposed therebetween, and during measurement, they reciprocate within the range of the width of the object to be measured in the vertical direction in the figure.

4は放射線源、5は放射線検出用の電離箱である。4 is a radiation source, and 5 is an ionization chamber for radiation detection.

6゜7は感温体で本実施例では、シリコン測温抵抗体が
用いられている。
6.7 is a temperature sensing element, and in this embodiment, a silicon resistance temperature sensing element is used.

感温体6,7は線源側ヘッド2および検出器側ヘッド3
の被測定体1側の管壁にその感温部を突出させて設けら
れている。
The temperature sensing elements 6 and 7 are the radiation source side head 2 and the detector side head 3.
The thermosensor is provided with its temperature sensing portion protruding from the tube wall on the side of the object to be measured 1.

8は圧力検出器で、線源側ヘッド2に取付けられている
A pressure detector 8 is attached to the head 2 on the radiation source side.

9は電離箱5の出力電流を増幅する高入力抵抗の増幅器
、10.11はそれぞれ感温体6.γで検出した温度変
化に対応した抵抗変化を電圧信号V1 、V2に変換す
る変換増幅器である。
9 is a high input resistance amplifier that amplifies the output current of the ionization chamber 5, and 10.11 is a temperature sensing element 6. This is a conversion amplifier that converts the resistance change corresponding to the temperature change detected by γ into voltage signals V1 and V2.

12は圧力検出器8で検出した圧力を電圧信号v3に変
換する変換増幅器である。
12 is a conversion amplifier that converts the pressure detected by the pressure detector 8 into a voltage signal v3.

13,14.15は可変分圧器で、それぞれ放射線源4
と被測定体1間の空気層の長さLl、電離箱5と被測定
体1間の空気層の長さL2および放射線源4と電離箱5
間の空気層の長さL3に応じて、各可変分圧端子16.
17,18を設定する。
13, 14, and 15 are variable voltage dividers, each of which connects the radiation source 4.
and the length Ll of the air layer between the object to be measured 1, the length L2 of the air layer between the ionization chamber 5 and the object to be measured 1, and the radiation source 4 and the ionization chamber 5.
Depending on the length L3 of the air layer between each variable voltage dividing terminal 16.
Set 17 and 18.

19は加算器で、前記可変分圧器13,14で得られた
信号を加算するためのものである。
Reference numeral 19 denotes an adder for adding the signals obtained by the variable voltage dividers 13 and 14.

20は偏差増幅器で、加減回路21と、加減回路21の
出力VAと高入力抵抗増幅器8の出力VBとの差を取る
差引き回路22と、その差の出力VCを増幅する増幅器
23よりなる。
Reference numeral 20 denotes a deviation amplifier, which includes an adder/subtracter circuit 21, a subtracter circuit 22 that takes the difference between the output VA of the adder/subtractor 21 and the output VB of the high input resistance amplifier 8, and an amplifier 23 that amplifies the output VC of the difference.

加減回路21は基準厚さ設定信号VDと、空気層の圧力
による密度変化補償信号VEと、加算器19の出力信号
である空気層の温度による密度変化補償信号VFとの加
減をする回路である。
The adjustment circuit 21 is a circuit that adjusts the reference thickness setting signal VD, the density change compensation signal VE due to the air layer pressure, and the density change compensation signal VF due to the air layer temperature, which is the output signal of the adder 19. .

次に、上記構成の動作を説明する。Next, the operation of the above configuration will be explained.

放射線源4から放射された放射線は線源4から被測定体
1までの空気層、被測定体1、被測定体1から電離箱5
までの空気層をそれぞれ通り、それぞれの経路で空気層
や被測定体の密度と経路の長さの積に対応した減衰をし
て、電離箱5に入射する。
The radiation emitted from the radiation source 4 is transmitted through the air layer from the radiation source 4 to the object to be measured 1, the object to be measured 1, and from the object to be measured 1 to the ionization chamber 5.
The light passes through the air layers up to the point where the light is attenuated on each path depending on the product of the density of the air layer or the object to be measured and the length of the path, and then enters the ionization chamber 5.

電離箱5では入射した放射線に応じた電離電流を生じ、
これが出力電流となって出力される。
The ionization chamber 5 generates an ionization current according to the incident radiation,
This becomes an output current and is output.

一方、線源4から被測定体1までの空気層の温度θ1を
感温体6で検出し、電離箱5から被測定体1までの空気
層の温度θ2を感温体7で検出し、各検出値について、
温度変換器10,11で基準温度θOからの変化分Jθ
1.lθ2に比例した電圧信号V1.V2を得、それぞ
れ可変分圧器13.14で各空気層の長さLI、L2に
応じて分圧すれば、分圧端子16,17より、それぞれ
の空気層の温度についての補償信号L]!JθI、Lz
、lθ2を得る。
On the other hand, the temperature θ1 of the air layer from the radiation source 4 to the object to be measured 1 is detected by the temperature sensor 6, the temperature θ2 of the air layer from the ionization chamber 5 to the object to be measured 1 is detected by the temperature sensor 7, For each detected value,
Temperature converters 10 and 11 measure the change Jθ from the reference temperature θO.
1. A voltage signal V1. proportional to lθ2. If V2 is obtained and the voltage is divided according to the lengths LI and L2 of each air layer using variable voltage dividers 13 and 14, compensation signals L]! JθI, Lz
, lθ2 is obtained.

これらを次の加算器19で加算して、それらの和の出力
VF二L+、Jθ] +L2.lθ2を得る。
These are added by the next adder 19, and the sum output VF2L+, Jθ] +L2. Obtain lθ2.

また線源4から電離箱5までの空気層の圧力を圧力検出
器8で検出し、圧力変換器12で基準圧力Poからの変
化分JPに比例した電圧信号v3を得る。
Further, the pressure of the air layer from the radiation source 4 to the ionization chamber 5 is detected by the pressure detector 8, and the pressure converter 12 obtains a voltage signal v3 proportional to the change JP from the reference pressure Po.

可変分圧器15で空気層の長さL3に応じて分圧すれば
、分圧端子18より空気層の圧力についての補償信号V
E=L3 、APを得る。
If the variable voltage divider 15 divides the pressure according to the length L3 of the air layer, a compensation signal V for the pressure of the air layer is generated from the voltage dividing terminal 18.
E=L3, get AP.

加減回路21において、この補償信号VEと前記補償信
号VFは基準厚さ設定信号VDにそれぞれ減算、加算さ
れ、その和信号VAは差引き回路22において、高入力
抵抗増幅器9の出力VBより差引かれる。
In the addition/subtraction circuit 21, this compensation signal VE and the compensation signal VF are subtracted and added to the reference thickness setting signal VD, respectively, and the sum signal VA is subtracted from the output VB of the high input resistance amplifier 9 in the subtraction circuit 22. .

そしてその差信号VCは増幅器23で増幅されて、空気
層の温度と圧力による密度変化が補償され、正しい基準
厚さからの厚さの偏差信号Ioとして出力される。
The difference signal VC is amplified by an amplifier 23 to compensate for changes in density due to the temperature and pressure of the air layer, and is output as a thickness deviation signal Io from the correct reference thickness.

上記実施例において、各空気層の温度は各1個所で測定
しているので、厳密には平均温度ではないが、線源側ヘ
ッド2と検出器側ヘッド3の被測定体1側の管壁に感温
部を突出して設けた感温体で検出しているので、各空気
層の平均温度に近い塩度が検出できる。
In the above embodiment, the temperature of each air layer is measured at one location, so strictly speaking it is not an average temperature, but the temperature is measured on the tube wall of the source side head 2 and the detector side head 3 on the side of the object to be measured 1. Since the temperature is detected by a temperature-sensitive body with a protruding temperature-sensing section, salinity close to the average temperature of each air layer can be detected.

したがって、上記による空気層の密度変化の補償は、か
なり正確なものと言える。
Therefore, it can be said that the compensation for the density change of the air layer as described above is quite accurate.

なお、平均温度を得るには、たとえば、多数の感温体を
被測定体からの距離を変えて設けて温度分布を淵庫すれ
ばよい。
Note that in order to obtain the average temperature, for example, a large number of temperature sensing bodies may be provided at different distances from the object to be measured to determine the temperature distribution.

あるいは、平均温度のかわりに、空気層をエアパージす
るなどして、はぼ均一な温度として測定してもよい。
Alternatively, instead of the average temperature, the temperature may be measured as a more or less uniform temperature by, for example, purging the air layer.

また、上記実施例では、線源側の空気層を線源4から被
測定体1までの長さL】として用いたが、線源4を線源
側ヘッド2内に密封すれば、線源4から線源側ヘンド2
の照射窓30までの空気層L4は、密度が一定となるの
で、この場合は、この空気層部分を除外した線源側ヘン
ド2から被測定体1までの空気層部分(長さL5)を補
償対象部分とすればよい。
In addition, in the above embodiment, the air layer on the radiation source side was used as the length L from the radiation source 4 to the object to be measured 1, but if the radiation source 4 is sealed inside the radiation source head 2, the radiation source 4 to source side hand 2
Since the density of the air layer L4 up to the irradiation window 30 is constant, in this case, the air layer portion (length L5) from the radiation source side hand 2 to the measured object 1, excluding this air layer portion, is This may be the part covered by compensation.

また圧力検出器8は検出器側ヘッドに設けてもよいこと
は勿論である。
Moreover, it goes without saying that the pressure detector 8 may be provided in the head on the detector side.

以上説明したように、本考案は線源側ヘッドと検出器側
ヘッドの各被測定体側に感温体を設けるとともに、線源
側ヘッド、あるいは、検出器側ヘッドに圧力検出器を設
けて、温度および気圧による空気層の密度変化を、各空
気層の厚さおよび温度と圧力に比例して補償するように
した、更には、被測定体1の流れ速度及び線源側ヘッド
と検出器側ヘッドの往復運動の移動速度とその速度の変
動による空気圧力変動を補償するようにしたので、温度
と圧力による空気層の密度変化による誤差が正確に補償
できる。
As explained above, the present invention provides a temperature sensing body on each measured object side of the radiation source side head and the detector side head, and also provides a pressure detector on the radiation source side head or the detector side head. The density change of the air layer due to temperature and pressure is compensated in proportion to the thickness of each air layer and the temperature and pressure. Since the moving speed of the reciprocating motion of the head and the air pressure fluctuation due to the fluctuation of the speed are compensated for, errors caused by changes in the density of the air layer due to temperature and pressure can be accurately compensated for.

17mがって、本考案によれば温度および圧力の変動に
よる空気層の密度変化による誤差を補償し、測定精度な
向上し得る放射線厚さ計の空気層密度変化補償装置を実
現することができる。
According to the present invention, it is possible to realize an air layer density change compensation device for a radiation thickness meter that can compensate for errors caused by changes in air layer density due to temperature and pressure fluctuations and improve measurement accuracy. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の一実施例の構成説明図である。 1・・・・・・被測定体、2・・・・・・線源側ヘッド
、3・・・・・・検出器側ヘンド、4・・・・・・放射
線源、5・・・・・・検出器(電離箱)、6,7・・・
・・・感温体、8・・・・・・圧力検出器、9・・・・
・・高入力抵抗増幅器、10,11・・・・・・温度変
換増幅器、12・・・・・・圧力変換増幅器、13゜1
4.15・・・・・・可変分圧器、19・・・・・・加
算器、20・・・・・・偏差増幅器、VD・・・・・・
基準厚さ信号。
FIG. 1 is an explanatory diagram of the configuration of an embodiment of the present invention. 1...Measurement object, 2...Radiation source side head, 3...Detector side head, 4...Radiation source, 5... ...Detector (ionization chamber), 6,7...
...Temperature sensor, 8...Pressure detector, 9...
...High input resistance amplifier, 10,11...Temperature conversion amplifier, 12...Pressure conversion amplifier, 13゜1
4.15... Variable voltage divider, 19... Adder, 20... Deviation amplifier, VD...
Reference thickness signal.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 放射線厚さ計において、被測定体を介して対向配置され
た線源側ヘッドおよび検出器側ヘッドの各被測定体に面
する側にそれぞれ設けられた温度検出手段と、線源側又
は検出側ヘッドに設けられた圧力検出手段と、該検出手
段の圧力および温度の検出値を電気信号に変換するそれ
ぞれ第1と第2の変換器、前記第1の変換器の信号を前
記検出器の検出値に加算し第2の変換器の信号を前記検
出器の検出値に減算する演算回路を具備し、前記空気層
の圧力および温度による密度変化を補償するようにした
放射線厚さ計の空気密度変化補償装置。
In a radiation thickness meter, a temperature detection means is provided on the side facing the object to be measured of the radiation source side head and the detector side head which are arranged opposite to each other with the object to be measured interposed therebetween, and the temperature detection means on the radiation source side or the detection side. A pressure detection means provided on the head, first and second converters that convert pressure and temperature detection values of the detection means into electrical signals, and a signal of the first converter is detected by the detector. The radiation thickness meter is equipped with an arithmetic circuit that adds the signal of the second converter to the detected value of the detector, and compensates for density changes due to pressure and temperature of the air layer. Change compensator.
JP1976116782U 1976-08-31 1976-08-31 Air layer density change compensation device for radiation thickness gauge Expired JPS5825289Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1976116782U JPS5825289Y2 (en) 1976-08-31 1976-08-31 Air layer density change compensation device for radiation thickness gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1976116782U JPS5825289Y2 (en) 1976-08-31 1976-08-31 Air layer density change compensation device for radiation thickness gauge

Publications (2)

Publication Number Publication Date
JPS5335056U JPS5335056U (en) 1978-03-28
JPS5825289Y2 true JPS5825289Y2 (en) 1983-05-31

Family

ID=28726375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1976116782U Expired JPS5825289Y2 (en) 1976-08-31 1976-08-31 Air layer density change compensation device for radiation thickness gauge

Country Status (1)

Country Link
JP (1) JPS5825289Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515454B2 (en) * 1971-09-10 1976-02-20

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592486Y2 (en) * 1974-06-28 1984-01-24 株式会社横河電機製作所 Houshiya Senatsusakei Niokeru

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS515454B2 (en) * 1971-09-10 1976-02-20

Also Published As

Publication number Publication date
JPS5335056U (en) 1978-03-28

Similar Documents

Publication Publication Date Title
US8858069B2 (en) Optical fiber temperature distribution measuring device
US11629998B2 (en) Radiation temperature measuring device
JPS5922161B2 (en) radiation thickness gauge
US4109147A (en) Optical position sensor
CN105572191A (en) Pressure compensation method of electrochemical gas sensor
JP5423705B2 (en) Radiation inspection equipment
JPS5825289Y2 (en) Air layer density change compensation device for radiation thickness gauge
JPS6223264B2 (en)
JPS592486Y2 (en) Houshiya Senatsusakei Niokeru
JPS6248280B2 (en)
JPS57192851A (en) Limiting current type oxygen concentration detector compensated for temperature of measured output
JP3084579B2 (en) Temperature sensor linearization processing method
JPS6147371B2 (en)
JPS62195580A (en) Measuring instrument for generation quantity of radiation
Alayli et al. Compensation of the thermal influence on a high accuracy optical fibre displacement sensor
JPH0449527Y2 (en)
JP2014016312A (en) Radiation measuring method
JP2805956B2 (en) Thickness measuring device
US2639615A (en) Barometric measurement of elevation
JPH10281806A (en) Signal processor and measuring device
SU1515042A1 (en) Device for determining position of pump station of the pipe-line being laid
JPH042170A (en) Temperature compensation method for span voltage of semiconductor diffused resistor type of pressure sensor
JP2017044676A (en) Temperature detection device and temperature detection method
JPS5925964B2 (en) Temperature measurement device using resistance thermometer
JPH0367117A (en) Distance measuring instrument