JPH0225939B2 - - Google Patents

Info

Publication number
JPH0225939B2
JPH0225939B2 JP17757881A JP17757881A JPH0225939B2 JP H0225939 B2 JPH0225939 B2 JP H0225939B2 JP 17757881 A JP17757881 A JP 17757881A JP 17757881 A JP17757881 A JP 17757881A JP H0225939 B2 JPH0225939 B2 JP H0225939B2
Authority
JP
Japan
Prior art keywords
resin
sintered body
polyamide
fluororesin
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17757881A
Other languages
Japanese (ja)
Other versions
JPS5879031A (en
Inventor
Kunisuke Sakamoto
Junichi Yoshimura
Isamu Shiga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP17757881A priority Critical patent/JPS5879031A/en
Publication of JPS5879031A publication Critical patent/JPS5879031A/en
Publication of JPH0225939B2 publication Critical patent/JPH0225939B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は多孔質焼結体に関する。 詳しくは、ポリアミドイミド樹脂とふつ素樹脂
とを組合せて、単独では持合せない特性を付与し
た多孔質焼結体に関する。 プラスチツクからなる多孔質物質としては、古
くは海綿構造のスポンジが知られている。しか
し、これらは耐薬品性が弱く、耐熱性も低い。ま
た、一般に柔らかいものが多く、機械的強度の高
いものはつくりにくい。 このような欠点を補うものとしてプラスチツク
焼結体が知られており、すでにポリエチレン、ポ
リアミド樹脂等を原料とする多孔質物質が量産さ
れ、各種の用途に用いられている。しかしなが
ら、従来のプラスチツク焼結体においては、耐熱
性が高々100℃前後であり、その機械的強度も不
充分なものであつた。 また、近年、耐熱性の高いものとして、ポリイ
ミド樹脂の多孔質焼結体も提案されたが、機械的
強度の点では末だ不充分であつた。 したがつて、高い耐熱性、高度な耐薬品性およ
び機械的強度をあわせもつ焼結体は末だ開発され
ていないのが現状である。 本発明者等はこれらの現状に鑑み、鋭意検討を
重ねた結果、ポリアミドイミド樹脂とふつ素樹脂
の混合粉末を、ポリアミドイミド樹脂の軟化温度
以上分解温度以下の温度で加熱焼結させることに
よつて得られる多孔質焼結体が、高い耐熱性、高
度な耐薬品性および高い機械的強度をあわせも
ち、しかもふつ素樹脂で充分に特性を付与しうる
ことを知見し本発明に到つた。 すなわち本発明の要旨は、ポリアミドイミド樹
脂とふつ素樹脂の混合物を、ポリアミドイミド樹
脂の軟化温度以上、分解温度以下の温度で加熱焼
結させることによつて得られる多孔質焼結体に存
する。 以下本発明をさらに詳細に説明する。 本発明で使用するポリアミドイミド樹脂は、主
鎖のくり返し単位中にイミドとアミドの結合をも
つ合成樹脂である。このような合成樹脂は各種の
名称で市販されており、本発明ではそのいずれを
も用いることができる。 好ましくは、一般式 (式中Arは少なくとも1つのベンゼン環を含む
3価の芳香族基、Rは2価の有機基例えば芳香族
および/または脂肪族残基を示す。)で表わされ
るポリアミドイミド樹脂が使用される。 このような樹脂の一種にトリメリツト酸と芳香
族ジアミンの反応によつて得られるものがあり、
このものは次の化学構造式で示される。 このようなポリアミドイミド樹脂は、芳香核と
イミド結合の組合せを持つために、優れた熱安定
性を示し、またおそらくアミド結合に起因すると
考えられる柔軟性のために優れた強靭さを示し、
さらに優れた耐薬品性をあわせもつている。 この様なポリアミドイミド樹脂は、焼結温度で
重合反応を起こし、高分子量化することが知られ
ている。 従つて、加熱焼結時に、他の熱可塑性樹脂の様
に単に融着するだけではなく、異る粉末粒子間
で、化学反応による結合を生じる。故に、きわめ
てすぐれた焼結体製造用原料であり、ふつ素樹脂
を充填した系でも高い機械的強度を持つ焼結体を
作ることが出来る。 本発明で使用するふつ素樹脂は、通常知られて
いるものでよく、例えば、ポリテトラフルオルエ
チレン、ポリクロルトリフルオルエチレン、ポリ
ふつ化ビニル、ポリふつ化ビニリデン、ヘキサフ
ルオルプロピレン−テトラフルオルエチレン共重
合体、クロルトリフルオルエチレン−ふつ化ビニ
リデン共重合体等が用いられる。 ふつ素樹脂の配合割合は、主に焼結体に要求さ
れる摩擦係数に依存し、ふつ素樹脂の配合割合が
多くなるほど摩擦係数の低い焼結体が得られる。
通常は、ポリアミドイミド樹脂との混合物全体に
対し、0.005〜50重量%、好ましくは5〜35重量
%となるようにふつ素樹脂を配合する。 配合割合がこれより極端に少ないと、ふつ素樹
脂を混合する意味がなく、逆に極端に多すぎると
成形品の強度が低下して実用的でなくなる。 本発明では、上記のポリアミドイミド樹脂粉末
と、ふつ素樹脂末とを機械的に混合した粉末混合
物を原料として焼結体を製造する。樹脂粉末は、
種々の粒径のものを使用しうるが、従来から工業
的に使用されている粒径が100メツシユ以下のも
のが通常使用される。焼結は、粉末混合物を所定
の形状に圧縮成形したのち、ポリアミドイミド樹
脂の軟化温度以上、分解温度以下に加熱すること
により行なわれる。 焼結に要する時間は、設定した加熱温度の高低
により幅があるが、工業的には数分〜数時間であ
る。 焼結雰囲気は任意であるが、通常は空気中で焼
結が行なわれる。 こうして得られる多孔質焼結体は、多孔質およ
び低い摩擦係数を生かし、各種の摺動部品として
用いる場合にきわめて有用であるとともに、多孔
質そのものを利用したフイルターとしてもきわめ
て有用である。 また、従来のポリアミドイミド樹脂の成形法、
例えば射出成形や押出成形では、該樹脂の溶融粘
度が高いために、高濃度にふつ素樹脂を充填する
ことは不可能であつたが、本発明ではふつ素樹脂
を任意の比率で配合することが可能である。 次に本発明を実施例により更に具体的に説明す
るが、本発明はその要旨をこえない限り、以下の
実施例に拘束されるものではない。 実施例 1〜3 トリメリツト酸無水物と芳香族ジアミンより合
成されたポリアミドイミド樹脂の一種であるトー
ロン(トーロンは、米国、アモコ社の登録商標)
の粉末(平均粒径5μ、ただし電子顕微鏡観察に
よる長さ平均径)とポリテトラフルオルエチレン
粉末・ルブロンL−2(ルブロンはダイキン工業
(株)の登録商標、平均粒径0.3μ、ただし電子顕微鏡
観察による長さ平均径)を機械的に混合した。 ポリテトラフルオルエチレン粉末の混合物中に
占める割合は、10重量%、25重量%および50重量
%である。 該粉末混合物を常温大気中で、3180(Kg/cm2
の圧力により圧縮成形した。加圧時間は5分間で
ある。なお、この成形品の形状は、20φmm、3tmm
の円盤である。続いて、この成形品を空気中で
300℃の温度で、2時間加熱し焼結した。 上記成形品を幅5mm、厚さ3mm、長さ20mmの短
冊に切削加工し、スパン間12mm、クロスヘツドス
ピード1mm/minで3点支柱の曲げ試験を行い、
曲げ強度(Kg/cm2)および曲げ伸度(%)を測定
した。測定温度は20℃である。また、密度の測定
により該多孔質焼結体の充填率を算出した。 結果を表−1に示した。
The present invention relates to a porous sintered body. Specifically, the present invention relates to a porous sintered body that combines a polyamide-imide resin and a fluororesin to provide properties that cannot be achieved alone. Sponges with a spongy structure have long been known as porous materials made of plastic. However, these have weak chemical resistance and low heat resistance. Additionally, they are generally soft and difficult to make with high mechanical strength. Plastic sintered bodies are known to compensate for these drawbacks, and porous materials made from polyethylene, polyamide resins, etc., have already been mass-produced and used for various purposes. However, conventional sintered plastic bodies have a heat resistance of around 100° C. at most, and their mechanical strength is also insufficient. Furthermore, in recent years, porous sintered bodies of polyimide resin have been proposed as having high heat resistance, but these have been insufficient in terms of mechanical strength. Therefore, at present, a sintered body having high heat resistance, high chemical resistance, and mechanical strength has not yet been developed. In view of these current circumstances, the inventors of the present invention have conducted intensive studies and found that a mixed powder of polyamide-imide resin and fluororesin can be heated and sintered at a temperature above the softening temperature and below the decomposition temperature of the polyamide-imide resin. The present inventors have discovered that the porous sintered body obtained in this manner has high heat resistance, high chemical resistance, and high mechanical strength, and that these properties can be sufficiently imparted with fluorine resin. That is, the gist of the present invention resides in a porous sintered body obtained by heating and sintering a mixture of a polyamide-imide resin and a fluororesin at a temperature above the softening temperature and below the decomposition temperature of the polyamide-imide resin. The present invention will be explained in more detail below. The polyamide-imide resin used in the present invention is a synthetic resin having imide and amide bonds in the repeating unit of the main chain. Such synthetic resins are commercially available under various names, and any of them can be used in the present invention. Preferably, the general formula (wherein Ar is a trivalent aromatic group containing at least one benzene ring, R is a divalent organic group such as an aromatic and/or aliphatic residue) is used. . One type of such resin is one obtained by the reaction of trimellitic acid and aromatic diamine.
This product is shown by the following chemical structural formula. Such polyamide-imide resins exhibit excellent thermal stability due to the combination of aromatic nuclei and imide bonds, and also exhibit excellent toughness due to flexibility, which is probably due to the amide bonds.
It also has excellent chemical resistance. It is known that such a polyamide-imide resin undergoes a polymerization reaction at the sintering temperature to increase its molecular weight. Therefore, during heating and sintering, unlike other thermoplastic resins, they are not simply fused together, but bonding occurs between different powder particles through a chemical reaction. Therefore, it is an extremely excellent raw material for producing sintered bodies, and even in systems filled with fluorine resin, sintered bodies with high mechanical strength can be made. The fluororesin used in the present invention may be commonly known ones, such as polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinyl fluoride, polyvinylidene fluoride, hexafluoropropylene-tetrafluoroethylene, and polyvinyl fluoride. Orethylene copolymer, chlorotrifluoroethylene-vinylidene fluoride copolymer, etc. are used. The blending ratio of the fluororesin mainly depends on the friction coefficient required of the sintered body, and the higher the blending ratio of the fluororesin, the lower the friction coefficient of the sintered body can be obtained.
Usually, the fluororesin is blended in an amount of 0.005 to 50% by weight, preferably 5 to 35% by weight, based on the entire mixture with the polyamideimide resin. If the blending ratio is extremely lower than this, there is no point in mixing the fluororesin, while if it is extremely high, the strength of the molded product will decrease and become impractical. In the present invention, a sintered body is manufactured using a powder mixture obtained by mechanically mixing the above-mentioned polyamide-imide resin powder and fluororesin powder as a raw material. The resin powder is
Although various particle sizes can be used, those having a particle size of 100 mesh or less, which have been conventionally used industrially, are usually used. Sintering is performed by compressing the powder mixture into a predetermined shape and then heating it to a temperature above the softening temperature and below the decomposition temperature of the polyamide-imide resin. The time required for sintering varies depending on the heating temperature set, but industrially it is several minutes to several hours. Although the sintering atmosphere is arbitrary, sintering is usually performed in air. The porous sintered body thus obtained is extremely useful when used as various sliding parts by taking advantage of its porous nature and low coefficient of friction, and is also extremely useful as a filter that utilizes its porous nature. In addition, conventional polyamide-imide resin molding methods,
For example, in injection molding or extrusion molding, it has been impossible to fill the fluororesin in a high concentration due to the high melt viscosity of the resin, but with the present invention, it is possible to mix the fluororesin in any ratio. is possible. EXAMPLES Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not restricted to the following Examples unless the gist thereof is exceeded. Examples 1 to 3 Torlon is a type of polyamideimide resin synthesized from trimellitic anhydride and aromatic diamine (Torlon is a registered trademark of Amoco, Inc., USA)
powder (average particle size 5μ, length average diameter as determined by electron microscopy) and polytetrafluoroethylene powder Leburon L-2 (Luburon is manufactured by Daikin Industries, Ltd.)
Co., Ltd. (registered trademark, average particle size: 0.3μ, length average diameter as determined by electron microscopy) was mechanically mixed. The proportion of polytetrafluoroethylene powder in the mixture is 10%, 25% and 50% by weight. The powder mixture was heated to 3180 (Kg/cm 2 ) in the air at room temperature.
It was compression molded under the pressure of The pressurization time is 5 minutes. The shape of this molded product is 20φmm, 3t mm.
It is a disc. Next, this molded product is placed in the air.
It was heated and sintered at a temperature of 300°C for 2 hours. The above molded product was cut into strips with a width of 5 mm, a thickness of 3 mm, and a length of 20 mm, and a three-point support bending test was conducted at a span distance of 12 mm and a crosshead speed of 1 mm/min.
Bending strength (Kg/cm 2 ) and bending elongation (%) were measured. The measurement temperature is 20°C. Furthermore, the filling rate of the porous sintered body was calculated by measuring the density. The results are shown in Table-1.

【表】【table】

【表】 実施例4および比較例1 実施例1〜3で使用したポリアミドイミド樹脂
の一種であるトーロンの粉末とポリテトラフルオ
ルエチレン粉末・ルブロンL−2の混合物(ルブ
ロンL−2の混合物中の割合は10wt%)を、常
温、大気中で、4000(Kg/cm)の圧力により圧縮
成形した。加圧時間は3分間である。なお、この
成形品の形状は、40φmm、3tmmの円盤である。 続いて、この成形品を、空気中で300℃の温度
で2時間加熱し焼結した。 上記成形品の摩擦・摩耗特性を見るため、東洋
ボールドウイン(株)製・摩擦・摩耗試験機(EFM
−−B)を用いて、摩耗速度(μ/min)およ
び動摩擦係数を測定し、その結果を表−2に示し
た。なお、試験は無潤滑で行い、相手材は
SUS304で行なつた。 一方、ポリテトラフルオルエチレン粉末・ルブ
ロンL−2を配合せず、トーロン単味とした他は
実施例4と全く同様にして、焼結体を得、さらに
同様にして、摩擦・摩耗特性を測定した。その結
果を比較例1として表−2に示した。
[Table] Example 4 and Comparative Example 1 A mixture of Torlon powder, which is a type of polyamideimide resin used in Examples 1 to 3, and polytetrafluoroethylene powder/Luburon L-2 (in the mixture of Luburon L-2) (proportion of 10 wt%) was compression molded at room temperature in the atmosphere at a pressure of 4000 (Kg/cm). The pressurization time was 3 minutes. The shape of this molded product is a disc with a diameter of 40mm and a diameter of 3tmm. Subsequently, this molded article was sintered by heating at a temperature of 300° C. for 2 hours in air. In order to check the friction and wear characteristics of the above molded products, we used a friction and wear tester (EFM) manufactured by Toyo Baldwin Co., Ltd.
--B), the wear rate (μ/min) and the coefficient of dynamic friction were measured, and the results are shown in Table 2. The test was conducted without lubrication, and the mating material was
This was done with SUS304. On the other hand, a sintered body was obtained in exactly the same manner as in Example 4, except that polytetrafluoroethylene powder and Lublon L-2 were not blended and only Torlon was used. It was measured. The results are shown in Table 2 as Comparative Example 1.

【表】【table】

Claims (1)

【特許請求の範囲】 1 ポリアミドイミド樹脂とふつ素樹脂の混合物
を、ポリアミドイミド樹脂の軟化温度以上、分解
温度以下の温度で加熱焼結させることによつて得
られる多孔質焼結体。 2 ポリアミドイミド樹脂が、一般式 (式中Arは少なくとも1つのベンゼン環を含む
3価の芳香族基、Rは2価の有機基を示す)で表
わされるポリアミドイミド樹脂である特許請求の
範囲第1項記載の多孔質焼結体。 3 ふつ素樹脂の配合割合が、混合物全体に対
し、0.005〜50重量%である特許請求の範囲第1
項または第2項記載の多孔質焼結体。 4 ふつ素樹脂がポリテトラフルオルエチレンで
ある特許請求の範囲第1項ないし第3項のいずれ
かに記載の多孔質焼結体。
[Claims] 1. A porous sintered body obtained by heating and sintering a mixture of a polyamide-imide resin and a fluororesin at a temperature that is above the softening temperature and below the decomposition temperature of the polyamide-imide resin. 2 Polyamideimide resin has the general formula (In the formula, Ar is a trivalent aromatic group containing at least one benzene ring, and R is a divalent organic group.) body. 3. Claim 1, wherein the blending ratio of the fluorine resin is 0.005 to 50% by weight based on the entire mixture.
Porous sintered body according to item 1 or 2. 4. The porous sintered body according to any one of claims 1 to 3, wherein the fluororesin is polytetrafluoroethylene.
JP17757881A 1981-11-05 1981-11-05 Porous sintered material Granted JPS5879031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17757881A JPS5879031A (en) 1981-11-05 1981-11-05 Porous sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17757881A JPS5879031A (en) 1981-11-05 1981-11-05 Porous sintered material

Publications (2)

Publication Number Publication Date
JPS5879031A JPS5879031A (en) 1983-05-12
JPH0225939B2 true JPH0225939B2 (en) 1990-06-06

Family

ID=16033414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17757881A Granted JPS5879031A (en) 1981-11-05 1981-11-05 Porous sintered material

Country Status (1)

Country Link
JP (1) JPS5879031A (en)

Also Published As

Publication number Publication date
JPS5879031A (en) 1983-05-12

Similar Documents

Publication Publication Date Title
US3879301A (en) Low friction bearing material and method
US6787075B2 (en) Method of making synthetic resin composition with lubricative underwater properties containing RBC or CRBC fine powder
JPH10505378A (en) Porous polytetrafluoroethylene mixture
US4159286A (en) Nucleated nylon/PTFE compositions
JP4386633B2 (en) Fluoro resin composition
US3878164A (en) Tetrafluoroethylene polymer compositions
JPH0225939B2 (en)
US3136735A (en) Addition of carbonamides to polyethylene to increase abrasion resistance
JPH05331314A (en) Heat-resistant resin sliding material
US3409584A (en) Tetrafluoroethylene products and methods
JPH0225938B2 (en)
US5434223A (en) Nylon 4.6 block copolymers
JPH0363578B2 (en)
JP3736909B2 (en) Resin composition with excellent slidability
JP3315688B2 (en) Filler-containing polytetrafluoroethylene composition and molded article thereof
JPH0762184A (en) Slidable sealing composition
JPS5827285B2 (en) porous sintered body
JP2589714B2 (en) Sliding material composition
JPH0378422B2 (en)
JP3525232B2 (en) Nylon resin composition containing magnetic powder and magnet roll using the same
US4246159A (en) Lubricant fillers in a discrete phase
JP3046405B2 (en) Manufacturing method of porous body
JPH02206638A (en) Lubricating resin composition
JPS63251448A (en) Injection-moldable material having low friction coefficient
JP2004108499A (en) Synthetic resin compound for sliding bearings and sliding bearing molding the same