JPH02259178A - Twisted structure made of fiber-reinforced thermosetting resin and production thereof - Google Patents

Twisted structure made of fiber-reinforced thermosetting resin and production thereof

Info

Publication number
JPH02259178A
JPH02259178A JP1334994A JP33499489A JPH02259178A JP H02259178 A JPH02259178 A JP H02259178A JP 1334994 A JP1334994 A JP 1334994A JP 33499489 A JP33499489 A JP 33499489A JP H02259178 A JPH02259178 A JP H02259178A
Authority
JP
Japan
Prior art keywords
strand
twisted
twisting
thermosetting resin
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1334994A
Other languages
Japanese (ja)
Other versions
JP2869116B2 (en
Inventor
Kenji Kozuka
健次 小塚
Shigehiro Matsuno
繁宏 松野
Kazuo Yasuda
一雄 安田
Minoru Naito
稔 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP1334994A priority Critical patent/JP2869116B2/en
Publication of JPH02259178A publication Critical patent/JPH02259178A/en
Application granted granted Critical
Publication of JP2869116B2 publication Critical patent/JP2869116B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B7/00Details of, or auxiliary devices incorporated in, rope- or cable-making machines; Auxiliary apparatus associated with such machines
    • D07B7/02Machine details; Auxiliary devices
    • D07B7/14Machine details; Auxiliary devices for coating or wrapping ropes, cables, or component strands thereof
    • D07B7/145Coating or filling-up interstices

Abstract

PURPOSE:To obtain the subject structure resistant to the lowering of tensile strength caused by twisting by impregnating uncured thermosetting resin into a reinforcing fiber raw material, covering the outer circumference of the material with a thermoplastic resin and twisting the resultant composite strands at a specific twisting pitch. CONSTITUTION:An uncured thermosetting resin is impregnated into a reinforcing fiber raw material 1 with a resin bath 4 and the impregnated material is passed through a die of a melt extruder 6 to cover the material with a thermoplastic resin in an annular form. The covered material is cooled in a cooling tank 7. Each of a plurality of the obtained composite strands S1 to S7 is separately taken up with a take-up roller 8 while controlling the take-up speeds of the core strand and the circumferential strand, passed through guides 9a, 9b, a hot water curing tank 10, a hot air drier 11 and a rotary take-up machine (twisting machine) 12, twisted at a twisting pitch corresponding to >=25 times the outer diameter of the uncured filament of the composite strand by rotating the rotary take up machine 12, wound with a rotary winder 13 and further cured to obtain the objective structure.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高い抗張力性と可撓性を合せもち、非金属性の
光ケーブルのテンションメンバー等として好適な繊維強
化熱硬化性樹脂製撚構造体及びその製造方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is a twisted structure made of fiber-reinforced thermosetting resin that has both high tensile strength and flexibility and is suitable as a tension member of a non-metallic optical cable. and its manufacturing method.

(発明の背景) 近年、通信用ケーブルの無誘導化や、軽量化が重要視さ
れ、メタリック型のケーブルからノンメタリック型のケ
ーブルへの移行の動きは大きく、その結果、テンション
メンバーとして、ガラス繊維や、アラミド繊維を補強用
繊維とした繊維強化熱硬化性樹脂製(以下FRPと称す
)棒状物が多く使用される様になった。
(Background of the invention) In recent years, there has been an emphasis on non-guidance and lightweight communication cables, and there has been a large movement to shift from metallic cables to non-metallic cables.As a result, glass fibers have been used as tension members. Also, rod-shaped objects made of fiber-reinforced thermosetting resin (hereinafter referred to as FRP) using aramid fibers as reinforcing fibers have come to be widely used.

ところが、メタリック型テンションメンバー(鋼線、鋼
撚線)の引張性能に匹敵する性能を有するFRP棒状物
を考えると、必然的にその外径も大きなものとなり、そ
の結果、必要以上に剛性の高いケーブルになり、取扱い
性の点て大きな問題があった。
However, when considering an FRP rod-shaped object whose tensile performance is comparable to that of a metallic tension member (steel wire, stranded steel wire), its outer diameter is inevitably large, and as a result, the rigidity is higher than necessary. It became a cable, and there was a big problem in terms of handling.

そこで、直線状に硬化したFRP棒状物を複数本撚合せ
ることで引張性能を維持しながら、可撓性を得ることを
検討したが、撚線を構成するストランドが反発し合って
撚がばらけやすく、安定した撚り状態が得られなかった
Therefore, we considered obtaining flexibility while maintaining tensile performance by twisting multiple linearly hardened FRP rods, but the strands that make up the twisted wires repel each other and the twists come apart. An easy and stable twisting state could not be obtained.

また、撚線を製造する際には、ストランドとして硬化し
たFRP線をボビンに巻いて回転しながら供給する必要
があるが、撚工程が複雑となりコスト高を招来する。
Furthermore, when producing twisted wire, it is necessary to wind the hardened FRP wire as a strand around a bobbin and feed it while rotating, but this makes the twisting process complicated and increases costs.

一方、FRP製ロープ状物を得るために、補強繊維に未
硬化状熱硬化性樹脂を含浸して所定の外径に成形した後
、これを熱可塑性樹脂によって被覆した複合ストランド
を得、これを撚工程で撚合せた後に硬化する方法が公知
である。
On the other hand, in order to obtain a rope-like object made of FRP, reinforcing fibers are impregnated with an uncured thermosetting resin, molded to a predetermined outer diameter, and then covered with a thermoplastic resin to obtain a composite strand. A method of curing after twisting in the twisting process is known.

しかし、この複合ストランドによる従来のロープ状物の
製造方法では、未硬化状の複合ストランドの製造と、撚
合せ及び硬化の工程が別工程で行なわれるため、未硬化
状熱硬化性樹脂の貯蔵安定性の問題や、ドラム、ボビン
等に巻取る工程で複合ストランド中での補強繊維の片寄
りや乱れが発生し、硬化後の物性が低下するなどの問題
があった。
However, in the conventional method for producing rope-like products using composite strands, the production of uncured composite strands and the steps of twisting and curing are performed in separate processes, so the storage stability of the uncured thermosetting resin is There have been problems with the properties of the composite strands, and during the process of winding them onto drums, bobbins, etc., the reinforcing fibers in the composite strands become lopsided or disordered, resulting in deterioration of physical properties after curing.

そこで、本発明者らは、上述の問題が克服できる構造及
び方法、すなわち撚構造による可撓性を具備し、かつ撚
の安定性、生産性、高強度性を有するFRP製撚製造構
造体成およびその製造方法を鋭意検討して本発明を完成
した。
Therefore, the present inventors have developed a structure and method that can overcome the above-mentioned problems, that is, an FRP twisted manufacturing structure that has flexibility due to the twisted structure, and has stability in twisting, productivity, and high strength. The present invention was completed after intensive study of the method of manufacturing the same.

(発明の構成) 上記目的を達成するために、本発明の撚構造体は、補強
用繊維素材に未硬化状熱硬化性樹脂を含浸した未硬化状
線条物の外周を熱可塑性樹脂で被覆してなる複合ストラ
ンドを複数本撚合せ、これを硬化してなる撚構造体にお
いて、中心に配する芯ストランドと、その外周に所定の
撚ピッチで同一方向に撚合せた外周ストランドとからな
り−、該撚ピッチを該複合ストランドの未硬化状線条物
の外径の25倍以上としてなることを特徴とする。
(Structure of the Invention) In order to achieve the above object, the twisted structure of the present invention has a reinforcing fiber material impregnated with an uncured thermosetting resin, and the outer periphery of the uncured filament is coated with a thermoplastic resin. A twisted structure made by twisting together a plurality of composite strands and curing them, which consists of a core strand arranged at the center and outer peripheral strands twisted in the same direction at a predetermined twisting pitch around the outer periphery of the core strand. , the twisting pitch is 25 times or more the outer diameter of the uncured filament of the composite strand.

本発明に使用できる補強用繊維素材は、抗張力性を有す
るものであれば特にその種類を問わないが、連続繊維状
のガラス繊維、芳香族ポリアミド繊維、カーボン繊維な
どや、ナイロン、ポリエステル、ビニロンなどの合成繊
維があげられる。繊維の含有率は、概ね50〜75vo
ρ%、より好ましくは55〜70voρ%である。また
、熱硬化性樹脂としては、不飽和ポリエステル樹脂が一
般的であるが、エポキシ樹脂1 フェノール樹脂などで
あってもよい。
The reinforcing fiber materials that can be used in the present invention are of any type as long as they have tensile strength, but include continuous glass fibers, aromatic polyamide fibers, carbon fibers, nylon, polyester, vinylon, etc. Synthetic fibers include: The fiber content is approximately 50 to 75 vo
ρ%, more preferably 55 to 70voρ%. Further, as the thermosetting resin, unsaturated polyester resin is generally used, but epoxy resin 1, phenol resin, etc. may also be used.

前記補強繊維と未硬化状熱硬化性樹脂の含浸物を被覆す
る熱可塑性樹脂は、溶融押出による被覆が容易なもので
あれば特にその種類を問わないが、一般的には、柔軟性
、耐低温物性、経済性などからポリエチレン系の樹脂や
柔軟性の樹脂としてポリアミド樹脂が推奨される。
The type of thermoplastic resin that covers the reinforcing fibers and the uncured thermosetting resin impregnation is not particularly limited as long as it can be easily coated by melt extrusion, but in general, it is flexible and durable. Polyethylene-based resins and polyamide resins are recommended as flexible resins due to their low-temperature physical properties and economic efficiency.

中心に配置した芯ストランドの外周に撚合せる外周スト
ランドの撚ピッチは、強力保持率などの物性を維持する
ために、外周に使用する複合ストランドの未硬化状線条
物の外径の25倍以上にしなければならない。
The twisting pitch of the outer strand, which is twisted around the outer periphery of the core strand placed in the center, is at least 25 times the outer diameter of the uncured filament of the composite strand used for the outer periphery, in order to maintain physical properties such as strength retention. must be done.

繊維強化熱硬化性樹脂製撚構造体を製造するに際しては
、未硬化状の複合ストランドを製造する方法は、本出願
人による先願の特公昭51−43501による方法を基
本として、得ようとする撚構造体のストランド数分だけ
同時に熱可塑性樹脂によって被覆し、該被覆層を直ちに
冷却した後、その直後に撚工程に入る。
When manufacturing a fiber-reinforced thermosetting resin twisted structure, the method for manufacturing uncured composite strands is based on the method disclosed in Japanese Patent Publication No. 51-43501 filed by the present applicant. A few strands of the twisted structure are simultaneously coated with a thermoplastic resin, the coating layer is immediately cooled, and immediately thereafter the twisting process begins.

撚合せは、中心となる芯ストランドおよびその外周に撚
合せる外周ストランドを、まずガイドに通し、ガイドと
回転撚機の間に配置した加熱硬化槽中で撚合せながら硬
化する。あるいは硬化槽外て撚合せた後に硬化槽で硬化
してもよい。
In the twisting, the central core strand and the outer peripheral strand to be twisted around its outer periphery are first passed through a guide, and then hardened while being twisted in a heating curing tank disposed between the guide and the rotary twisting machine. Alternatively, it may be cured in the curing tank after being twisted outside the curing tank.

撚合せに際しては、特に撚合せテンションを、芯ストラ
ンドのテンションをTc、外周ストランドのテンション
をToとするとき、ToをTc未満とすることが、硬化
後の引張強力保持率、耐曲げ性の点から好ましい。
When twisting, especially when the tension of the core strand is Tc and the tension of the outer strand is To, it is important to keep To less than Tc in terms of tensile strength retention after curing and bending resistance. preferred.

撚合せ後の硬化は、複合ストランドの前記熱可塑性樹脂
被覆層の軟化点以下の温度でなされることが、硬化後の
撚構造体に充分な可撓性を与える点で好ましい。
It is preferable that the curing after twisting be carried out at a temperature below the softening point of the thermoplastic resin coating layer of the composite strand, in order to impart sufficient flexibility to the twisted structure after curing.

また、撚構造体の外周に熱可塑性樹脂被覆を撚線の硬化
後に行なう場合であって、撚線の硬化に液状の熱媒体を
使用するときには、撚線の複合ストランド間に液体が入
り、この液体が残存した状態で熱可塑性樹脂被膜を行な
うと、液体が沸騰するなどして被覆表面に凹凸を生ずる
などの障害が発生する場合がある。
Furthermore, when a thermoplastic resin coating is applied to the outer periphery of a twisted structure after the stranded wires have been cured, and a liquid heat medium is used to cure the stranded wires, liquid may enter between the composite strands of the stranded wires. If a thermoplastic resin coating is applied with liquid remaining, the liquid may boil and cause problems such as unevenness on the coating surface.

この点から、撚線の硬化に熱湯などの液状熱媒体を使用
する場合には、未硬化状複合ストランドの撚合せ後、硬
化前に撚り構造体の外周に熱可塑性樹脂被覆を施し、し
かる後内部の未硬化状樹脂を硬化することが望ましい。
From this point of view, when using a liquid heat medium such as boiling water to harden the strands, after twisting the uncured composite strands and before curing, a thermoplastic resin coating is applied to the outer periphery of the stranded structure, and then It is desirable to cure the uncured resin inside.

(実 施 例) 以下本発明につき好適な実施例により説明する。(Example) The present invention will be explained below using preferred embodiments.

実施例1 1×7のFRP撚構造体を得るため、補強繊維Gとして
ガラス繊維ロービング(日東紡績製 280テクス)を
、7本のストランド用として棚2上に配置し、ガイド3
を介して未硬化状の不飽和ポリエステル樹脂(三井東圧
化学製:エスターH8100)及び硬化用過酸化物触媒
を混合した樹脂浴4に導き、樹脂を補強繊維Gに含浸し
、しかる後、外径が1.2mmの未硬化状線条物とし、
これを溶融押出機6のダイ部に通して各々の未硬化状線
条物の外周を軟化点が97℃の低密度ポリエチレン(日
本ユニカー製:MG211.)に黒色マスターバッチを
3部添加した熱可塑性樹脂により環状に被覆して1次被
覆層C1を形成し、直ちに冷却槽7中で表面の1次被覆
層C1を冷却して、7本の複合ストランドS]〜S7を
得た。なお、この段階での複合ストランドS1〜S7の
外径は1.5++nnとした。引続いて以下の要領で複
合ストランド81〜S7を撚合せした。
Example 1 In order to obtain a 1×7 FRP twisted structure, glass fiber roving (Nittobo Co., Ltd. 280 Tex) was placed as the reinforcing fiber G on the shelf 2 for seven strands, and the guide 3
is introduced into a resin bath 4 containing a mixture of an uncured unsaturated polyester resin (Ester H8100 manufactured by Mitsui Toatsu Chemical Co., Ltd.) and a peroxide catalyst for curing, and the reinforcing fibers G are impregnated with the resin. An uncured filament with a diameter of 1.2 mm,
This was passed through the die part of the melt extruder 6, and the outer periphery of each uncured filament was heated by adding 3 parts of a black masterbatch to low-density polyethylene (MG211. manufactured by Nippon Unicar) with a softening point of 97°C. A primary coating layer C1 was formed by coating with a plastic resin in an annular manner, and the primary coating layer C1 on the surface was immediately cooled in a cooling bath 7 to obtain seven composite strands S] to S7. Note that the outer diameter of the composite strands S1 to S7 at this stage was 1.5++nn. Subsequently, composite strands 81 to S7 were twisted together in the following manner.

まず、複合ストランド81〜S7について、各々個別の
引取ローラー8によって芯ストランドの引取速度と撚り
による長さの変化を伴う外周ストランドの引取速度とを
調整しつつ引取り、各ストランド81〜S7を予備ガイ
ド9aとガイド9bとに挿通し、1次被覆層の軟化点9
7℃以下の温度で95℃に温度制御された熱湯硬化槽1
0、熱風乾燥機11、回転引取機(撚機)12と順に通
した後、回転引取機12を回転して撚合せした。
First, the composite strands 81 to S7 are taken off by individual take-off rollers 8 while adjusting the take-up speed of the core strand and the take-up speed of the outer peripheral strand whose length changes due to twisting, and each strand 81 to S7 is prepared as a reserve. It is inserted through the guide 9a and the guide 9b, and the softening point 9 of the primary coating layer is reached.
Hot water curing tank 1 whose temperature is controlled to 95℃ at a temperature of 7℃ or less
0, a hot air dryer 11, and a rotary pulling machine (twisting machine) 12 in order, and then the rotary pulling machine 12 was rotated for twisting.

撚合せるに当っては、中心の複合ストランドS4を芯ス
トランドとし、残りの6本を外周ストランドS1〜S3
.S5〜S7とした。
When twisting, the central composite strand S4 is used as the core strand, and the remaining six strands are used as the outer strands S1 to S3.
.. It was set as S5 to S7.

この場合、ストランド81〜S7のテンションを調整す
るために、ガイド9aと9bの間に各ストランド81〜
S7に対してそれぞれダンサ−ローラー15を載置し、
芯ストランドS4のテンションを1kg、外周ストラン
ドS1〜S3.S5〜S7の各テンションを0.3kg
にコントロールし、撚ピッチは複合ストランド81〜S
7の外径の40倍であって未硬化状線条物の50倍であ
る60mmを目標とした。
In this case, in order to adjust the tension of the strands 81-S7, each strand 81-S7 is placed between the guides 9a and 9b.
A dancer roller 15 is placed on each S7,
The tension of the core strand S4 was 1 kg, and the tension of the outer strands S1 to S3. Each tension of S5 to S7 is 0.3kg
control, and the twist pitch is composite strand 81~S.
The target was 60 mm, which was 40 times the outer diameter of No. 7 and 50 times that of the uncured filament.

上記条件で撚合せた後、硬化させた撚構造体(撚線条物
)は、その後巻取ボビンを取付けた回転巻取機13で巻
取った。
After being twisted under the above conditions, the hardened twisted structure (twisted filament) was then wound up using a rotary winding machine 13 equipped with a winding bobbin.

得られた撚線を更に80℃で24時間後硬化した。The resulting stranded wire was further post-cured at 80° C. for 24 hours.

得られた1×7撚構造の撚線は、見掛けの外径が4.5
〜4.6mm、撚ピッチ60±10mm5FRP部のガ
ラス繊維含有率が65’voΩ%、引張強力880〜9
50kg、0.5%伸長時の強力200kg、単位型1
7に2 L、  8 g/ mのものであった。
The resulting twisted wire with a 1×7 twisted structure has an apparent outer diameter of 4.5
~4.6mm, twist pitch 60±10mm, glass fiber content of 5FRP part 65'voΩ%, tensile strength 880~9
50kg, strength 200kg at 0.5% elongation, unit type 1
7, 2 L, 8 g/m.

この実施例による撚線は、撚合せによる強力の低下率が
撚合せることなく直線状で硬化したとした際の理論値の
30%程度であり、曲げの剛性は、サンプル長300 
m+*のものを曲げ直径200 mmに曲げるに要する
力が450gであり、相当するFRP断面の単一棒状物
の曲げ剛性の約1/6の値である。また、最小曲げ直径
は9’ 5 +nmであった。
The stranded wire according to this example has a strength reduction rate of about 30% of the theoretical value when it is hardened in a straight line without twisting, and the bending rigidity is
The force required to bend a piece of m+* to a bending diameter of 200 mm is 450 g, which is about 1/6 of the bending rigidity of a single rod-shaped piece of FRP with a corresponding cross section. Moreover, the minimum bending diameter was 9' 5 +nm.

なお、この実施例の撚線の撚合せ後、硬化前に外周に低
密度ポリエチレンあるいはナイロン12によって二次被
覆層C2を形成し、外径を5.5mmとして、これらの
最小曲げ直径を測定したところ、前者の被覆で75mm
、後者で80mmであった。
In addition, after twisting the stranded wires of this example, and before hardening, a secondary coating layer C2 was formed on the outer periphery using low density polyethylene or nylon 12, and the outer diameter was set to 5.5 mm, and the minimum bending diameter of these was measured. However, with the former covering, it is 75mm
, the latter was 80 mm.

実施例2 撚ピッチの目標を120 mlBとして、実施例1と同
一の未硬化状複合ストランド81〜S7を使用し、撚工
程のみ実施例1とは異なる方式で撚線を製造した。
Example 2 A stranded wire was manufactured using the same uncured composite strands 81 to S7 as in Example 1, with a twisting pitch of 120 mlB, and using a method different from Example 1 only in the twisting process.

連続して製造される外径1.5+nmの未硬化状複合ス
トランドについて、芯ストランドS4のみはネルソン式
引取ローラー8により引取り、ガイド9に該芯ストラン
ドS4及び外周ストランドS1〜S3.S5〜S7を通
し、以下実施例1と同様に回転引取機12によって撚合
せつつ硬化させ、回転巻取機13により巻取り、しかる
後実施例1と同条件で後硬化した(第3図参照)。
Regarding uncured composite strands having an outer diameter of 1.5+nm that are continuously produced, only the core strand S4 is taken off by a Nelson type take-off roller 8, and the core strand S4 and the outer circumferential strands S1 to S3. Through S5 to S7, the material was cured while being twisted by the rotary take-up machine 12 in the same manner as in Example 1, wound up by the rotary wind-up machine 13, and then post-cured under the same conditions as in Example 1 (see Fig. 3). ).

撚り工程における芯ストランドS4のテンションが3k
gになるようにダンサ−ローラーの荷重を調整し、外周
ストランドS1〜S3.S5〜S7のテンションは、ガ
イド9以前の引取り抵抗値が1、.5kgであった。
The tension of core strand S4 in the twisting process is 3k.
Adjust the load of the dancer roller so that the outer strands S1 to S3. For the tensions S5 to S7, the take-up resistance value before guide 9 is 1, . It was 5 kg.

なお、ストランドのテンションは、芯ストランド及び外
周ストランドの補強繊維含有率あるいは未硬化状樹脂の
粘度で調整することができる。
Note that the tension of the strands can be adjusted by the reinforcing fiber content of the core strand and the outer strand or the viscosity of the uncured resin.

得られた1×7撚構造の撚線は、見掛けの外径が4 、
5〜4 、6 in 、撚ピッチ120±10myn。
The resulting twisted wire with a 1×7 twisted structure has an apparent outer diameter of 4,
5-4, 6 in, twist pitch 120±10 myn.

単位重量21.6g/m、最小曲げ直径80m。Unit weight 21.6g/m, minimum bending diameter 80m.

引張強力840〜i 020’kg、 0. 5%伸長
時強力210kg、曲げ剛性450 t 、’引張強力
低下率28.6%であった。
Tensile strength 840~i 020'kg, 0. The strength at 5% elongation was 210 kg, the bending rigidity was 450 t, and the tensile strength reduction rate was 28.6%.

実験結果I FRP外径が2.5mm、被覆外径が3.0mmの未硬
化状複合ストランドを使用して実施例と同じ1×7撚構
造の撚線を、実施例1の方法によって、ガラス繊維含有
率、未硬化状線条物の外径に対する倍率で表示した撚ピ
ッチ、芯ストランドの撚テンションに対する外周テンシ
ーンの比率などを変更して製造し、さらに低密度ポリエ
チレン、あるいはナイ・ロンによって二次被覆した撚線
を得た。
Experimental Results I Using the uncured composite strands with an FRP outer diameter of 2.5 mm and a coated outer diameter of 3.0 mm, a stranded wire with the same 1×7 twist structure as in Example 1 was woven into glass by the method of Example 1. It is manufactured by changing the fiber content, the twisting pitch expressed as a ratio to the outer diameter of the uncured filament, the ratio of the outer tensile tension to the twisting tension of the core strand, etc. A coated stranded wire was then obtained.

以下に示す表1は、上記実施例および比較例の各条件を
まとめて示したものである。
Table 1 shown below summarizes the conditions of the above examples and comparative examples.

これらの結果から明らかなように、撚ピッチは、複合ス
トランドの外径の2o倍では、曲げた場合に折損し、外
周ストランドの撚テンションは、芯ストランドのテンシ
ョン3.7kgに対して1/3程度か好適であること、
および二次被覆によって曲げ耐性か向上できることなど
が確認された。
As is clear from these results, when the twist pitch is 2o times the outer diameter of the composite strand, it will break when bent, and the twist tension of the outer strand is 1/3 of the core strand tension of 3.7 kg. degree or suitability;
It was also confirmed that bending resistance could be improved by secondary coating.

実験結果2 複合ストランド中のFRP未硬化状線状物を硬化させる
際の温度が撚構造体の物性に与える影響を調べるために
、硬化条件及び−次被覆層の熱可塑性樹脂材料を種々に
変えてサンプルを作成した。
Experimental Results 2 In order to investigate the effect of the temperature when curing the FRP uncured linear objects in the composite strand on the physical properties of the twisted structure, we varied the curing conditions and the thermoplastic resin material of the next coating layer. A sample was created.

硬化はシリコンオイルを満した槽を通過させることによ
り行った。サンプルはいずれも1×7タイプの撚構造体
であり、シースは設けられながった。
Curing was carried out by passing through a bath filled with silicone oil. All samples were 1×7 type twisted structures, and no sheath was provided.

これらのサンプルにつき、複合ストランド中のFRP素
線と被覆層の間の接着強力、及び撚構造体の曲げ剛性を
測定した結果を表2に示す。接着強力は、被覆層の一部
を切除し、残部の端部を逆方向に50mm/分の速度で
引張って被覆層をFRP素線から剥離させるのに要する
力で表示されている。また、曲げ剛性は、各サンプルを
400止の長さに切断し、これを直径250 +++m
の半円状に曲げるのに要する力を台秤にて測定した。
Table 2 shows the results of measuring the adhesive strength between the FRP strands in the composite strand and the coating layer and the bending rigidity of the twisted structure for these samples. Adhesive strength is expressed as the force required to peel off a part of the coating layer from the FRP wire by pulling the remaining end in the opposite direction at a speed of 50 mm/min. In addition, the bending rigidity was determined by cutting each sample into a length of 400 mm, and cutting this into a length of 250 +++ m in diameter.
The force required to bend it into a semicircular shape was measured using a platform scale.

これらの結果より、FRP素線の硬化は熱可塑性樹脂被
覆層の軟化点以下の温度で行なうと曲げ剛性の小さなも
のが得られる。
These results show that when the FRP wire is cured at a temperature below the softening point of the thermoplastic resin coating layer, a wire with low bending rigidity can be obtained.

(以下余白) (発明の効果) 本発明の撚構造体は、補強繊維素材に未硬化状の熱硬化
性樹脂を含浸し、その外周を熱可塑性樹脂によって被覆
した複合ストランドを所定の撚ピッチで撚合せているの
で、撚合せによる引張強度の低下率が小さい高強力のも
のが得られ、かつ耐曲げ性が向上できる。
(Blank below) (Effects of the invention) The twisted structure of the present invention consists of composite strands made by impregnating a reinforcing fiber material with an uncured thermosetting resin and covering the outer periphery with a thermoplastic resin, which are twisted at a predetermined pitch. Since the wires are twisted together, a high-strength product with a small rate of decrease in tensile strength due to twisting can be obtained, and the bending resistance can be improved.

また、撚構造体の全体を熱可塑性樹脂により被覆すれば
、さらに耐曲げ性が向上できる。
Furthermore, if the entire twisted structure is coated with a thermoplastic resin, the bending resistance can be further improved.

一方、本発明の方法によれば、所要ストランド本数の未
硬化状複合ストランドの製造に連続して、これらを所定
の条件で撚合せるので上記の高物性の撚線が得られ、複
合ストランドの製造と撚工程、その後の硬化工程等に分
けていた従来の方法に比べて著しく工程の合理化が図ら
れ、また、多工程に分けた場合の未硬化状複合ストラン
ドの貯蔵安定性や、物性の低下などの問題も克服できる
On the other hand, according to the method of the present invention, since the required number of uncured composite strands are manufactured and then twisted under predetermined conditions, the above-mentioned twisted wire with high physical properties can be obtained, and the composite strand can be manufactured. The process is significantly streamlined compared to the conventional method, which separates the process into multiple steps, such as twisting, twisting, and curing, and also reduces the storage stability and physical properties of uncured composite strands when divided into multiple steps. Such problems can also be overcome.

なお、上記の本発明による撚構造体は、そのままである
いは二次被覆して、光フアイバケーブルの要素として使
用される光ファイバ担持用スペーすのテンションメンバ
ーとして、あるいは撚構造体の外周に二次被覆を施して
真円状とし、このテンションメンバーの外周に光フアイ
バ心線ユニットを螺旋状に配置するなどの方法で、高い
抗張力と可撓性を有する抗張力材として使用できるなど
、極めて有用である。
The above-described twisted structure according to the present invention can be used as it is or with a secondary coating, as a tension member of an optical fiber carrying space used as an element of an optical fiber cable, or as a secondary coating on the outer periphery of the twisted structure. It is extremely useful as it can be used as a tensile strength material with high tensile strength and flexibility by coating it to form a perfect circle and arranging optical fiber core units in a spiral around the outer periphery of this tension member. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る製造方法の平面図、第2図は同方
法の側面図、第3図は複合ストランドのテンションの調
整手段の他の例を示す要部説明図、第4図は本発明の撚
構造体の一例を示す断面図である。 S1〜S7・・・・・・複合ストランド特許出願人  
     宇部日東化成株式会社代 理 人     
  弁理士 −色 健 軸向         弁理士
 松 本 雅 利2591’/8(、’/) 第3図 (B) 第4図
Fig. 1 is a plan view of the manufacturing method according to the present invention, Fig. 2 is a side view of the same method, Fig. 3 is an explanatory diagram of main parts showing another example of a means for adjusting the tension of a composite strand, and Fig. 4 is a plan view of the manufacturing method according to the present invention. FIG. 1 is a cross-sectional view showing an example of a twisted structure of the present invention. S1-S7・・・Composite strand patent applicant
Representative of Ube Nitto Kasei Co., Ltd.
Patent Attorney - Iro Ken Axial Patent Attorney Masatoshi Matsumoto 2591'/8 (,'/) Figure 3 (B) Figure 4

Claims (6)

【特許請求の範囲】[Claims] (1)補強用繊維素材に未硬化状熱硬化性樹脂を含浸し
た未硬化状線条物の外周を熱可塑性樹脂で被覆してなる
複合ストランドを複数本撚合せ、これを硬化してなる撚
構造体において、中心に配する芯ストランドと、その外
周に所定の撚ピッチで同一方向に撚合せた外周ストラン
ドとからなり、該撚ピッチを該複合ストランドの未硬化
状線条物の外径の25倍以上としてなることを特徴とす
る繊維強化熱硬化性樹脂製撚構造体。
(1) Twisting made by twisting together a plurality of composite strands made by covering the outer periphery of an uncured filament with a thermoplastic resin in which a reinforcing fiber material is impregnated with an uncured thermosetting resin, and then curing the composite strands. The structure consists of a core strand arranged at the center and an outer peripheral strand twisted in the same direction at a predetermined twisting pitch around the outer periphery of the core strand, and the twisting pitch is set to the outer diameter of the uncured filament of the composite strand. A twisted structure made of fiber-reinforced thermosetting resin, characterized in that the fiber-reinforced thermosetting resin twist structure is 25 times or more.
(2)前記繊維強化熱硬化性樹脂製撚構造体の外周に熱
可塑性樹脂被覆を施してなることを特徴とする請求項1
記載の繊維強化熱硬化性樹脂製撚構造体。
(2) Claim 1 characterized in that the outer periphery of the fiber-reinforced thermosetting resin twisted structure is coated with a thermoplastic resin.
The fiber-reinforced thermosetting resin twisted structure described above.
(3)長繊維状補強繊維からなるストランドの所要本数
にそれぞれ未硬化状の熱硬化性樹脂を含浸し、これを所
定形状に成形して未硬化状線条物とし、この後に、溶融
押出機のダイ部に挿通して、該未硬化状線条物の各々の
外周を熱可塑性樹脂で環状に被覆し、しかる後該被覆層
を直ちに冷却して内部が未硬化状の複合ストランドとな
し、引続いて該複合ストランドのうちの1本を芯ストラ
ンドとして中心に配置し、その外周に残余の前記複合ス
トランドを所定の撚ピッチで撚合せつつ硬化して巻取る
ことを特徴とする繊維強化熱硬化性樹脂製撚構造体の製
造方法。
(3) The required number of strands made of long reinforcing fibers are each impregnated with an uncured thermosetting resin, formed into a predetermined shape to form an uncured filament, and then melt-extruded. The outer periphery of each of the uncured filaments is annularly coated with a thermoplastic resin, and the coating layer is then immediately cooled to form a composite strand with an uncured interior. Subsequently, one of the composite strands is placed in the center as a core strand, and the remaining composite strands are twisted at a predetermined twisting pitch around the outer periphery of the core strand, hardened, and wound up. A method for manufacturing a curable resin twisted structure.
(4)前記の複合ストランドの撚合せにおいて、前記芯
ストランドのテンションTcに対して、外周のストラン
ドのテンションToをTc未満にすることを特徴とする
請求項3記載の繊維強化熱硬化性樹脂製撚構造体の製造
方法。
(4) The fiber-reinforced thermosetting resin product according to claim 3, characterized in that in the twisting of the composite strands, the tension To of the outer strand is less than Tc with respect to the tension Tc of the core strand. Method for manufacturing twisted structures.
 (5)前記複合ストランドの撚合せ後の硬化は、該複
合ストランドの前記熱可塑性樹脂被覆層の軟化点以下の
温度でなされることを特徴とする請求項3記載の繊維強
化熱硬化性樹脂製撚構造体の製造方法。
(5) The fiber-reinforced thermosetting resin according to claim 3, wherein the composite strand is cured after being twisted at a temperature below the softening point of the thermoplastic resin coating layer of the composite strand. Method for manufacturing twisted structures.
(6)前記複合ストランドを所定の撚ピッチで撚合せた
後、その外周を熱可塑性樹脂で被覆し、しかる後硬化す
ることを特徴とする請求項3記載の繊維強化熱硬化性樹
脂製撚構造体の製造方法。
(6) The fiber-reinforced thermosetting resin twisted structure according to claim 3, wherein after the composite strands are twisted at a predetermined twisting pitch, the outer periphery of the composite strands is covered with a thermoplastic resin and then cured. How the body is manufactured.
JP1334994A 1988-12-28 1989-12-26 Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same Expired - Fee Related JP2869116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1334994A JP2869116B2 (en) 1988-12-28 1989-12-26 Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32916388 1988-12-28
JP63-329163 1988-12-28
JP1334994A JP2869116B2 (en) 1988-12-28 1989-12-26 Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same

Publications (2)

Publication Number Publication Date
JPH02259178A true JPH02259178A (en) 1990-10-19
JP2869116B2 JP2869116B2 (en) 1999-03-10

Family

ID=26573110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1334994A Expired - Fee Related JP2869116B2 (en) 1988-12-28 1989-12-26 Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same

Country Status (1)

Country Link
JP (1) JP2869116B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002326285A (en) * 2001-05-01 2002-11-12 Du Pont Toray Co Ltd Continuous fiber reinforced plastic rod material excellent in heat resistance
JP2003515013A (en) * 1999-11-25 2003-04-22 ドラートザイレライ・グスタフ・コックス・ゲーエムベーハー・ウント・コ Method and twisting device for producing cable or cable material
JP2005281441A (en) * 2004-03-29 2005-10-13 Nitto Boseki Co Ltd Fiber-reinforced resin linear product and its manufacturing method
JP2014100914A (en) * 2007-07-20 2014-06-05 Umeco Structual Materials(Derby) Ltd Thermosetting resin fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003515013A (en) * 1999-11-25 2003-04-22 ドラートザイレライ・グスタフ・コックス・ゲーエムベーハー・ウント・コ Method and twisting device for producing cable or cable material
JP2002326285A (en) * 2001-05-01 2002-11-12 Du Pont Toray Co Ltd Continuous fiber reinforced plastic rod material excellent in heat resistance
JP2005281441A (en) * 2004-03-29 2005-10-13 Nitto Boseki Co Ltd Fiber-reinforced resin linear product and its manufacturing method
JP2014100914A (en) * 2007-07-20 2014-06-05 Umeco Structual Materials(Derby) Ltd Thermosetting resin fiber

Also Published As

Publication number Publication date
JP2869116B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
US5084221A (en) Process for manufacturing a twisted frp structure
US5540870A (en) Structural element formed of a fiber reinforced thermoplastic material and method of manufacture
US4677818A (en) Composite rope and manufacture thereof
US4770834A (en) Method for continuous molding of a rod-like product
US4050230A (en) Rope
JPS61194276A (en) Composite reinforcing member and method and apparatus for producing the same
JPH0713056A (en) Reinforced plastic armored cable and its production
US4781432A (en) Optical fibre transmission cable reinforcement
JPH02259178A (en) Twisted structure made of fiber-reinforced thermosetting resin and production thereof
CN102608718B (en) Reinforcement for thermoplastic GFRP (Glass Fiber Reinforced Polymer) butterfly cable and production process of reinforcement
GB2118735A (en) Optical fibre transmission cable reinforcement
JP2984021B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
JP4282128B2 (en) Method for producing aramid fiber reinforced curable resin wire
CA3111058C (en) Production line moulding assembly for manufacturing a non-metallic armature, production line and method of forming a rod for use in the manufacture of a composite armature
JP3760994B2 (en) FRP spring
JP3724593B2 (en) Method for producing linear fiber reinforced plastic and method for producing fiber reinforced plastic cable
CN115657242B (en) Small-diameter fiber reinforced optical cable and manufacturing process thereof
CN112064383A (en) Improved composite material rope structure
JP2996481B2 (en) Method for manufacturing fiber reinforced curable resin spacer for supporting optical fiber
JPH0414731Y2 (en)
JP2599187B2 (en) Method of manufacturing composite striatum
JP3781323B2 (en) Method and apparatus for manufacturing fiber reinforced resin composite spiral rod
JPH0428082Y2 (en)
JPS63205326A (en) Production of cordlike or rodlike prepreg
JP3471837B2 (en) Manufacturing method of composite member

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees