JP2002326285A - Continuous fiber reinforced plastic rod material excellent in heat resistance - Google Patents

Continuous fiber reinforced plastic rod material excellent in heat resistance

Info

Publication number
JP2002326285A
JP2002326285A JP2001134051A JP2001134051A JP2002326285A JP 2002326285 A JP2002326285 A JP 2002326285A JP 2001134051 A JP2001134051 A JP 2001134051A JP 2001134051 A JP2001134051 A JP 2001134051A JP 2002326285 A JP2002326285 A JP 2002326285A
Authority
JP
Japan
Prior art keywords
resin
fiber
reinforced plastic
heat
glass transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001134051A
Other languages
Japanese (ja)
Other versions
JP4750309B2 (en
Inventor
Atsushi Tsunoda
角田  敦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Du Pont Toray Co Ltd
Original Assignee
Du Pont Toray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Toray Co Ltd filed Critical Du Pont Toray Co Ltd
Priority to JP2001134051A priority Critical patent/JP4750309B2/en
Publication of JP2002326285A publication Critical patent/JP2002326285A/en
Application granted granted Critical
Publication of JP4750309B2 publication Critical patent/JP4750309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-conductive and non-magnetic continuous fiber reinforced plastic rod material excellent in heat resistance used as a reinforcing rod or a steel substitute material adapted to a concrete reinforcing material or a tensioning material. SOLUTION: The continuous fiber reinforced plastic rod material is constituted by coating the surface of fiber reinforced plastic due to continuous fibers, for example, aramide fibers, carbon fibers or the like with a heat-resistant resin having a glass transition point higher than that of the matrix resin of the heat-resistant resin by 20 deg.C or higher. At the heat-resistant resin, for example, there are an aromatic amino-epoxy resin derived from tetraglycidylaminodiphenylmethane or the like, polyether sulfone, a crosslinked polyaminoamide resin comprising phenylene bis-1,3-oxazole and an aromatic diamine or the like.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は高引張強度、高弾性
率を有する連続繊維(長繊維)を強化材とする繊維強化
プラスチック(以下FRPと略称する)から成形され
た、優れた耐熱性を有する棒材、特に防・耐火性能を要
する建築用途に適したFRP棒材、すなわちコンクリー
ト補強材またはプレストレストコンクリート緊張材とし
ての棒材に関する。本明細書を通じて使用される用語
「棒材」とは、丸形、矩形、異形(リブ、インデンテッ
ド表面)ロッド、組紐状ロッド、撚り線状ストランド、
格子状等、概して線形形状またはその形状単位からの2
次元または3次元組立て形状を意味するものとする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber reinforced plastic (hereinafter abbreviated as "FRP") having continuous fibers (long fibers) having a high tensile strength and a high elastic modulus as a reinforcing material. The present invention relates to an FRP bar suitable for architectural applications requiring fire prevention and fire resistance, that is, a bar as a concrete reinforcing material or a prestressed concrete tendon. As used throughout this specification, the term "bar" includes round, rectangular, irregular (rib, indented surface) rods, braided rods, stranded strands,
2 from a generally linear shape or its shape units, such as a grid
It shall mean a three-dimensional or three-dimensional assembled shape.

【0002】[0002]

【従来の技術】建設用コンクリート構造物の補強材、例
えば鉄筋および緊張材等に要求される特性は高強度、高
弾性、高靭性等の力学的特性、耐水性、耐アルカリ性、
耐塩水性、耐候性、耐火・耐熱性などである。アラミド
繊維、ポリアクリロニトリル系炭素繊維、ガラス繊維等
の高強力連続繊維からなるFRP複合材は先端複合材料
として様々な産業分野において活用されている。建築、
土木分野においても、高強力繊維からなる複合材は軽
量、高強度、高弾性、耐食性、非電導、非磁性など、鉄
筋よりも優れた比物性(引張強度、弾性率)と鉄筋には
ない優れた耐食、電磁気的特性とを有しているので、近
年、コンクリート構造物の劣化、崩落による危険性等の
諸問題も相俟って、鉄筋に代わりうる材料として、鉄筋
コンクリート部材の鉄筋代替材料またはPC(プレスト
レストコンクリート)鋼棒代替材料として使用されるに
至っている。特に、アラミド繊維補強筋は他の繊維補強
筋よりも引張強度、耐衝撃性、耐破壊靭性、振動減衰特
性に優れているとともに非電導、非磁性である点が注目
されて、安定した強磁場、強電場を必要とする核磁気共
鳴設備や粒子加速器等の巨大科学研究設備、落雷による
誘導電流を嫌う計算機センター等の特殊建築物等の鉄筋
に代わる材料として利用されてきており、新たな用途開
拓に寄与している。
2. Description of the Related Art Reinforcing materials for concrete structures for construction, such as reinforcing bars and tendons, are required to have mechanical properties such as high strength, high elasticity and high toughness, water resistance, alkali resistance, and the like.
It has salt water resistance, weather resistance, fire resistance and heat resistance. FRP composites made of high-strength continuous fibers such as aramid fibers, polyacrylonitrile-based carbon fibers, and glass fibers have been used in various industrial fields as advanced composite materials. Architecture,
Even in the field of civil engineering, composite materials made of high-strength fibers are superior in physical properties (tensile strength, elastic modulus) and superior to rebar, such as light weight, high strength, high elasticity, corrosion resistance, non-conductivity, and non-magnetism. In addition, in recent years, various problems such as deterioration of concrete structures, danger due to collapse, and the like, as a material that can replace reinforcing steel, It has been used as a substitute for PC (prestressed concrete) steel bars. In particular, aramid fiber reinforcement is noted for being superior in tensile strength, impact resistance, fracture toughness, vibration damping characteristics and non-conducting and non-magnetic compared to other fiber reinforcements. It has been used as a material to replace reinforcing bars in giant scientific research facilities such as nuclear magnetic resonance equipment and particle accelerators that require a strong electric field, and special buildings such as computer centers that dislike the induced current due to lightning. Contributing to pioneering.

【0003】鉄筋コンクリート部材の鉄筋代替の補強材
或いはPC鋼棒代替緊張材のような、建築用途に適用さ
れる限りは、火災を想定した防・耐火性能が要求される
のであるが、それにしては前記連続繊維強化による複合
材は鉄筋などと較べて耐熱性に乏しいことが数少ない問
題点といえる。元々上記のような繊維は高耐熱性である
が、マトリックス樹脂として多用されているエポキシ樹
脂、不飽和ポリエステル樹脂、ビニルエステル樹脂等は
熱に弱いので使用上限温度が150〜200℃と低い。
また熱に強いタイプの最近開発されたエポキシ樹脂で
は、一般に粘度が高いため、その生産性が低いので連続
繊維強化複合材製造に要する必要量を確保できない難点
があった。とはいえ従来型マトリックス樹脂の耐熱性を
何らかの化学的手段によって高める試みはそう簡単には
成功しなかった。
[0003] As long as it is applied to architectural uses, such as a reinforcing material for reinforcing steel in place of a reinforced concrete member or a tendon material in place of a PC steel bar, fire prevention and fire resistance performance assuming a fire is required. It can be said that the above-mentioned composite material reinforced by continuous fiber has few problems in that it has poor heat resistance as compared with a reinforcing bar or the like. Originally, the above-mentioned fibers have high heat resistance. However, epoxy resins, unsaturated polyester resins, vinyl ester resins, and the like, which are frequently used as matrix resins, are weak to heat, so that the upper limit temperature for use is as low as 150 to 200 ° C.
In addition, a recently developed epoxy resin of a heat-resistant type generally has a high viscosity, so that its productivity is low, so that there is a problem that a necessary amount for producing a continuous fiber reinforced composite material cannot be secured. Nevertheless, attempts to increase the heat resistance of conventional matrix resins by some chemical means have not been easily successful.

【0004】[0004]

【発明が解決しようとする課題】そこで、連続繊維強化
複合材の耐熱性・耐火性を高めるために、あらゆる角度
から広範な研究を行うことにより、従来のマトリックス
樹脂自体は断熱性があり使用上限温度を多少高くしても
熱劣化は殆ど起こらないことに着目して、前記複合材に
耐熱性樹脂を被覆することによって、耐熱性・耐火性に
優れた連続繊維補強複合材が得られること、その結果建
築基準法の要求する防・耐火性能要件への適合可能性に
到達し、本発明を完成した。
Therefore, in order to enhance the heat resistance and fire resistance of the continuous fiber reinforced composite material, extensive research has been carried out from all angles. Focusing on the fact that thermal degradation hardly occurs even if the temperature is slightly increased, by coating the composite material with a heat resistant resin, a continuous fiber reinforced composite material having excellent heat resistance and fire resistance can be obtained, As a result, it reached the possibility of conformity to the fire prevention and fire resistance requirements required by the Building Standards Law, and completed the present invention.

【0005】本発明においては、耐熱性を評価する目安
として、火災を想定して、樹脂加熱減量、引張強度、弾
性率、付着強度(接着強度)等のパラメーターを選び、
それらの温度依存性について検討した。すなわちコンク
リート部材中の連続繊維含有複合材補強筋が熱(温度変
化)に曝される時の引張強度、弾性率、コンクリートと
の付着強度、複合材の樹脂減量が熱、温度によりどのよ
うな影響を受けるのか、火災時コンクリート部材内位置
での補強筋がどの程度の温度に曝されるのか、その結果
として許容温度はどの位か、許容温度以下での耐火被覆
の厚みはどの程度であればよいのか等について、強化材
として主に炭素繊維、アラミド繊維を使用し、マトリッ
クス樹脂としては慣用のエポキシ樹脂、ポリエステル樹
脂、ビニルエステル樹脂等を使用して種々研究を行っ
た。その結果、下記の新知見を得た。
In the present invention, as a guide for evaluating heat resistance, parameters such as loss on heating of resin, tensile strength, elastic modulus, adhesive strength (adhesive strength), etc. are selected on the assumption of fire.
Their temperature dependence was studied. What is the effect of heat and temperature on tensile strength, modulus of elasticity, bond strength with concrete, and resin loss of composite material when continuous fiber-containing composite reinforcing bars in concrete members are exposed to heat (temperature change) What is the temperature of the reinforcement at the position inside the concrete member during a fire, what is the permissible temperature as a result, and what is the thickness of the refractory coating below the permissible temperature Various studies were carried out to determine whether or not it is good, mainly using carbon fibers and aramid fibers as the reinforcing material, and using conventional epoxy resins, polyester resins, vinyl ester resins and the like as the matrix resin. As a result, the following new findings were obtained.

【0006】[0006]

【表1】 [Table 1]

【0007】これら結果を綜合すれば補強筋の火災時許
容温度は250〜300℃、被覆材自体の許容温度は少
なくとも200℃以上と結論づけることができるのでは
ないかと判断した。連続繊維補強材の冷間の引張強さ
は、マトリックス樹脂の加熱減量特性により決まると考
えられる。また連続繊維補強材の熱間の引張強さおよび
コンクリートとの付着はマトリックス樹脂のガラス転移
点温度で決まると考えられる。前述したように、マトリ
ックス樹脂のTgや加熱減量開始温度をあげることは、
連続繊維補強材の効率的な生産から困難であるが、連続
繊維補強材の表面にTgの高い樹脂をコーティングでき
れば、この部分が断熱層や変型防止効果を示し、熱間の
引張強さや付着強さを向上できると考えた。本発明は以
上のような研究結果と考察に基づいている。
[0007] Based on these results, it was determined that it could be concluded that the allowable temperature at the time of fire of the reinforcing bars was 250-300 ° C and the allowable temperature of the coating material itself was at least 200 ° C or more. It is believed that the cold tensile strength of the continuous fiber reinforcement is determined by the heat loss characteristics of the matrix resin. It is considered that the hot tensile strength of the continuous fiber reinforcement and the adhesion to concrete are determined by the glass transition temperature of the matrix resin. As described above, raising the Tg of the matrix resin and the temperature at which heating loss starts is
Although it is difficult to produce a continuous fiber reinforcement efficiently, if the surface of the continuous fiber reinforcement can be coated with a resin having a high Tg, this portion can exhibit a heat insulating layer and an effect of preventing deformation, and can be used as a hot tensile strength or an adhesive strength. We thought that we could improve. The present invention is based on the above research results and considerations.

【0008】[0008]

【課題を解決するための手段】すなわち、本発明は
(1) 連続繊維による繊維強化プラスチック複合材か
ら成形されてなる棒材であって、その表面全体に前記複
合材を構成するマトリックス樹脂のガラス転移点よりも
20℃以上高いガラス転移点を有する耐熱性樹脂層で被
覆されていることを特徴とする、耐熱性に優れた繊維強
化プラスチック棒材、(2) 連続繊維がアラミド繊
維、アクリロニトリル系炭素繊維、ガラス繊維、ポリ−
p−フェニレンベンゾビスオキサゾール繊維から選ばれ
た繊維であり、マトリックス樹脂がフェノール系エポキ
シ樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂
から選ばれた樹脂である前記(1)記載の繊維強化プラ
スチック棒材、(3) 前記耐熱性樹脂層が芳香族アミ
ノエポキシ樹脂、ポリエーテルスルフォン、フェニレン
ビス−1,3−オキサゾールと芳香族ジアミンとからの
架橋ポリアミノアミド樹脂から選ばれた樹脂からなる、
前記(1)または(2)記載の繊維強化プラスチック棒
材、(4) マトリックス樹脂のガラス転移点が180
℃以下であり、耐熱性樹脂のガラス転移点が200℃以
上である、前記(1)〜(3)のいずれか記載の繊維強
化プラスチック棒材、(5) コンクリート補強材また
はプレストレストコンクリート緊張材として使用される
前記(1)〜(4)のいずれか1項記載の棒材、(6)
強磁場、強電場、非電導性を要する設備用建屋のコンク
リート補強材またはプレストレスト緊張材としての前記
(5)記載の繊維強化プラスチック棒材、に関する。
That is, the present invention provides (1) a rod formed from a fiber-reinforced plastic composite material comprising continuous fibers, and a glass of a matrix resin constituting the composite material on the entire surface thereof. A fiber-reinforced plastic rod excellent in heat resistance, which is coated with a heat-resistant resin layer having a glass transition point higher than the transition point by 20 ° C. or more. (2) Aramid fiber, acrylonitrile-based continuous fiber Carbon fiber, glass fiber, poly-
The fiber-reinforced plastic rod according to (1), wherein the fiber is a fiber selected from p-phenylene benzobisoxazole fibers, and the matrix resin is a resin selected from a phenolic epoxy resin, a vinyl ester resin, and an unsaturated polyester resin. (3) the heat-resistant resin layer is made of a resin selected from an aromatic amino epoxy resin, polyether sulfone, and a crosslinked polyaminoamide resin of phenylene bis-1,3-oxazole and aromatic diamine;
(1) The fiber-reinforced plastic rod according to (1) or (2), (4) the glass transition temperature of the matrix resin is 180.
° C or lower, and the glass transition point of the heat-resistant resin is 200 ° C or higher, the fiber-reinforced plastic rod according to any one of the above (1) to (3), (5) as a concrete reinforcing material or a prestressed concrete tendon The bar according to any one of (1) to (4), wherein the bar is used (6).
The present invention relates to the fiber-reinforced plastic rod according to the above (5) as a concrete reinforcing material or a prestressed tendon for a building for equipment requiring a strong magnetic field, a strong electric field, and non-conductivity.

【0009】従って、本発明は、連続繊維からなる繊維
強化プラスチック複合材から成形されてなる棒材であっ
て、その表面全体に前記複合材を構成するマトリックス
樹脂のガラス転移点よりも20℃以上高いガラス転移点
を有する耐熱性樹脂層で被覆されていることを特徴とす
る、耐熱性に優れた繊維強化プラスチック棒材にある。
Accordingly, the present invention relates to a rod formed from a fiber-reinforced plastic composite composed of continuous fibers, wherein the entire surface of the rod is 20 ° C. or more higher than the glass transition point of the matrix resin constituting the composite. A fiber-reinforced plastic bar excellent in heat resistance, characterized by being coated with a heat-resistant resin layer having a high glass transition point.

【0010】本発明において、“ガラス転移点”は非共
振強制振動法によって、樹脂の動的粘弾性と温度との関
係曲線から導かれた、弾性率が急低下する点での温度を
意味する。その場合の測定装置は株式会社オリエンテッ
ク製のレオビブロン(RHEOVIBRON DDV-II-EA)を使用
し、測定条件は周波数11ヘルツ、温度域24〜200
℃、昇温速度2℃/分である。ガラス転移点は主分散
(E”)のピーク温度から求めた値に拠る。また補強筋
の耐熱性とは、樹脂加熱減量、引張強度、付着強度と温
度との関係性から250〜300℃程度の許容温度を有
することを意味するものとする。
In the present invention, the "glass transition point" means the temperature at the point where the elastic modulus sharply drops, which is derived from the relationship curve between the dynamic viscoelasticity of resin and temperature by the non-resonant forced vibration method. . In this case, the measurement device used was Ryovibron (RHEOVIBRON DDV-II-EA) manufactured by Orientec Co., Ltd., and the measurement conditions were a frequency of 11 Hz and a temperature range of 24-200.
° C and the temperature rising rate is 2 ° C / min. The glass transition point is based on the value obtained from the peak temperature of the main dispersion (E "). The heat resistance of the reinforcing bar is about 250 to 300 ° C. based on the relationship between the resin heating loss, tensile strength, adhesion strength and temperature. Has an allowable temperature of

【0011】請求項1の繊維強化プラスチック棒材にお
いて、本発明はさらに次の点を特徴とする。連続繊維
(長繊維)はアラミド繊維、特にパラ系アラミド繊維、
炭素繊維(ポリアクリロニトリル系)、ガラス繊維、ポ
リパラフェニレンベンゾビスオキサゾール繊維、ポリビ
ニルアルコール系繊維から選ばれた繊維であり、マトリ
ックス樹脂はフェノール系エポキシ樹脂、ビニルエステ
ル樹脂、不飽和ポリエステル樹脂から選ばれた樹脂であ
る。耐熱性樹脂層は芳香族アミノエポキシ樹脂、ポリエ
ーテルスルフォン、フェニレンビス−1,3−オキサゾ
ールと芳香族ジアミンとから得られる架橋ポリアミノア
ミドから選ばれた樹脂からなる。マトリックス樹脂のガ
ラス転移点は180℃以下であり、耐熱性樹脂のガラス
転移点は200℃以上である。コンクリート補強材また
はプレストレストコンクリート緊張材として使用される
繊維強化プラスチック棒材。強磁場、強電場、非電導性
を要する設備用建物のコンクリート補強材またはプレス
トレストコンクリート緊張材としての繊維強化プラスチ
ック棒材。
In the fiber-reinforced plastic rod according to the first aspect, the present invention is further characterized by the following points. Continuous fiber (long fiber) is aramid fiber, especially para-aramid fiber,
Fiber selected from carbon fiber (polyacrylonitrile), glass fiber, polyparaphenylene benzobisoxazole fiber and polyvinyl alcohol fiber, and matrix resin selected from phenolic epoxy resin, vinyl ester resin and unsaturated polyester resin Resin. The heat-resistant resin layer is made of a resin selected from an aromatic amino epoxy resin, polyether sulfone, and a crosslinked polyaminoamide obtained from phenylene bis-1,3-oxazole and an aromatic diamine. The glass transition point of the matrix resin is 180 ° C. or lower, and the glass transition point of the heat-resistant resin is 200 ° C. or higher. Fiber reinforced plastic bar used as concrete reinforcement or prestressed concrete tendon. Fiber-reinforced plastic bars as concrete reinforcement or prestressed concrete tendons for equipment buildings requiring strong magnetic fields, strong electric fields, and non-conductivity.

【0012】[0012]

【発明の実施の形態】本発明の棒材を構成する芯の複合
材について先ず説明すると、強化材としての連続繊維は
アラミド繊維、特にパラ系アラミド繊維(例えばケブラ
ー29、49、149など)、炭素繊維、特にポリアクリロニ
トリル系炭素繊維、ガラス繊維、特にジルコニア含有耐
アルカリガラス(ARガラス)、Aガラス、Sガラス等の
ガラス繊維、ポリビニルアルコール繊維(PVAのホルマ
リン縮合物;ビニロン)、ポリパラフェニレンベンゾビ
スオキサゾール繊維(ザイロン)等から選ぶことができ
る。しかしながら物性、コスト等を総合的に判断すれば
アラミド繊維、炭素繊維、ガラス繊維等が選ばれる。
BEST MODE FOR CARRYING OUT THE INVENTION First, a composite material of a core constituting a rod of the present invention will be described. Continuous fibers as reinforcing materials are aramid fibers, particularly para-aramid fibers (for example, Kevlar 29, 49, 149, etc.), Carbon fiber, especially polyacrylonitrile-based carbon fiber, glass fiber, especially zirconia-containing alkali-resistant glass (AR glass), glass fiber such as A glass, S glass, polyvinyl alcohol fiber (formalin condensate of PVA; vinylon), polyparaphenylene It can be selected from benzobisoxazole fibers (Zylon) and the like. However, aramid fiber, carbon fiber, glass fiber, and the like are selected if the physical properties, cost, and the like are comprehensively determined.

【0013】マトリックス樹脂としてはガラス転移点が
180℃以下の従来から知られる慣用樹脂、例えばエポ
キシ樹脂(ガラス転移点100〜170℃)、ビニルエステル
樹脂(ガラス転移点150℃)、不飽和ポリエステル樹脂
(ガラス転移点150℃)等が使用できる。前記エポキシ
樹脂としては、例えばいずれもグリシジルエーテル基を
含むビスフエノールA型、ビスフェノールF型、フェノ
ールノボラック型エポキシ樹脂;グリシジルエステル型
エポキシ樹脂(例、フタル酸ジグリシジルエステルから
のエポキシ樹脂)などが挙げられる。ビニルエステル樹
脂はエポキシ樹脂とアクリル酸またはメタクリル酸など
の不飽和二塩基酸との反応で得られ、エポキシアクリレ
ート樹脂とも呼ばれるものであり、例えばビスフェノー
ル型、ノボラック型、ウレタン基含有型(ウレタンアク
リレート)、イソシアヌル酸ビニル系などが挙げられ
る。不飽和ポリエステル樹脂は例えばオルソフタル酸系
(オルソ系)、耐熱イソフタル酸系(イソ系)、テレフ
タル酸系(テレ系)、ビスフェノール系(ビス系)、ネ
オペンチルグリコール系等が挙げられる。
As the matrix resin, a conventionally known resin having a glass transition point of 180 ° C. or lower, for example, an epoxy resin (glass transition point of 100 to 170 ° C.), a vinyl ester resin (glass transition point of 150 ° C.), an unsaturated polyester resin (Glass transition point 150 ° C.). Examples of the epoxy resin include bisphenol A type, bisphenol F type, and phenol novolak type epoxy resins each containing a glycidyl ether group; glycidyl ester type epoxy resins (eg, epoxy resin from diglycidyl phthalate) and the like. Can be The vinyl ester resin is obtained by reacting an epoxy resin with an unsaturated dibasic acid such as acrylic acid or methacrylic acid, and is also called an epoxy acrylate resin. For example, bisphenol type, novolak type, urethane group-containing type (urethane acrylate) And vinyl isocyanurate. Examples of the unsaturated polyester resin include orthophthalic acid (ortho), heat-resistant isophthalic acid (iso), terephthalic acid (tere), bisphenol (bis), and neopentyl glycol.

【0014】前記樹脂と連続繊維強化材とは、目的とす
る棒材の形状によって様々な成形方法、例えば等のロッ
ドは引き抜き成形法(連続繊維に樹脂を含浸し、加熱金
型で賦形、硬化した後、引き出す)により製造される。
或いは別の丸形、矩形ロッドの製造方法は連続繊維を一
方向に引き揃え、樹脂で固める方法による。組紐状ロッ
ドは連続繊維ヤーンを組紐に製紐し、樹脂で含浸硬化し
て製造されるが、これはプレストレストコンクリート用
緊張材の製造に適している。撚り線状ロッドは撚り線状
に綯った連続繊維糸を熱硬化樹脂で含浸させて成形、硬
化させることによって製造される。また格子状ロッドは
連続繊維に樹脂を含浸させながら、格子に一体成形させ
る方法による。
The resin and the continuous fiber reinforced material are formed by various molding methods depending on the shape of the target rod material, for example, a rod is formed by a drawing method (a continuous fiber is impregnated with a resin, and is shaped by a heating mold. After curing, draw out).
Alternatively, another method for producing a round or rectangular rod is a method in which continuous fibers are aligned in one direction and solidified with a resin. The braided rod is manufactured by braiding a continuous fiber yarn into a braid and impregnating and curing with a resin, which is suitable for producing a tendon for prestressed concrete. The stranded wire rod is manufactured by impregnating a continuous fiber yarn twisted into a stranded wire shape with a thermosetting resin, molding and curing. The grid-like rod is formed by integrally molding a continuous fiber with a grid while impregnating the continuous fiber with a resin.

【0015】このようにして得られた連続繊維強化プラ
スチック複合材は、さらにその表面全体に亘って前記樹
脂のガラス転移点よりも20℃以上高いガラス転移点を
有する耐熱性樹脂で被覆される。そのような樹脂および
そのガラス転移点を挙げると、芳香族アミノエポキシ樹
脂、例えばテトラグリシジルアミノジフェニルメタンか
らの樹脂(230℃)、ジグリシジルアミノ基および芳香
族基置換グリシジルフェノールからの樹脂(260℃);
ポリエーテルスルホン(225℃)(下記化1に表示)、
ポリアリールエーテルスルホン(285℃)(下記化2に
表示)などのエーテルスルホン系樹脂;1,3−フェニ
レンビスオキサゾール(下記化3に表示)と芳香族ジア
ミン、例えばジアミノジフェニルメタンとから得られる
架橋ポリアミノアミド(250℃)、1,3−フェニレン
ビスオキサゾールと各種カルボン酸(脂肪族ジカルボン
酸+テレフタール酸、脂肪族ジカルボン酸+p−オキシ
安息香酸+サリチル酸)とから得られる架橋ポリエステ
ルアミド樹脂などがある。さらには、ポリエーテルイミ
ド(217℃)、ポリアミドイミド(280〜290℃)などの
イミド系樹脂等も挙げることができる。なお本発明にお
けるガラス転移点は、島津製作所製TG−40M型装置
によって行う。
The continuous fiber reinforced plastic composite material thus obtained is further coated with a heat-resistant resin having a glass transition point higher than the glass transition point of the resin by 20 ° C. or more over the entire surface. Such resins and their glass transition points include aromatic aminoepoxy resins such as resins from tetraglycidylaminodiphenylmethane (230 ° C.), resins from diglycidylamino and aromatic substituted glycidylphenol (260 ° C.). ;
Polyether sulfone (225 ° C) (shown in the following chemical formula 1),
Ether sulfone resins such as polyaryl ether sulfone (285 ° C.) (shown in the following chemical formula 2); crosslinked polyamino obtained from 1,3-phenylenebisoxazole (shown in the following chemical formula 3) and an aromatic diamine such as diaminodiphenylmethane There are amides (250 ° C.), cross-linked polyester amide resins obtained from 1,3-phenylenebisoxazole and various carboxylic acids (aliphatic dicarboxylic acid + terephthalic acid, aliphatic dicarboxylic acid + p-oxybenzoic acid + salicylic acid). Further, imide resins such as polyetherimide (217 ° C.) and polyamide imide (280 to 290 ° C.) can also be used. In the present invention, the glass transition point is measured by a TG-40M type device manufactured by Shimadzu Corporation.

【0016】[0016]

【化1】 Embedded image

【0017】[0017]

【化2】 Embedded image

【0018】[0018]

【化3】 Embedded image

【0019】耐熱樹脂の被覆厚みは棒材の径(ロッド状
の場合通常3〜10mm、撚り線状の場合5〜40mm)に応
じて異なるが、通常0.1mm〜2mmの範囲内が望ま
しい。下限以下では耐熱効果が発揮されないし、上限値
以上はあまり意味がないことになる。複合材は耐熱樹脂
に浸漬或いは塗布により含浸しまたは耐熱樹脂の射出成
形により被覆されて、本発明の目的とする耐熱性棒材が
得られる。
The coating thickness of the heat-resistant resin varies depending on the diameter of the rod (usually 3 to 10 mm in the case of a rod, 5 to 40 mm in the case of a stranded wire), but is preferably in the range of 0.1 to 2 mm. Below the lower limit, the heat-resistant effect is not exhibited, and above the upper limit, there is little meaning. The composite material is impregnated with a heat-resistant resin by dipping or coating or coated by injection molding of the heat-resistant resin to obtain the heat-resistant bar material intended for the present invention.

【0020】棒材には、コンクリートなどとの付着性
(接着性)を高めるために表面凹凸、例えば長手方向に
胸壁状でこぼこ、リブを賦与することや、砂を付与して
固めることもできる。棒材の形状は目的に応じて、断面
丸形、矩形でもよく、或いは線形棒材から2次元的格子
に組立てたり、柱材、コーナー材のために立体格子に組
立てることもできる。
In order to enhance the adhesion (adhesion) to concrete or the like, the bar may be provided with surface irregularities, for example, in the shape of a chest wall in the longitudinal direction, unevenness or ribs, or solidified with sand. Depending on the purpose, the shape of the bar may be round or rectangular in cross section, or it may be assembled from a linear bar into a two-dimensional lattice, or assembled into a three-dimensional lattice for columns and corners.

【0021】本発明棒材はコンクリート部材の補強材或
いは緊張材として使用することができるが、そのような
棒材を含むコンクリート部材はコンクリート構造物に要
求される本来の強度その他の特性を満たす上に、鉄、鋼
に代って、その特性を活かした様々な特殊建築物に有用
である。実例を挙げれば、大型橋、バース、桟橋床版、
リニアモーターカーレール桁等各種コンクリート構造物
のケーブルとして、核磁気共鳴装置棟、地球シミュレー
タ(超高速並列計算機システム)、陽子加速器施設、核
融合炉施設等の建物基礎部にコンクリート補強筋または
緊張材として施工される。
Although the bar of the present invention can be used as a reinforcing member or a tendon for a concrete member, a concrete member containing such a bar can satisfy the essential strength and other characteristics required for a concrete structure. In addition, it is useful for various special buildings that take advantage of its characteristics in place of iron and steel. Examples include large bridges, berths, pier decks,
As cables for various concrete structures such as linear motor car rail girder, concrete reinforcing bars or tendons are used at the foundation of buildings such as nuclear magnetic resonance equipment building, earth simulator (ultra-high speed parallel computer system), proton accelerator facility, fusion reactor facility, etc. It is constructed as.

【0022】[0022]

【実施例】以下本発明を実施例により具体的に説明す
る。
The present invention will be specifically described below with reference to examples.

【0023】実施例1、2 アラミド長繊維(東レ・デュポン株式会社製ケブラー4
9)を引揃え、9mm径の組紐に製紐し、常温で低粘度
の液状のビスフェノールA/脂肪族アミン系樹脂に含浸
し、150℃で10分間硬化させて組紐状の長さ1mロ
ッドを製作した。同じ条件で樹脂のみの硬化片を作成
し、Tgは145℃であった。第1のロッド表面に、硬
化剤として4,4’−ジアミノジフェニルスルホンを含
むテトラグリシジルアミノジフェニルメタン系エポキシ
樹脂(住友化学株式会社製スミ−エポキシELM-434;ガ
ラス転移点230℃)を含浸させ、180℃にて1時間硬
化させて、厚み0.5mmの被覆層とし、目的とする棒
材を得た(実施例1)。第2のロッドを、射出成形機の
円筒形状金型の中心に同心状に置き金型を閉じて後、ポ
リエーテルスルホン樹脂(住友化学株式会社製スミカエ
クセルPES3600G;ガラス転移点225℃)を200℃で
加熱流動化し、ノズルから金型内に射出して樹脂をロッ
ド回りに被覆成形し、厚さ0.5mmの耐熱被覆層を有
する棒材を得た(実施例2)。
Examples 1 and 2 Aramid filaments (Kevlar 4 manufactured by Du Pont-Toray Co., Ltd.)
9) Aligned, braided into a 9 mm diameter braid, impregnated with low-viscosity liquid bisphenol A / aliphatic amine resin at room temperature, cured at 150 ° C. for 10 minutes to obtain a braid-shaped 1 m long rod Made. Under the same conditions, a cured piece of only resin was prepared, and Tg was 145 ° C. The surface of the first rod is impregnated with a tetraglycidylaminodiphenylmethane-based epoxy resin containing 4,4′-diaminodiphenylsulfone as a curing agent (Sumi-Epoxy ELM-434 manufactured by Sumitomo Chemical Co., Ltd .; glass transition point 230 ° C.) The composition was cured at 180 ° C. for 1 hour to form a coating layer having a thickness of 0.5 mm to obtain a target bar (Example 1). After placing the second rod concentrically at the center of the cylindrical mold of the injection molding machine and closing the mold, 200 ml of polyether sulfone resin (SUMIKAEXCEL PES3600G manufactured by Sumitomo Chemical Co., Ltd .; glass transition point 225 ° C.) was used. The mixture was heated and fluidized at a temperature of 0 ° C., injected into a mold from a nozzle, and coated with resin around the rod to obtain a rod having a heat-resistant coating layer having a thickness of 0.5 mm (Example 2).

【0024】実施例1、2で得られた棒材ならびに第3
の無被覆ロッドを用いて、引張強度−加熱温度関係(冷
間)および引張強度−加熱温度関係(熱間)を求めて、
その結果を図1および図2に示した。□、○および×は
それぞれ実施例1の棒材、実施例2の棒材および無被覆
ロッドの結果を示す。冷間引張強度試験は、被検物を所
定温度で10分間加熱した後、室温(25℃)まで冷却
した状態で引張載荷(載荷速度600Mpa/min)を行う試
験であり、熱間引張強度試験は被検物を所定温度まで加
熱し(昇温速度2℃/min)当該所定温度に保たれた状
態で引張載荷(載荷速度600Mpa/min)を行う試験であ
る。また同様にして、実施例1の棒材と無被覆ロッドに
ついて、コンクリートの付着保持率(熱間)を求めて図
3に示す結果を得た。同様に破線は実施例1の棒材そし
て実線は無被覆ロッドの結果を示す。
The rods obtained in Examples 1 and 2 and the third
Using an uncoated rod, the tensile strength-heating temperature relationship (cold) and the tensile strength-heating temperature relationship (hot) were determined.
The results are shown in FIGS. □, お よ び, and × indicate the results of the bar of Example 1, the bar of Example 2, and the uncoated rod, respectively. The cold tensile strength test is a test in which a test object is heated at a predetermined temperature for 10 minutes and then subjected to a tensile loading (loading speed of 600 Mpa / min) while being cooled to room temperature (25 ° C.). Is a test in which a test object is heated to a predetermined temperature (heating rate: 2 ° C./min), and tensile loading (loading speed: 600 Mpa / min) is performed while maintaining the predetermined temperature. In the same manner, for the rod material of Example 1 and the uncoated rod, the concrete adhesion retention ratio (hot) was obtained, and the results shown in FIG. 3 were obtained. Similarly, the broken line shows the results for the bar of Example 1, and the solid line shows the results for the uncoated rod.

【0025】[0025]

【発明の効果】本発明は、高い比強度、非電導性、非磁
性等優れたユニークな特性を有する高機能連続繊維強化
材による繊維強化プラスチックを芯材として、そのマト
リックス樹脂のガラス転移点よりも20℃以上高いガラ
ス転移点を有する耐熱性樹脂で被覆してなるコンクリー
ト補強材または緊張材としての棒材に関するものであっ
て、ガラス転移点の差を20℃以上とすることによっ
て、火災を想定した優れた耐熱性が確保されることが判
明した。各種土木建築構造物用ケーブルとしてのみなら
ず、そのユニークな特性を利用して、核磁気共鳴設備や
トカマク型核融合炉施設、計算機センターなどの建築物
に使用するコンクリート部材の補強材、緊張材として有
用である。特に後者の建物その他の建築分野については
耐熱・耐火性が一層確保されるならば将来的に様々な用
途の可能性が開けるものと期待される。本発明はその端
緒になるものである。
According to the present invention, a fiber reinforced plastic made of a high-performance continuous fiber reinforced material having excellent unique properties such as high specific strength, non-conductivity, and non-magnetism is used as a core material. The present invention also relates to a bar as a concrete reinforcing material or a tendon material coated with a heat-resistant resin having a glass transition point higher than 20 ° C. It was found that the assumed excellent heat resistance was secured. Not only as cables for various types of civil engineering and building structures, but also by utilizing its unique characteristics, it is used as a reinforcing material or tension member for concrete members used in buildings such as nuclear magnetic resonance equipment, tokamak fusion reactor facilities, and computer centers. Useful as In particular, in the latter building and other construction fields, if the heat resistance and fire resistance are further secured, it is expected that various applications will be opened in the future. The present invention is a starting point.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1の棒材、実施例2の棒材および無被
覆ロッドの引張強度−加熱温度関係(冷間)を示す。
FIG. 1 shows the relationship between tensile strength and heating temperature (cold) of the bar of Example 1, the bar of Example 2, and an uncoated rod.

【図2】 実施例1の棒材、実施例2の棒材および無被
覆ロッドの引張強度−加熱温度関係(熱間)を示す。
FIG. 2 shows the relationship between tensile strength and heating temperature (hot) of the bar of Example 1, the bar of Example 2, and an uncoated rod.

【図3】 実施例1の棒材と無被覆ロッドのコンクリー
トとの付着力保持率−加熱温度関係(熱間)を示す。
FIG. 3 shows the relationship between the retention of the adhesive force between the bar of Example 1 and the concrete of the uncoated rod and the heating temperature (hot).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) E04C 5/08 B29K 101:10 // B29K 101:10 B29L 31:06 B29L 31:06 31:10 31:10 C08L 101:00 C08L 101:00 B29C 67/14 U L Fターム(参考) 2E001 DH01 DH03 DH07 EA01 FA01 FA02 FA03 GA29 GA62 HD01 HD12 JA22 JA29 JD05 KA05 2E164 AA05 AA11 AA31 BA01 CA15 CB01 CB11 DA01 4F072 AA07 AB06 AB07 AB09 AB10 AD28 AD38 AF16 AH04 AH22 AJ04 AJ11 AK03 AL01 4F100 AD11A AG00A AK01A AK01B AK35B AK41A AK44A AK47A AK53A AK53B AK54A AK55B AR00B BA02 BA06 DA16 DH02A EJ05B GB07 GB90 JA05B JJ03 JJ03B JJ07 YY00B 4F205 AA29 AA32 AA34 AA39 AA41 AD05 AD16 AG03 AG14 AH47 HA06 HA12 HA24 HA33 HA34 HA37 HA46 HB01 HB12 HC03 HC12 HC14 HC16 HC17 HL17 HM03 HT03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) E04C 5/08 B29K 101: 10 // B29K 101: 10 B29L 31:06 B29L 31:06 31:10 31: 10 C08L 101: 00 C08L 101: 00 B29C 67/14 UL F term (reference) 2E001 DH01 DH03 DH07 EA01 FA01 FA02 FA03 GA29 GA62 HD01 HD12 JA22 JA29 JD05 KA05 2E164 AA05 AA11 AA31 BA01 CA15 CB01 CB11 A01 AB07 AB07 AB10 AD28 AD38 AF16 AH04 AH22 AJ04 AJ11 AK03 AL01 4F100 AD11A AG00A AK01A AK01B AK35B AK41A AK44A AK47A AK53A AK53B AK54A AK55B AR00B BA02 BA06 DA16 DH02A EJ05B03 A03 A03 A03 A03 A03 A03 A03 A03 EB07 A03 A03 A03 A04 HA33 HA34 HA37 HA46 HB01 HB12 HC03 HC12 HC14 HC16 HC17 HL17 HM03 HT03

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 連続繊維による繊維強化プラスチック複
合材から成形されてなる棒材であって、その表面全体に
前記複合材を構成するマトリックス樹脂のガラス転移点
よりも20℃以上高いガラス転移点を有する耐熱性樹脂
層で被覆されていることを特徴とする、耐熱性に優れた
繊維強化プラスチック棒材。
1. A rod formed from a fiber-reinforced plastic composite material made of continuous fibers, having a glass transition point higher by at least 20 ° C. than the glass transition point of a matrix resin constituting the composite material over the entire surface thereof. A fiber reinforced plastic bar excellent in heat resistance, characterized by being coated with a heat resistant resin layer having the same.
【請求項2】 連続繊維がアラミド繊維、アクリロニト
リル系炭素繊維、ガラス繊維、ポリ−p−フェニレンベ
ンゾビスオキサゾール繊維から選ばれた繊維であり、マ
トリックス樹脂がフェノール系エポキシ樹脂、ビニルエ
ステル樹脂、不飽和ポリエステル樹脂から選ばれた樹脂
である請求項1記載の繊維強化プラスチック棒材。
2. The continuous fiber is a fiber selected from aramid fiber, acrylonitrile-based carbon fiber, glass fiber, and poly-p-phenylene benzobisoxazole fiber, and the matrix resin is a phenolic epoxy resin, a vinyl ester resin, and an unsaturated resin. The fiber reinforced plastic rod according to claim 1, which is a resin selected from polyester resins.
【請求項3】 前記耐熱性樹脂層が芳香族アミノエポキ
シ樹脂、ポリエーテルスルフォン、フェニレンビス−
1,3−オキサゾールと芳香族ジアミンとからの架橋ポ
リアミノアミド樹脂から選ばれた樹脂からなる、請求項
1または2記載の繊維強化プラスチック棒材。
3. The heat-resistant resin layer is made of aromatic amino epoxy resin, polyether sulfone, phenylene bis-
The fiber reinforced plastic rod according to claim 1 or 2, comprising a resin selected from a crosslinked polyaminoamide resin of 1,3-oxazole and an aromatic diamine.
【請求項4】 マトリックス樹脂のガラス転移点が18
0℃以下であり、耐熱性樹脂のガラス転移点が200℃
以上である、請求項1〜3のいずれか記載の繊維強化プ
ラスチック棒材。
4. The glass transition point of the matrix resin is 18
0 ° C. or less, and the glass transition point of the heat-resistant resin is 200 ° C.
The fiber reinforced plastic bar according to any one of claims 1 to 3, which is as described above.
【請求項5】 コンクリート補強材またはプレストレス
トコンクリート緊張材として使用される請求項1〜4の
いずれか1項記載の棒材。
5. The bar according to claim 1, which is used as a concrete reinforcing material or a prestressed concrete tendon.
【請求項6】 強磁場、強電場、非電導性を要する設備
用建屋のコンクリート補強材またはプレストレスト緊張
材としての請求項5記載の繊維強化プラスチック棒材。
6. The fiber-reinforced plastic bar according to claim 5, which is used as a concrete reinforcing material or a prestressed tendon for a building for equipment requiring a strong magnetic field, a strong electric field, and non-conductivity.
JP2001134051A 2001-05-01 2001-05-01 Continuous fiber reinforced plastic rod with excellent heat resistance Expired - Fee Related JP4750309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001134051A JP4750309B2 (en) 2001-05-01 2001-05-01 Continuous fiber reinforced plastic rod with excellent heat resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001134051A JP4750309B2 (en) 2001-05-01 2001-05-01 Continuous fiber reinforced plastic rod with excellent heat resistance

Publications (2)

Publication Number Publication Date
JP2002326285A true JP2002326285A (en) 2002-11-12
JP4750309B2 JP4750309B2 (en) 2011-08-17

Family

ID=18981807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001134051A Expired - Fee Related JP4750309B2 (en) 2001-05-01 2001-05-01 Continuous fiber reinforced plastic rod with excellent heat resistance

Country Status (1)

Country Link
JP (1) JP4750309B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004076766A1 (en) * 2003-02-27 2004-09-10 Fibex Co., Ltd. Low-magnetism, low-conductivity construction material having improved electromagnetic wave transmittance
CN100424304C (en) * 2006-08-03 2008-10-08 南京诺尔泰复合材料设备制造有限公司 Carbon fiber rib material having continuous screw shaped concare trough on surface, its production method and device
JP2016040115A (en) * 2014-08-11 2016-03-24 昌樹 阿波根 Pre-stressed concrete for non-main structural member
WO2021015299A1 (en) 2019-07-22 2021-01-28 株式会社Hpc沖縄 Prestressed concrete

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259178A (en) * 1988-12-28 1990-10-19 Ube Nitto Kasei Co Ltd Twisted structure made of fiber-reinforced thermosetting resin and production thereof
JPH05321178A (en) * 1992-03-19 1993-12-07 Sumitomo Chem Co Ltd Electrically curing material, electrically curing rope, member produced therefrom and application thereof
JPH0839682A (en) * 1994-07-29 1996-02-13 Sumitomo Electric Ind Ltd Fiber composite linear body and its manufacture
JPH10506691A (en) * 1994-06-28 1998-06-30 マーシャル・インダストリーズ・コンポジッツ Reinforced structural bar and method of manufacturing the same
JPH1128769A (en) * 1997-07-10 1999-02-02 Ube Nitto Kasei Co Ltd Frp-reinforced material and its manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02259178A (en) * 1988-12-28 1990-10-19 Ube Nitto Kasei Co Ltd Twisted structure made of fiber-reinforced thermosetting resin and production thereof
JPH05321178A (en) * 1992-03-19 1993-12-07 Sumitomo Chem Co Ltd Electrically curing material, electrically curing rope, member produced therefrom and application thereof
JPH10506691A (en) * 1994-06-28 1998-06-30 マーシャル・インダストリーズ・コンポジッツ Reinforced structural bar and method of manufacturing the same
JPH0839682A (en) * 1994-07-29 1996-02-13 Sumitomo Electric Ind Ltd Fiber composite linear body and its manufacture
JPH1128769A (en) * 1997-07-10 1999-02-02 Ube Nitto Kasei Co Ltd Frp-reinforced material and its manufacture

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004076766A1 (en) * 2003-02-27 2004-09-10 Fibex Co., Ltd. Low-magnetism, low-conductivity construction material having improved electromagnetic wave transmittance
CN100424304C (en) * 2006-08-03 2008-10-08 南京诺尔泰复合材料设备制造有限公司 Carbon fiber rib material having continuous screw shaped concare trough on surface, its production method and device
JP2016040115A (en) * 2014-08-11 2016-03-24 昌樹 阿波根 Pre-stressed concrete for non-main structural member
US11174637B2 (en) 2014-08-11 2021-11-16 Hpc Okinawa Co., Ltd. Prestressed concrete for non-primary structural members
WO2021015299A1 (en) 2019-07-22 2021-01-28 株式会社Hpc沖縄 Prestressed concrete

Also Published As

Publication number Publication date
JP4750309B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
KR100594658B1 (en) Fiber reinforced plastic wire for overhead trasmission cable strength member, method for manufacturing the same, and overhead transmission cable using the same
US5851468A (en) Reinforcing structural rebar and method of making the same
EP2268476B1 (en) Process and equipment for producing composite core with thermoplastic matrix for recyclable and thermally stable electrical transmission line conductor
Das et al. Applications of fiber reinforced polymer composites (FRP) in civil engineering
CA2025281C (en) Filament-reinforced resinous structural rod
US6048598A (en) Composite reinforcing member
Ahmad Sawpan Effects of alkaline conditioning and temperature on the properties of glass fiber polymer composite rebar
JP2002326285A (en) Continuous fiber reinforced plastic rod material excellent in heat resistance
Zhang et al. Design, preparation, and mechanical properties of glass fiber reinforced thermoplastic self‐anchor plate cable exposed in alkaline solution environment
WO1993016866A1 (en) Electric hardening material, uses of the same and method of practically using the same
KR20110078093A (en) Preparing method of inner strength member of fiber reinforced plastics for overhead transmission line
Cooke High performance fiber composites with special emphasis on the interface a review of the literature
JP2932422B2 (en) Fiber reinforced composite material and method for producing the same
JP4863630B2 (en) Carbon fiber reinforced resin
Balázs–Adorján et al. Bond of CFRP wires under elevated temperature
Gupta et al. Conventional and emerging materials used in FRP-concrete composites for earthquake resistance
JPH06158873A (en) Reinforcement or repair method for members using carbon-fiber reinforced composite material
JP2003306856A (en) Building material composed of fiber-reinforced plastic
JPH05321178A (en) Electrically curing material, electrically curing rope, member produced therefrom and application thereof
JP2744258B2 (en) Reinforcing material comprising wholly aromatic polyester fiber and method for producing the same
JP2000033617A (en) Reinforcing material and reinforcement technique
Tharmarajah et al. Development of Coir Fiber Reinforced Polymer Reinforcing Bars for Concrete Structures
KR20130013946A (en) Anchor bolt that have complex fiber reinforcement
Gowripalan et al. Fibre Reinforced Plastics (FRP)-a New Generation of Reinforcement and Prestressing Tendons for Concrete Structures
JPH1162270A (en) Method for reinforcing building member with carbon fiber reinforced resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110519

R150 Certificate of patent or registration of utility model

Ref document number: 4750309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees