JPH0225846B2 - - Google Patents

Info

Publication number
JPH0225846B2
JPH0225846B2 JP59073709A JP7370984A JPH0225846B2 JP H0225846 B2 JPH0225846 B2 JP H0225846B2 JP 59073709 A JP59073709 A JP 59073709A JP 7370984 A JP7370984 A JP 7370984A JP H0225846 B2 JPH0225846 B2 JP H0225846B2
Authority
JP
Japan
Prior art keywords
gas
furnace
optical fiber
oxygen
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59073709A
Other languages
Japanese (ja)
Other versions
JPS60215538A (en
Inventor
Kazuo Sanada
Takeru Fukuda
Motohiro Nakahara
Nobuo Inagaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7370984A priority Critical patent/JPS60215538A/en
Publication of JPS60215538A publication Critical patent/JPS60215538A/en
Publication of JPH0225846B2 publication Critical patent/JPH0225846B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、経年変化による伝送損失増加現象
の改善を図つた光フアイバの製造方法に関するも
のである。 背景と目的 光フアイバケーブルにおいて、時間の経過とと
もに伝送損失の増加することが、最近判明した。
その原因としては、現在以下のように考えられて
いる。 (1) 光フアイバの構成材料であるプラスチツクの
加水分解や熱酸化などにより水素ガスが発生
し、その水素ガスが光フアイバ内に拡散するこ
とにより損失増加現象が起きる。 (2) 拡散した水素ガスの一部は
The present invention relates to a method of manufacturing an optical fiber that aims to improve the phenomenon of increased transmission loss due to aging. Background and Purpose It has recently been found that transmission loss increases with time in optical fiber cables.
The reasons for this are currently thought to be as follows. (1) Hydrogen gas is generated by hydrolysis or thermal oxidation of the plastic that is the constituent material of the optical fiber, and this hydrogen gas diffuses into the optical fiber, causing an increase in loss. (2) Some of the diffused hydrogen gas is

【式】と結合 してCombine with [expression] do

【式】となり、また一部は水素分子 としてガラスの網目構造中に保持される。 (3) 水素ガスの発生源としては、上記のプラスチ
ツクだけでなく、異種金属で構成している光フ
アイバケーブル内に水が入つた場合には、電池
を構成して、水素ガスが発生する。 (4) 同一量の水素ガスが発生する場合でも、光フ
アイバの組成および組成比によつて損失の増加
特性は異なる。つまりOH基の増加にたいして
は、あらかじめガラス中にダングリングボンド
を有する欠陥酸素が存在していないと、水素と
結合しない。 (5) 欠陥の数および種類は、光フアイバの組成お
よび組成比だけでなく、製造方法および製造条
件に強く依存する。 この発明は、とくに上記(4)と(5)の点を考慮し
て、光フアイバ中の酸素欠陥を極力少なくするこ
とのできる光フアイバの製造方法の提供を目的と
するものである。そしてケーブル内に水素ガスが
発生して、それが光フアイバ内にまで拡散してい
つてもOH基が形成されないようにし、そうする
ことによつて、損失増加特性の改善が図られるよ
うにしたものである。 発明の構成 この発明は光フアイバの製造工程のなかでも、
とくにスートプリフオームの脱水工程に特色を持
つものであつて、スートプリフオームの脱水処理
を、 (1) 炉内圧力調節装置を設けた加熱炉内で加熱す
ることによつて行うこと、 (2) 当該加熱炉内に送り込むガスに酸素ガスを加
えるが、従来から送り込んでいた塩素ガスの流
量は変化させないこと、 (3) 排気流量を前記調節装置により調節すること
により炉内を加圧状態にしておくこと、を特徴
とする。 構成のより詳しい説明 一般に、VAD法によつて光フアイバを製造す
るとき、作成したスートプリフオームの脱水と焼
結の処理を行なう。 「第1図」は、従来の脱水装置の概略説明図で
ある。10はスートプリフオーム、12は加熱
炉、14はヒータ、16はガスの入口で、ここか
ら塩素などの塩素系ガスとHeガスとを送りこむ。
18はガスの出口、20は炉内の圧力を調節する
装置で、排気の流量を調節することによつて炉内
の圧力調節を行なうものである。 従来の脱水条件の一例を次の「第1表」に示
す。
[Formula], and some of it is retained as hydrogen molecules in the network structure of the glass. (3) Hydrogen gas can be generated not only from the above-mentioned plastics, but also when water gets into optical fiber cables made of dissimilar metals, hydrogen gas is generated by forming a battery. (4) Even when the same amount of hydrogen gas is generated, the loss increase characteristics differ depending on the composition and composition ratio of the optical fiber. In other words, the increase in OH groups will not bond with hydrogen unless defective oxygen with dangling bonds is already present in the glass. (5) The number and type of defects strongly depend not only on the composition and composition ratio of the optical fiber, but also on the manufacturing method and manufacturing conditions. This invention aims to provide a method for manufacturing an optical fiber that can reduce oxygen defects in the optical fiber as much as possible, particularly in consideration of the above points (4) and (5). This prevents the formation of OH groups even if hydrogen gas is generated within the cable and diffuses into the optical fiber, thereby improving loss increase characteristics. It is. Composition of the Invention The present invention includes the following steps in the optical fiber manufacturing process:
It is particularly characterized by the dehydration process of the soot preform, which includes: (1) performing the dehydration treatment of the soot preform by heating it in a heating furnace equipped with a furnace pressure adjustment device; ) Oxygen gas is added to the gas sent into the heating furnace, but the flow rate of the chlorine gas that has been sent conventionally is not changed; (3) The inside of the furnace is pressurized by adjusting the exhaust flow rate with the adjustment device. It is characterized by keeping it. More detailed explanation of the structure Generally, when manufacturing an optical fiber by the VAD method, the created soot preform is dehydrated and sintered. "FIG. 1" is a schematic explanatory diagram of a conventional dewatering device. 10 is a soot preform, 12 is a heating furnace, 14 is a heater, and 16 is a gas inlet, through which chlorine-based gas such as chlorine and He gas are fed.
18 is a gas outlet, and 20 is a device for adjusting the pressure inside the furnace, which adjusts the pressure inside the furnace by adjusting the flow rate of exhaust gas. An example of conventional dehydration conditions is shown in the following "Table 1".

【表】【table】

【表】 この脱水処理に続いて焼結処理を行なう。その
ときは、引上げ速度と加熱温度とを、それに合つ
た値に変える。 なお、脱水と焼結とを上記のように2段階で行
なわずに、1回の処理で行なう場合もある。 ところで、本発明においては上記の脱水処理の
とき、塩素ガスおよびHeガスに、酸素ガスを加
えてガス入口16から送りこむ。ただしそのと
き、塩素ガスおよびHeガスの流量は従来と同じ
にして変化させない。 また、排気流量を調節装置20により調節する
ことにより炉内を加圧状態にして、結果的に酸素
ガスが加圧された状態にしておく。 そしてこのようなガスの雰囲気のなかで脱水処
理を行うことによつて、ガラス内の酸素欠陥を非
常に少なくしようとするものである。 なおこのように、塩素ガスやHeガスに酸素ガ
スを加え、かつ酸素ガスが加圧された雰囲気内で
脱水処理を行なうと、光フアイバ内の酸素欠陥が
非常に少なくなるのは、次の理由による。 すなわちガラスを高温状態にすると、ある確率
で酸素欠陥が生じる。このとき周りに酸素が過剰
であれば、還元雰囲気および酸素分圧が低い場合
に比較して、酸素欠陥が生じにくくなる。 実施例 1 VAD法によつてスートプリフオームを作製し、
それを加熱炉において、炉内のガス圧をいろいろ
に変えて、「第2表」の条件で脱水処理をした。
[Table] Following this dehydration treatment, sintering treatment is performed. In that case, change the pulling speed and heating temperature to appropriate values. Note that dehydration and sintering may not be performed in two stages as described above, but may be performed in one process. By the way, in the present invention, during the above-mentioned dehydration treatment, oxygen gas is added to chlorine gas and He gas, and the mixture is fed through the gas inlet 16. However, at that time, the flow rates of chlorine gas and He gas remain the same as before. Further, by adjusting the exhaust flow rate using the regulating device 20, the inside of the furnace is kept in a pressurized state, and as a result, the oxygen gas is kept in a pressurized state. By performing dehydration treatment in such a gas atmosphere, the number of oxygen defects within the glass is to be greatly reduced. The reason why the number of oxygen defects in the optical fiber is extremely reduced when oxygen gas is added to chlorine gas or He gas and dehydration treatment is performed in an atmosphere where oxygen gas is pressurized is as follows. by. In other words, when glass is brought to a high temperature, oxygen defects occur with a certain probability. If there is excess oxygen in the surroundings at this time, oxygen defects will be less likely to occur than in the case where the reducing atmosphere and oxygen partial pressure are low. Example 1 A soot preform was produced by the VAD method,
It was dehydrated in a heating furnace under the conditions shown in Table 2 while varying the gas pressure in the furnace.

【表】 それからひき続き酸素ガスを含まない従来の条
件で焼結処理をして、透明母材を作つた。 それに石英ジヤケツトをかぶせ、通常の紡糸炉
で紡糸し、一次被覆(変成シリコーン樹脂と通常
のシリコーン樹脂の2層)と二次被覆(ナイロ
ン)とを施して光フアイバ心線とした。その諸元
を次の「第3表」に示す。
[Table] A transparent base material was then created by sintering under conventional conditions without oxygen gas. It was covered with a quartz jacket, spun in a conventional spinning furnace, and provided with a primary coating (two layers of a modified silicone resin and a conventional silicone resin) and a secondary coating (nylon) to obtain an optical fiber core. Its specifications are shown in "Table 3" below.

【表】 伝送損失の増加特性は、加速試験方法によつて
求めた。すなわち、作製した光フアイバ心線を
200℃のオーブンの中に2時間保持し、オーブン
前後の損失波長特性をモノクロメータにより測定
した。損失増加の値は、OH基による損失増加が
著しい波長1.39μmにおける増加値により求めた。 その損失増加の値を、酸素ガスを加えないで脱
水処理して作製した従来の光フアイバの値ととも
に、次の「第4表」に示した。
[Table] The transmission loss increase characteristics were determined by an accelerated test method. In other words, the fabricated optical fiber core wire is
The sample was kept in an oven at 200°C for 2 hours, and the loss wavelength characteristics before and after the oven were measured using a monochromator. The value of increase in loss was determined from the increase value at a wavelength of 1.39 μm, where the increase in loss due to OH groups is significant. The value of the loss increase is shown in the following "Table 4" together with the value of the conventional optical fiber produced by dehydration treatment without adding oxygen gas.

【表】 実施例 2 脱水処理を上記の「第2表」と同じ条件で行な
い、ひきつづき焼結処理を酸素ガスを加えた次の
「第5表」の条件で行なつた。
[Table] Example 2 The dehydration treatment was carried out under the same conditions as in "Table 2" above, and the sintering treatment was subsequently carried out under the conditions in the following "Table 5" with the addition of oxygen gas.

【表】 それから上記と同様に紡糸および被覆をして、
上記「第4表」と同じ諸元の光フアイバ心線を作
り、上記同様に加速試験によつて損失増加特性を
求めた。その値を次の「第6表」に示す。
[Table] Then, spin and coat as above,
Optical fiber core wires having the same specifications as in Table 4 above were prepared, and loss increase characteristics were determined by accelerated tests in the same manner as above. The values are shown in the following "Table 6".

【表】 以上の実験結果から、酸素ガスを加え、かつ炉
内を加圧状態にして、結果的に酸素ガスが加圧さ
れた状態の雰囲気中で脱水処理、または脱水と焼
結処理とを行なうと、伝送損失の増加特性が改善
されることがわかる。 発明の効果 この発明は、光フアイバの経年変化にによる伝
送損失の増加が、光フアイバ内で発生する水素ガ
スに起因するという原因の解明にもとづいてなさ
れたものである。 本発明においては、VAD法などによつて作製
したスートプリフオームの脱水焼結工程におい
て、少なくとも脱水処理を、次のような雰囲気、
すなわち、記加熱炉に炉内圧力調節装置を設ける
とともに、当該加熱炉内に送り込むガスに、前記
塩素ガスの流量は変化させずに酸素ガスを加え、
かつ排気流量を前記調節装置により調節すること
により炉内を加圧状態とし、結果的に酸素ガスが
加圧された状態の雰囲気中で行なうので、光フア
イバのなかの酸素欠陥が非常に少なくなり、した
がつて発生した水素ガスが光フアイバ内に拡散し
てきても、OH基の増加する程度がたいへん少な
い。 よつて布設してから長い年月がたつても伝送損
失があまり増加しないようになる。
[Table] From the above experimental results, it is possible to add oxygen gas and pressurize the furnace, resulting in dehydration treatment or dehydration and sintering treatment in an atmosphere with pressurized oxygen gas. It can be seen that when this is done, the transmission loss increase characteristics are improved. Effects of the Invention The present invention was made based on the clarification of the cause of increase in transmission loss due to aging of optical fibers, which is caused by hydrogen gas generated within the optical fibers. In the present invention, in the dehydration and sintering process of the soot preform produced by the VAD method, at least the dehydration treatment is carried out in the following atmosphere,
That is, the heating furnace is provided with an internal pressure adjustment device, and oxygen gas is added to the gas fed into the heating furnace without changing the flow rate of the chlorine gas,
In addition, by adjusting the exhaust flow rate using the adjustment device, the inside of the furnace is pressurized, and as a result, the process is carried out in an atmosphere in which oxygen gas is pressurized, so that oxygen defects in the optical fiber are extremely reduced. Therefore, even if the generated hydrogen gas diffuses into the optical fiber, the amount of OH groups increases is very small. As a result, transmission loss will not increase significantly even after many years have passed since installation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術と本発明とに共通の脱水焼結
工程の説明図。 10:スートプリフオーム、12:加熱炉、1
6:ガス入口、20:炉内ガス圧の調節装置。
FIG. 1 is an explanatory diagram of the dehydration sintering process common to the prior art and the present invention. 10: Soot preform, 12: Heating furnace, 1
6: Gas inlet, 20: Furnace gas pressure adjustment device.

Claims (1)

【特許請求の範囲】[Claims] 1 作製したスートプリフオームの脱水処理と焼
結処理を、加熱炉内における塩素ガスを含む雰囲
気中において加熱することによつて行うに際し
て、前記加熱炉に炉内圧力調節装置を設けるとと
もに、当該加熱炉内に送り込むガスに、前記塩素
ガスの流量は変化させずに酸素ガスを加え、かつ
排気流量を前記調節装置により調節することによ
り炉内を加圧状態とし、そのようにした雰囲気中
で、少なくとも前記脱水処理を行うことを特徴と
する、光フアイバの製造方法。
1. When performing the dehydration treatment and sintering treatment of the produced soot preform by heating it in an atmosphere containing chlorine gas in a heating furnace, the heating furnace is provided with an in-furnace pressure regulating device, and the heating Oxygen gas is added to the gas sent into the furnace without changing the flow rate of the chlorine gas, and the exhaust flow rate is adjusted by the adjustment device to make the inside of the furnace pressurized, and in such an atmosphere, A method for manufacturing an optical fiber, comprising performing at least the dehydration treatment.
JP7370984A 1984-04-12 1984-04-12 Manufacture of optical fiber Granted JPS60215538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7370984A JPS60215538A (en) 1984-04-12 1984-04-12 Manufacture of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7370984A JPS60215538A (en) 1984-04-12 1984-04-12 Manufacture of optical fiber

Publications (2)

Publication Number Publication Date
JPS60215538A JPS60215538A (en) 1985-10-28
JPH0225846B2 true JPH0225846B2 (en) 1990-06-06

Family

ID=13526011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7370984A Granted JPS60215538A (en) 1984-04-12 1984-04-12 Manufacture of optical fiber

Country Status (1)

Country Link
JP (1) JPS60215538A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126531A (en) * 1984-07-12 1986-02-05 Hitachi Cable Ltd Production of base material for optical fiber
US5180411A (en) * 1989-12-22 1993-01-19 Corning Incorporated Optical waveguide fiber with titania-silica outer cladding and method of manufacturing
US5067975A (en) * 1989-12-22 1991-11-26 Corning Incorporated Method of manufacturing optical waveguide fiber with titania-silica outer cladding
US20020197005A1 (en) * 2001-06-26 2002-12-26 Chang Kai H. Method and apparatus for fabricating optical fiber using adjustment of oxygen stoichiometry
US6776012B2 (en) * 2001-06-26 2004-08-17 Fitel Usa Corp. Method of making an optical fiber using preform dehydration in an environment of chlorine-containing gas, fluorine-containing gases and carbon monoxide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767043A (en) * 1980-10-08 1982-04-23 Nippon Telegr & Teleph Corp <Ntt> Manufacture of base material for optical fiber
JPS60112635A (en) * 1983-10-24 1985-06-19 エステイ−シ− ピ−エルシ− Manufacture of glass optical fiber preform

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5767043A (en) * 1980-10-08 1982-04-23 Nippon Telegr & Teleph Corp <Ntt> Manufacture of base material for optical fiber
JPS60112635A (en) * 1983-10-24 1985-06-19 エステイ−シ− ピ−エルシ− Manufacture of glass optical fiber preform

Also Published As

Publication number Publication date
JPS60215538A (en) 1985-10-28

Similar Documents

Publication Publication Date Title
JP4011418B2 (en) Optical fiber manufacturing method and apparatus using improved oxygen stoichiometry and deuterium exposure
KR910009177B1 (en) Method for producing glass preform for optical fiber
US5102438A (en) Method of manufacturing silicon optical fiber having a compressive surface layer
JPH0225846B2 (en)
RU2335465C2 (en) Method of uncovered optical fibre extract, optical fibre production method and optical fibre
JP2001510137A (en) Reduced H2 sensitivity in optical fiber
JPS6186436A (en) Production of parent material for optical fiber
WO2022121259A1 (en) Optical fiber and preparation method therefor
JPH0225850B2 (en)
JP2003261351A (en) Optical fiber and method for treating the same
JPH0446913B2 (en)
JPH0342643B2 (en)
JPH0717400B2 (en) Optical fiber manufacturing method
JPS6385023A (en) Production of optical fiber
JPH02141437A (en) Production of optical fiber
JPS591218B2 (en) Manufacturing method of glass base material for optical fiber
CN100340508C (en) Method for manufacturing optical fiber unsensitive to hydrogen
JPS61132531A (en) Production of optical fiber
JPS61174136A (en) Production of optical fiber
JPH10167770A (en) Production of carbon-coated optical core fiber
JPH0717399B2 (en) Optical fiber manufacturing method
JPS6054936A (en) Manufacture of preform rod
JPS631489A (en) Preparation of polyimide coated wire material
CN101654328B (en) Method for producing low water peak single mode fiber with high efficiency
JPH04160040A (en) Production of heat resistant optical fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term