JPH0225850B2 - - Google Patents

Info

Publication number
JPH0225850B2
JPH0225850B2 JP59073710A JP7371084A JPH0225850B2 JP H0225850 B2 JPH0225850 B2 JP H0225850B2 JP 59073710 A JP59073710 A JP 59073710A JP 7371084 A JP7371084 A JP 7371084A JP H0225850 B2 JPH0225850 B2 JP H0225850B2
Authority
JP
Japan
Prior art keywords
optical fiber
oxygen
increase
loss
hydrogen gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59073710A
Other languages
Japanese (ja)
Other versions
JPS60221337A (en
Inventor
Kazuo Sanada
Takeru Fukuda
Motohiro Nakahara
Nobuo Inagaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59073710A priority Critical patent/JPS60221337A/en
Publication of JPS60221337A publication Critical patent/JPS60221337A/en
Publication of JPH0225850B2 publication Critical patent/JPH0225850B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/56Annealing or re-heating the drawn fibre prior to coating

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、経年変化による伝送損失の増加現
象をたいへん小さく抑えることのできる光フアイ
バの製造方法に関するものである。 背景と目的 光フアイバケーブルにおいて、時間の経過とと
もに伝送損失の増加することが、最近判明した。
その原因としては、現在以下のように考えられて
いる。 (1) 光フアイバの構成材料であるプラスチツクの
加水分解や熱酸化などにより水素ガスが発生
し、その水素ガスが光フアイバ内に拡散するこ
とにより損失増加現象が起きる。 (2) 拡散した水素ガスの一部は−| Si |−Oと
結合して−| Si |−OHとなり、また一部は水素 分子としてガラスの網目構造中に保持され
る。 (3) 水素ガスの発生源としては、上記のプラスチ
ツクだけでなく、異種金属で構成している光フ
アイバケーブル内に水が入つた場合には、電池
を構成して、水素ガスが発生する。 (4) 同一量の水素ガスが発生する場合でも、光フ
アイバの組成および組成比によつて損失の増加
特性は異なる。つまりOH基の増加にたいして
は、あらかじめガラス中にダンリングボンドを
有する欠陥酸素が存在していないと、水素と結
合しない。 (5) 欠陥の数および種類は、光フアイバの組成お
よび組成比だけでなく、製造方法および製造条
件に強く依存する。 この発明は、とくに上記(4)と(5)との点を考慮し
て、光フアイバ中の酸素欠陥を極力少なくするこ
とのできる光フアイバの製造方法の提供を目的と
するものである。そしてケーブル内に水素ガスが
発生し、その水素ガスが光フアイバ内に拡散して
いつてもOH基が形成されないようにし、そうす
ることによつて、損失増加特性の改善が図られる
ようにしたものである。 発明の構成 紡糸した光フアイバが最初の被覆材に触れる前
に、酸素を連続的に流した加熱炉の中を通り、酸
素だけの雰囲気中で熱処理されるようにすること
を特徴とする。 構成のより詳しい説明 光フアイバを製造するとき、従来は「第1図」
のように、母材10から紡糸された光フアイバ1
2を、コータ14、ヒータ16、コータ18、ヒ
ータ20のなかを順に通し、ボビン22に巻きと
るという方法をとつている。 しかし本発明においては、「第2図」のように、
紡糸された光フアイバ12が最初のコータ14に
おいて被覆材に触れる前に加熱炉24の中を通す
ようにする。また加熱炉24内には酸素を連続的
に流す。 後記の実験結果からわかるように、熱処理温度
は1200℃くらい、また酸素の流量は600c.c./min
くらい、が適当である。 実施例 紡糸速度、熱処理の温度、酸素の流量を変え、
熱処理のすんだ光フアイバに一次被覆(変成シリ
コーン樹脂と通常のりシリコーン樹脂の2層)と
ナイロンの二次被覆を施して光フアイバ心線とし
た。その諸元を次の「第1表」に示す。
The present invention relates to a method of manufacturing an optical fiber that can minimize the phenomenon of increase in transmission loss due to aging. Background and Purpose It has recently been found that transmission loss increases with time in optical fiber cables.
The reasons for this are currently thought to be as follows. (1) Hydrogen gas is generated by hydrolysis or thermal oxidation of the plastic that is the constituent material of the optical fiber, and this hydrogen gas diffuses into the optical fiber, causing an increase in loss. (2) Part of the diffused hydrogen gas is −|Si |−O
It combines to form -|Si|-OH, and some of it is retained as hydrogen molecules in the network structure of the glass. (3) Hydrogen gas can be generated not only from the above-mentioned plastics, but also when water gets into optical fiber cables made of dissimilar metals, hydrogen gas is generated by forming a battery. (4) Even when the same amount of hydrogen gas is generated, the loss increase characteristics differ depending on the composition and composition ratio of the optical fiber. In other words, when increasing the number of OH groups, they do not bond with hydrogen unless a defective oxygen having a dangling bond is already present in the glass. (5) The number and type of defects strongly depend not only on the composition and composition ratio of the optical fiber, but also on the manufacturing method and manufacturing conditions. This invention aims to provide a method for manufacturing an optical fiber that can reduce oxygen defects in the optical fiber as much as possible, particularly in consideration of the above points (4) and (5). This prevents the formation of OH groups even when hydrogen gas is generated within the cable and diffuses into the optical fiber, thereby improving the loss increase characteristics. It is. Structure of the invention The spun optical fiber is characterized in that, before it touches the first coating material, it passes through a heating furnace in which oxygen is continuously flowed, so that it is heat-treated in an oxygen-only atmosphere. More detailed explanation of the configuration When manufacturing optical fibers, conventionally "Figure 1"
An optical fiber 1 spun from a base material 10 as shown in FIG.
2 is sequentially passed through the coater 14, heater 16, coater 18, and heater 20, and then wound onto the bobbin 22. However, in the present invention, as shown in "Figure 2",
The spun optical fiber 12 passes through a heating furnace 24 before contacting the coating material in the first coater 14. Further, oxygen is continuously flowed into the heating furnace 24. As you can see from the experimental results below, the heat treatment temperature was about 1200℃, and the oxygen flow rate was 600c.c./min.
About that amount is appropriate. Example: By changing the spinning speed, heat treatment temperature, and oxygen flow rate,
The heat-treated optical fiber was coated with a primary coating (two layers of a modified silicone resin and an ordinary adhesive silicone resin) and a secondary coating of nylon to obtain an optical fiber core. Its specifications are shown in the following "Table 1".

【表】 伝送損失の増加特性は、加速試験方法によつて
求めた。すなわち、作製した光フアイバ心線を
200℃のオーブンの中に2時間保持し、オーブン
前後の損失波長特性をモノクロメータにより測定
した。損失増加の値は、OH基による損失増加が
著しい波長1.39μmにおける増加値により求めた。 熱処理条件をいろいろ変えたときの損失増加の
値を、次の「第2表」に示した。
[Table] The transmission loss increase characteristics were determined by an accelerated test method. In other words, the fabricated optical fiber core wire is
The sample was kept in an oven at 200°C for 2 hours, and the loss wavelength characteristics before and after the oven were measured using a monochromator. The value of increase in loss was determined from the increase value at a wavelength of 1.39 μm, where the increase in loss due to OH groups is significant. The following "Table 2" shows the values of increase in loss when the heat treatment conditions were varied.

【表】 (註)損失増加は波長1.39μmの値 「第2表」から、損失増加を小さくするには、
熱処理条件としては、温度が高く、酸素流量が多
く、紡糸速度が遅いほど良いことがわかる。 発明の効果 この発明は、光フアイバの経年変化にによる伝
送損失の増加が、光フアイバ内で発生する水素ガ
スに起因するという原因の解明にもとづいてなさ
れてものである。 本発明においては、紡糸された光フアイバが最
初の被覆材に触れる前に、酸素を連続的に流した
加熱炉の中を通り、酸素だけの雰囲気中で熱処理
されるようにするので、光フアイバのなかの酸素
欠陥が非常に少なくなり、したがつて発生した水
素ガスが光フアイバ内に拡散してきても、OH基
の増加する程度がたいへん少ない。 よつて布設してから長い年月がたつても伝送損
失があまり増加しないようになる。
[Table] (Note) The loss increase is the value at a wavelength of 1.39μm. From "Table 2", to reduce the loss increase,
It can be seen that the higher the temperature, the higher the oxygen flow rate, and the slower the spinning speed, the better the heat treatment conditions. Effects of the Invention The present invention was made based on the clarification of the cause of increase in transmission loss due to aging of optical fibers, which is caused by hydrogen gas generated within the optical fibers. In the present invention, before the spun optical fiber touches the first coating material, it passes through a heating furnace in which oxygen is continuously flowed and is heat-treated in an oxygen-only atmosphere. There are very few oxygen vacancies in the optical fiber, so even if the generated hydrogen gas diffuses into the optical fiber, the amount of OH groups will increase to a very small extent. As a result, transmission loss will not increase significantly even after many years have passed since installation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の一次被覆の説明図、第2図は本
発明の熱処理の説明図。 12:光フアイバ、14:第1のコータ、2
4:加熱炉。
FIG. 1 is an explanatory diagram of a conventional primary coating, and FIG. 2 is an explanatory diagram of a heat treatment according to the present invention. 12: Optical fiber, 14: First coater, 2
4: Heating furnace.

Claims (1)

【特許請求の範囲】[Claims] 1 紡糸した光フアイバが、最初の被覆材に触れ
る前に、酸素を連続的に流した加熱炉の中を通
り、当該加熱炉の中において酸素だけの雰囲気中
で熱処理されることを特徴とする、光フアイバの
製造方法。
1. The spun optical fiber is characterized by being passed through a heating furnace in which oxygen is continuously flowed before coming into contact with the first coating material, and being heat-treated in an atmosphere containing only oxygen in the heating furnace. , a method for manufacturing optical fibers.
JP59073710A 1984-04-12 1984-04-12 Preparation of optical fiber Granted JPS60221337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59073710A JPS60221337A (en) 1984-04-12 1984-04-12 Preparation of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59073710A JPS60221337A (en) 1984-04-12 1984-04-12 Preparation of optical fiber

Publications (2)

Publication Number Publication Date
JPS60221337A JPS60221337A (en) 1985-11-06
JPH0225850B2 true JPH0225850B2 (en) 1990-06-06

Family

ID=13526040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59073710A Granted JPS60221337A (en) 1984-04-12 1984-04-12 Preparation of optical fiber

Country Status (1)

Country Link
JP (1) JPS60221337A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062603B2 (en) * 1985-10-01 1994-01-12 住友電気工業株式会社 Method and apparatus for manufacturing optical fiber
FR2624502B1 (en) * 1987-12-10 1990-03-23 Comp Generale Electricite METHOD OF MANUFACTURING HIGH-MECHANICAL RESISTANCE OPTICAL FIBER BY HIGH-TENSION DRAWING
JPH06656B2 (en) * 1989-04-28 1994-01-05 株式会社フジクラ Method for manufacturing radiation resistant optical fiber
JPH0459631A (en) * 1990-06-27 1992-02-26 Sumitomo Electric Ind Ltd Drawing of optical fiber
DE19727574A1 (en) * 1997-06-28 1999-01-07 Alsthom Cge Alcatel Device and method for controlling the coating thickness of an optical fiber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947630B2 (en) * 1976-03-24 1984-11-20 三菱電機株式会社 Method for manufacturing cable armored metal tubes by arc welding

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947630U (en) * 1982-09-20 1984-03-29 日本電信電話株式会社 Optical fiber drawing equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947630B2 (en) * 1976-03-24 1984-11-20 三菱電機株式会社 Method for manufacturing cable armored metal tubes by arc welding

Also Published As

Publication number Publication date
JPS60221337A (en) 1985-11-06

Similar Documents

Publication Publication Date Title
US3791806A (en) Continuous production of light-conducting glass fibers with ion diffusion
JPH0225850B2 (en)
JPH0225846B2 (en)
JPH0313563B2 (en)
JPH0446913B2 (en)
JP2582062B2 (en) Optical fiber drawing method
JPH0342643B2 (en)
JPS60204641A (en) Production of core wire of optical fiber
JPH07165444A (en) Method for producing carbon-coated optical fiber
JPS60195503A (en) Optical fiber
JPS60195507A (en) Optical fiber
JPH0717400B2 (en) Optical fiber manufacturing method
JPS61132531A (en) Production of optical fiber
JPH05127052A (en) Heat-resistant optical fiber
JPS6385022A (en) Production of optical fiber
JPS61136940A (en) Manufacture of optical fiber core wire
JPS6140837A (en) Preparation of optical fiber
JPH0437623A (en) Production of preform for optical fiber
CN114035266A (en) Small-diameter optical fiber and preparation method thereof
JPH0713051A (en) Multicomponent type glass optical fiber having improved moisture resistance
JPH01290539A (en) Production of parent material for optical fiber
JPH0717401B2 (en) Optical fiber manufacturing method
JPH0555112U (en) Metal coated optical fiber
JPS63129039A (en) Production of optical fiber
JPS6114097B2 (en)