JPH02253222A - Focus detector - Google Patents

Focus detector

Info

Publication number
JPH02253222A
JPH02253222A JP7625689A JP7625689A JPH02253222A JP H02253222 A JPH02253222 A JP H02253222A JP 7625689 A JP7625689 A JP 7625689A JP 7625689 A JP7625689 A JP 7625689A JP H02253222 A JPH02253222 A JP H02253222A
Authority
JP
Japan
Prior art keywords
light
light receiving
receiving element
objective lens
aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7625689A
Other languages
Japanese (ja)
Inventor
Takashi Koyama
剛史 小山
Keiji Otaka
圭史 大高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP7625689A priority Critical patent/JPH02253222A/en
Publication of JPH02253222A publication Critical patent/JPH02253222A/en
Pending legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To easily enlarge a range-finding visual field by shifting and arranging two lenses of a secondary optical system in specified directions respectively. CONSTITUTION:The aperture parts 6-1 and 6-2 of a diaphragm 6 are provided in parallel with the longitudinal direction of a photodetector trains 5-1 and 5-2. Meanwhile, two lenses 4-1 and 4-2 of the secondary optical system 4 are arranged by shifting the apexes of the lens surfaces oppositely to each other with respect to the centers of the aperture parts 6-1 and 6-2. Then, the aperture part images 2a1 and 2a2 of the aperture part 2a of a visual field mask 2 are formed on the surface of the photodetector means 5 by shifting oppositely to each other in a direction perpendicular to the arranging direction of the aperture parts 6-1 and 6-2 of the diaphragm 6. Thus, the size in the longitudinal direction of the aperture part 2a of the visual field mask 2 is large and the range-finding visual field is enlarged.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は写真用カメラやビデオカメラ等に好適な焦点検
出装置に関し、特に対物レンズの晴を複数の領域に分割
し、各領域を通過する光束を用いて複数の被写体像に関
する光量分布を形成し、これら複数の光量分布の相対的
な位置関係を求めることにより対物レンズの合焦状態を
検出するようにした焦点検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a focus detection device suitable for photographic cameras, video cameras, etc., and particularly to a focus detection device that divides the field of an objective lens into a plurality of regions and passes through each region. The present invention relates to a focus detection device that detects the in-focus state of an objective lens by forming light intensity distributions regarding a plurality of subject images using a light flux and determining the relative positional relationship of these plurality of light intensity distributions.

(従来の技術) 従来より対物レンズを通過した光束を利用した受光型の
焦点検出方式に所謂像ずれ方式と呼ばれる方式がある。
(Prior Art) Conventionally, there is a so-called image shift method as a light-receiving focus detection method that utilizes a light beam passing through an objective lens.

この像ずれ方式は例えば特開昭59−107311号公
報や特開昭59−107313号公報等で提案されてい
る。
This image shift method has been proposed, for example, in Japanese Patent Laid-Open No. 59-107311 and Japanese Patent Laid-Open No. 59-107313.

第9図は従来の像ずれ方式を用いた焦点検出装置の光学
系の概略図である。
FIG. 9 is a schematic diagram of an optical system of a focus detection device using a conventional image shift method.

同図において61は対物レンズ、62は視野マスクであ
り開口部62aを有しており、対物レンズ61の予定結
像面近傍に配置されている。63はフィールドレンズで
あり予定結像面近傍に配置されている。64は2次光学
系であり対物レンズ61の光軸に対して対象に配置され
た二つのレンズ64−1.64−2により構成されてい
る。65は受光手段であり前記二つのレンズ64−1.
64−2に対応してその後方に配置された2つの受光素
子列65−1.65−2を有している。66は絞りであ
りn)記2つのレンズ64−1.64−2に対応してそ
の前方に配置された2つの開口部66−1.66−2を
有している。67は対物レンズ61の射出瞳であり1分
割された2つの領域67−1.67−2により構成され
ている。
In the figure, 61 is an objective lens, and 62 is a field mask, which has an opening 62a and is disposed near the intended imaging plane of the objective lens 61. Reference numeral 63 denotes a field lens, which is arranged near the intended image plane. A secondary optical system 64 is composed of two lenses 64-1 and 64-2 arranged symmetrically with respect to the optical axis of the objective lens 61. 65 is a light receiving means, and the two lenses 64-1.
It has two light-receiving element rows 65-1 and 65-2 arranged behind it in correspondence with 64-2. A diaphragm 66 has two openings 66-1.66-2 arranged in front of the two lenses 64-1.64-2. Reference numeral 67 denotes an exit pupil of the objective lens 61, which is composed of two divided regions 67-1 and 67-2.

なお、フィールドレンズ63は開口部66−1.66−
2を射出瞳67の領域67−1゜67−2に結像する作
用を有しており、各領域67−1.67−2を透過した
光束が受光素子列65−1.65−2上に人々被写体像
に間する光y1分布を形成するようになっている。
Note that the field lens 63 has an opening 66-1.66-
2 onto areas 67-1 and 67-2 of the exit pupil 67, and the light beams transmitted through each area 67-1. The light y1 distribution between the images of people and subjects is formed.

この第9図に示す焦点検出装置では、対物レンズ61の
結像点が予定結像面の前側にある場合は、2つの受光素
子列65−1.65−2上に夫々形成される物体像に関
する光量分布が互いに近づいた状態となり、また、対物
レンズ61の結像点が予定結像面の後側にある場合は、
2つの受光素子列65−1.65−2上に夫々形成され
る光量分布が互いに離れた状態となる。このとき2つの
受光素子列65−1.65−2上に夫々形成された光量
分布のずれ置は対物レンズ61の焦点外れ唄とある関数
関係になるので、そのずれ量を適当な演算手段で算出し
、対物レンズ61の焦点はずれの方向と啜とを検出して
いる。
In the focus detection device shown in FIG. 9, when the imaging point of the objective lens 61 is in front of the intended imaging plane, object images are formed on the two light-receiving element rows 65-1 and 65-2, respectively. When the light intensity distributions of the objective lens 61 become close to each other and the image forming point of the objective lens 61 is located behind the planned image forming plane,
The light quantity distributions formed on the two light receiving element rows 65-1 and 65-2 are separated from each other. At this time, the position of shift in the light intensity distribution formed on the two light receiving element arrays 65-1 and 65-2 has a certain functional relationship with the out-of-focus state of the objective lens 61, so the amount of shift can be calculated using an appropriate calculation means. The direction and degree of defocus of the objective lens 61 are detected.

第9図に示す焦点検出装置は、対物レンズにより撮影さ
れる被写体範囲の略中夫に存在する視野マスク62の開
口部62aの大きさに相当する被写体に対して、測距を
行っている。
The focus detection device shown in FIG. 9 performs distance measurement on a subject whose size corresponds to the opening 62a of the field mask 62, which is present approximately in the middle of the subject range photographed by the objective lens.

(発明が解決しようとする問題点) 一般に第9図に示す焦点検出装置においては予定結像面
近傍に設けた視野マスク62の開口部62aの長平方向
の大きさにより測距視野の大きさを設定している。そし
てそのとき受光素子列65−1.65−2の長平方向の
大きさを開口部62aの受光素子列65−1.65−2
面上に投影された開口部像の大きさに対応して設定して
いる。これにより受光素子列で開口部像に対応する被写
体像の光量分布を検出している。
(Problems to be Solved by the Invention) Generally, in the focus detection device shown in FIG. It is set. At that time, the size of the light receiving element row 65-1.65-2 in the longitudinal direction of the light receiving element row 65-1.65-2 of the opening 62a is
It is set in accordance with the size of the aperture image projected onto the surface. Thereby, the light receiving element array detects the light amount distribution of the subject image corresponding to the aperture image.

しかしながら、このような構成において測距視野を広く
しようと視野マスク62の開口部62aの長平方向の寸
法を大きくすると開口部62aの受光素子列面上におけ
る開口m像62a1.62a2は第10図に示すように
一部が重なり合ってしまう場合があった。
However, in such a configuration, if the longitudinal dimension of the aperture 62a of the field mask 62 is increased in order to widen the distance measurement field of view, the aperture m images 62a1 and 62a2 of the aperture 62a on the light-receiving element row surface become as shown in FIG. As shown, there were cases where some parts overlapped.

この為測距視野の拡大には限界があった。For this reason, there was a limit to the expansion of the distance measurement field of view.

又、第9図に示す焦点検出装置において複数の開口部を
有した視野マスクを用い、複数の領域で測距することが
できるようにした所謂多点測距を行うとすると対象とす
る受光素子列に他の開口部を通過した不要光が入射し、
焦点検出精度を低下させるといった問題点があった。
In addition, when performing so-called multi-point distance measurement in which distance measurement can be performed in multiple areas using a field mask having a plurality of openings in the focus detection device shown in FIG. 9, the target light receiving element Unwanted light that has passed through other openings enters the column,
There was a problem that focus detection accuracy was reduced.

本発明は所謂像ずれ方式の焦点検出装置において予定結
像面における測距視野の木きさを容易に拡大することが
でき、又複数の測距視野を設けた場合でも受光素子列面
上における測距視野の開口部像が互いに重畳することが
なく、又受光素子列に不要光が入射することがなく高精
度な焦点検出が可能な焦点検出装置の提供を目的とする
The present invention makes it possible to easily expand the depth of the distance measurement field on the intended image forming plane in a so-called image shift type focus detection device, and even when a plurality of distance measurement fields are provided, It is an object of the present invention to provide a focus detection device capable of highly accurate focus detection without causing aperture images in a distance measurement field to overlap each other and without unnecessary light entering a light receiving element array.

(問題点を解決するための手段) 本発明の焦点検出装置は対物レンズの像面側に配置した
2次光学系により該対物レンズの瞳の異なる領域を通過
した光束を用いて被写体像に関する複数の光量分布を形
成し、該複数の光量分布の相対的な位置関係を複数の素
子より成る受光素子列を有する受光手段により求め、該
受光手段からの出力信号を用いて該対物レンズの合焦状
態を求める際、該2次光学系近傍には該受光素子列の素
子の並び方向と平行に1対の開口部を少なくとも1つ有
する絞りが設けられており、該2次光学系は1対のレン
ズを少なくとも1つ有しており、該1対のレンズはその
レンズ面頂点が該絞りの開口部中心に対して該受光素子
列の素子の並び方向と垂直方向に互″いに逆方向に所定
量ずらして配置されていることを特徴としている。
(Means for Solving the Problems) The focus detection device of the present invention uses a secondary optical system disposed on the image plane side of an objective lens to generate a plurality of images related to a subject image using a light flux that has passed through different regions of the pupil of the objective lens. A light intensity distribution is formed, the relative positional relationship of the plurality of light intensity distributions is determined by a light receiving means having a light receiving element array made up of a plurality of elements, and an output signal from the light receiving means is used to focus the objective lens. When determining the state, a diaphragm having at least one pair of apertures parallel to the direction in which the elements of the light receiving element row are arranged is provided near the secondary optical system; The lens has at least one lens, and the apexes of the lens surfaces of the pair of lenses are arranged in opposite directions perpendicular to the arrangement direction of the elements of the light-receiving element row with respect to the aperture center of the diaphragm. It is characterized by being shifted by a predetermined amount.

(実施例) 第1図は本発明の第1実施例の要部概略図、第2図は第
1図の一部分の説明図である。
(Embodiment) FIG. 1 is a schematic diagram of a main part of a first embodiment of the present invention, and FIG. 2 is an explanatory diagram of a portion of FIG. 1.

同図において1は対物レンズ、2は視野マスクであり、
測距視野に相当する開口部2aを有しており、対物レン
ズlの予定結像面近傍に配置されている。3はフィール
ドレンズであり予定結像面の近傍に配置されている。
In the figure, 1 is an objective lens, 2 is a field mask,
It has an aperture 2a corresponding to the distance measurement field of view, and is arranged near the intended imaging plane of the objective lens l. Reference numeral 3 denotes a field lens, which is arranged near the intended image plane.

6は絞りであり、対物レンズlの光軸りに対して対象に
設けられた2つの開口部6−1.6−2を有している。
Reference numeral 6 denotes a diaphragm, which has two openings 6-1 and 6-2 provided symmetrically with respect to the optical axis of the objective lens l.

4は2次光学系(2次結像レンズ)であり、2つのレン
ズ4−1.4−2を有している。
4 is a secondary optical system (secondary imaging lens), which has two lenses 4-1 and 4-2.

レンズ4−1.4−2はそのレンズ面頂点が絞り6の開
口部6−1.6−2の中心に対して顔量[1部8−1.
6−2の並び方向(後述する受光素r列5−1.5−2
の長手方向)と垂直方向でaいに逆方向に所定lずらし
て配置されている。
The apex of the lens surface of the lens 4-1.4-2 is located at a distance of 8-1.
6-2 arrangement direction (light receiving element r row 5-1, 5-2 to be described later)
They are arranged at a predetermined distance from each other in a direction perpendicular to the longitudinal direction of

5は受光手段であり前記二つのレンズ4−1.4−2に
対応してその後方に配置された2つの受光素子列5−1
.5−2を有している。受光素子列5−1.5−2はレ
ンズ4−1.4−2に対応させて互いに逆方向にずらし
て配置している。
5 is a light receiving means, and two light receiving element arrays 5-1 are arranged behind the two lenses 4-1 and 4-2.
.. 5-2. The light receiving element rows 5-1, 5-2 are arranged so as to correspond to the lenses 4-1, 4-2 and are shifted in opposite directions.

7は対物レンズ1の射出瞳であり、分割された2つのf
t4kd7−r、7−2により構成されている。
7 is the exit pupil of the objective lens 1, and the two divided f
It is composed of t4kd7-r and 7-2.

なお、フィールドレンズ3は開口部6−1゜6−2を射
出+17の領域7−1.7−2に結像する作用を有して
おり、6領fd7−1.7−2を透過した光束が受光素
子列5−1.5−2上に夫々被写体像に関する光量分布
を形成するようになっている。
Note that the field lens 3 has the function of focusing the aperture 6-1°6-2 on the area 7-1.7-2 of the exit +17, and the light transmitted through the 6th area fd7-1.7-2 The light beams form a light amount distribution related to the subject image on the light receiving element arrays 5-1 and 5-2, respectively.

本実施例において対物レンズlの焦点検出方法に関して
は第9図に示す従来例と略同様である。
In this embodiment, the method of detecting the focus of the objective lens l is substantially the same as that of the conventional example shown in FIG.

本実施例では絞り6の開口部6−1.8−2は受光素子
列5−1.5−2の長手方向と平行に設け、これに対し
て2次光学系4の2つのレンズ4−1.4−2をそのレ
ンズ面頂点が前述の如く互いに開口部6−1.6−2の
中心に対して逆方向にシフトするようにして配置してい
る。
In this embodiment, the aperture 6-1.8-2 of the diaphragm 6 is provided parallel to the longitudinal direction of the light-receiving element array 5-1.5-2. 1.4-2 are arranged so that the apexes of their lens surfaces are shifted in opposite directions relative to the center of the opening 6-1, 6-2, as described above.

そして第2図に示す通り、視野マスク2の開口部2aの
受光手段5面上における開口部像2a1.2a2が絞ワ
6の開口部6−1.8−2の並び方向と垂直方向に互い
に逆方向にシフトして結像するようにし開口部2aの長
手方向の寸法を艮くしたときの開口部像2al、2a2
が受光手段5面上で互いに重畳しないようにしている。
As shown in FIG. 2, the aperture images 2a1 and 2a2 of the aperture 2a of the field mask 2 on the surface of the light receiving means 5 are mutually perpendicular to the direction in which the apertures 6-1, 8-2 of the diaphragm 6 are arranged. Opening images 2al, 2a2 when the longitudinal dimension of the opening 2a is changed by shifting in the opposite direction and forming an image
are arranged so that they do not overlap each other on the surface of the light receiving means 5.

これにより視野マスク2の開口部2aの長手方向の寸法
を大きくして測距視野の拡大を図った測距を可能として
いる。
As a result, the longitudinal dimension of the opening 2a of the field mask 2 is increased to enable distance measurement with an enlarged distance measurement field of view.

第3図はこのときの2次光学系と絞りを通過し、受光手
段面上に導光される光束の光路な示す説明する為の模式
図である。
FIG. 3 is a schematic diagram for explaining the optical path of the light beam that passes through the secondary optical system and the diaphragm and is guided onto the light receiving means surface.

図中o、o’は物点、i、i゛は夫々物点0.0゛と共
役な像点、32は光軸りに対称な絞り、33は光軸りか
ら距離りだけレンズ面頂点がシフトしている凸のパワー
を持つレンズ、35は物点0に対する結像面でセンサー
面に相当する。レンズ33は校り32の直後に配置され
ている。
In the figure, o and o' are object points, i and i' are image points conjugate to the object point 0.0, respectively, 32 is a diaphragm that is symmetrical about the optical axis, and 33 is the vertex of the lens surface by the distance from the optical axis. The lens 35, which has a convex power and has shifted, is an imaging plane for object point 0 and corresponds to the sensor plane. The lens 33 is placed immediately after the calibration 32.

絞り32.レンズ33そしてセンサー35は第1図の絞
り6、レンズ4−1 (4−2)、そして受光素子列5
−1 (5−2>に各々対応している。
Aperture 32. The lens 33 and sensor 35 are the aperture 6, lens 4-1 (4-2), and light receiving element array 5 shown in FIG.
-1 (corresponding to 5-2>).

同図から像点iの光軸りかうの距離はh (a+b)/
a、像点i゛のそれはh(a’ +b” )/a′であ
り、像点iへの主光線及び伽点i゛への主光線の傾きは
夫々h (a+b)/ab、h(a’ +b’ )/a
’  b’ となる、これはl/。
From the same figure, the distance from the optical axis of image point i is h (a+b)/
a, that of image point i'' is h(a' + b'')/a', and the slopes of the chief ray to image point i and the principal ray to image point i'' are h (a+b)/ab, h( a'+b')/a
'b', which is l/.

+ l / b = l / a ’ + I / b
 ’ テJ!14 ;: ト’j L ルと同値である
。すなわち、レンズ33のレンズ面頂点位置が上方向に
シフトしていてもセンサー35而tでの像はデフォーカ
スによって1下方向にはずれないということを示してい
る。
+ l/b = l/a' + I/b
' Tae J! 14 ;: Equivalent to to'j L . In other words, even if the apex position of the lens surface of the lens 33 is shifted upward, the image at the sensor 35 will not shift downward due to defocus.

第4図はこのときのセンサー35面上から見たときのの
光束の集光状態を示す説明図である。
FIG. 4 is an explanatory diagram showing the convergence state of the light beam when viewed from above the surface of the sensor 35 at this time.

図中、点P、〜P4は対物レンズのデフォーカスによっ
てずれていくレンズ面頂′点を通ったと仮定される光線
を示し、光束のボケ状態は次第に大きくなりながらも上
下にはずれていかない様子を表わしている。
In the figure, points P and ~P4 indicate light rays that are assumed to have passed through the apex of the lens surface that shifts due to defocusing of the objective lens, and the blur state of the light flux gradually increases but does not shift upward or downward. It represents.

第5図は本発明の第2実施例の要部概略図である。FIG. 5 is a schematic diagram of main parts of a second embodiment of the present invention.

本実施例は視野マスク2に4つの開口部2a、2b、2
c、 2d H1l1口部2a、2bは一部が重複して
いる。)を設は所謂多点測距を行っている場合を示して
いる。
In this embodiment, the field mask 2 has four openings 2a, 2b, 2.
c, 2d H1l1 openings 2a and 2b partially overlap. ) indicates the case where so-called multi-point distance measurement is being performed.

4つの関口部28〜2dに対応して校り6は4つの開口
部6a〜6dを有し、2次光学系4は4つのレンズ48
〜4dを有し、受光手段も後述するように4対の受光素
子列を有するように構成している。
The calibration 6 has four openings 6a to 6d corresponding to the four entrances 28 to 2d, and the secondary optical system 4 has four lenses 48.
4d, and the light receiving means is also configured to have four pairs of light receiving element rows, as will be described later.

尚、対物レンズの焦点検出は各領域毎で前述の焦点検出
方法と同様な方法により行っている。
Note that the focus detection of the objective lens is performed for each region by a method similar to the focus detection method described above.

本実施例では2次光学系の2つのレンズ4c、4dをそ
のレンズ面頂点が視野マスク2の開口部28〜2dの並
び方向と垂直方向に対して互いに所定量シフトさせて配
置している。
In this embodiment, the two lenses 4c and 4d of the secondary optical system are arranged such that their lens surface vertices are shifted by a predetermined amount from each other in a direction perpendicular to the direction in which the openings 28 to 2d of the field mask 2 are arranged.

このとき他の2つのレンズ4a、4bは目的に応じて開
口部2a〜2dの並び方向にシフトさせ又はさせずに配
置している。同図ではシフトさせない場合を示している
At this time, the other two lenses 4a and 4b are arranged with or without being shifted in the direction in which the openings 2a to 2d are arranged, depending on the purpose. The figure shows a case where no shift is performed.

このように各要素を配置することにより複数の測距視野
を設けたときの受光素子列に他の悪影響を与える測距視
野からの不要光が入射しないようにしている。
By arranging each element in this manner, it is possible to prevent unnecessary light from entering the light receiving element array from the distance measurement field, which would otherwise have an adverse effect, when a plurality of distance measurement fields are provided.

第6図はこのときの受光手段5面上における視野マスク
2の開口部像の様子を示す説明図である。
FIG. 6 is an explanatory diagram showing the state of the aperture image of the field mask 2 on the surface of the light receiving means 5 at this time.

同図は例えば受光素子列5c3には視野マスク2の開口
部2cの開口部像2clに関する不要光が入射せず分離
している状態を示している。
The figure shows a state in which, for example, unnecessary light related to the aperture image 2cl of the aperture 2c of the field mask 2 does not enter the light receiving element array 5c3 and is separated.

尚、第5図において2つのレンズ4a、4bを互いにシ
フトさせたときは第6図に示す受光素子列5cl、5c
2.5R1,5R2,5L1゜5L2は互いに逆方向に
シフトさせて配置する必要がある。
In addition, when the two lenses 4a and 4b are shifted relative to each other in FIG. 5, the light receiving element arrays 5cl and 5c shown in FIG.
2.5R1, 5R2, 5L1°5L2 must be shifted in opposite directions and arranged.

第7図、第8図は第5.第6図に示す実施例のように2
つのレンズ4C14dを前述の如く互いにシフトさせな
いときの様子を示す要部概略図である。
Figures 7 and 8 are 5. As in the embodiment shown in FIG.
FIG. 4 is a schematic diagram of main parts showing a situation when the two lenses 4C14d are not shifted relative to each other as described above.

第7図に示すように視野マスク2の中央の関口部2a 
(2b)から絞り6の開口6cを経て受光手段5面上に
入射する光束による開口部像2al上には視野マスク2
の他の開口部2cから絞り6の開口部6dを経た不要光
による視野マスク2の開口部像2clが重なってくる。
As shown in FIG.
(2b), a field mask 2 is formed on the aperture image 2al by the light beam incident on the surface of the light receiving means 5 through the aperture 6c of the diaphragm 6.
The aperture images 2cl of the field mask 2 formed by unnecessary light passing through the aperture 6d of the diaphragm 6 from the other aperture 2c overlap.

第8図はこのときの受光手段5面上における状態を第6
図と同様に示した説明図である。
Figure 8 shows the state on the surface of the light receiving means 5 at this time.
It is an explanatory diagram shown similarly to a figure.

同図においては4つのレンズ4a〜4dにより視野マス
ク2の開口部28〜2dが受光手段5面上に投影されて
いる0図中破線で示す開口部像は第7図の絞り6の開口
部6dを通過したものに相当している。
In the figure, the apertures 28 to 2d of the field mask 2 are projected onto the light receiving means 5 by the four lenses 4a to 4d. This corresponds to that which has passed through 6d.

同図に示すように受光素子列5c3.5c4に入射する
光束は本来の中央の開口部2aからの光束の他に周辺の
開口部2Cからの光束が混じってくる。その結果、受光
素子列5c3.5c4を用いて焦点検出すると被写体像
の光量分布に不要光が混入している為、誤測距や焦点検
出精度を低下させる等の原因となってくる。
As shown in the figure, the light beams incident on the light receiving element rows 5c3, 5c4 are mixed with the light beams from the peripheral apertures 2C in addition to the light beams originally from the central aperture 2a. As a result, when focus is detected using the light-receiving element rows 5c3, 5c4, unnecessary light is mixed in the light amount distribution of the subject image, which causes erroneous distance measurement and a decrease in focus detection accuracy.

これに対して本発明によれば前述の如く各要素を設定す
ることにより、これらの問題点を解決し、高精度な焦点
検出を可能としている。
On the other hand, according to the present invention, by setting each element as described above, these problems are solved and highly accurate focus detection is made possible.

(発明の効果) 本発明によれば像ずれ方式を用いた焦点検出装置におい
て前述のように2次光学系の2つのレンズを互いに所定
方向にシフトして配置することにより測距視野の大きさ
を用意に拡大することが出来、又複数の測距視野を設け
た場合でも対象とする受光素子列に不要光が入射するこ
とがなく高精度な焦点検出を可能とした焦点検出装置を
達成することができる。
(Effects of the Invention) According to the present invention, in a focus detection device using an image shift method, the size of the distance measurement field can be adjusted by arranging the two lenses of the secondary optical system shifted in a predetermined direction relative to each other as described above. To achieve a focus detection device that can easily enlarge the field of view, and that enables highly accurate focus detection without unnecessary light entering the target light receiving element array even when a plurality of distance measuring fields are provided. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の要部概略図、第2図、第
3図は第1図の一部分の説明図、第4図は第3図の受光
手段面上における光束の集光状態を示す説明図、第5図
は本発明の第2実施例の要部概略図、第6図は第5図の
受光手段面上の説明図、第7、第8図は本発明の詳細な
説明する為の概略図、第9、第10図は従来の焦点検出
装置の要部概略図である。 図中、1,61は対物レンズ、2,62は視野マスク、
28〜2d、62aは開口部、3,63はフィールドレ
ンズ、4.64は2次光学系、5.65は受光手段、6
.66は絞り、4−114−2.64−1.64−2.
4a 〜4dけレンズ、6−1.6−2.66−1,8
6−2.6a〜6dは開口部、7は瞳、5−1.5−2
.65−1.65−2は受光素子列、である。
FIG. 1 is a schematic diagram of the main part of the first embodiment of the present invention, FIGS. 2 and 3 are explanatory diagrams of a part of FIG. 1, and FIG. 5 is a schematic view of the main part of the second embodiment of the present invention, FIG. 6 is an explanatory diagram of the surface of the light receiving means in FIG. 5, and FIGS. FIGS. 9 and 10, which are schematic diagrams for detailed explanation, are schematic diagrams of main parts of a conventional focus detection device. In the figure, 1, 61 is an objective lens, 2, 62 is a field mask,
28 to 2d, 62a are apertures, 3 and 63 are field lenses, 4.64 is a secondary optical system, 5.65 is a light receiving means, 6
.. 66 is the aperture, 4-114-2.64-1.64-2.
4a ~ 4d lenses, 6-1.6-2.66-1,8
6-2.6a to 6d are openings, 7 is pupils, 5-1.5-2
.. 65-1.65-2 is a light receiving element array.

Claims (2)

【特許請求の範囲】[Claims] (1)対物レンズの像面側に配置した2次光学系により
該対物レンズの瞳の異なる領域を通過した光束を用いて
被写体像に関する複数の光量分布を形成し、該複数の光
量分布の相対的な位置関係を複数の素子より成る受光素
子列を有する受光手段により求め、該受光手段からの出
力信号を用いて該対物レンズの合焦状態を求める際、該
2次光学系近傍には該受光素子列の素子の並び方向と平
行に1対の開口部を少なくとも1つ有する絞りが設けら
れており、該2次光学系は1対のレンズを少なくとも1
つ有しており、該1対のレンズはそのレンズ面頂点が該
絞りの開口部中心に対して該受光素子列の素子の並び方
向と垂直方向に互いに逆方向に所定量ずらして配置され
ていることを特徴とする焦点検出装置。
(1) A secondary optical system placed on the image plane side of the objective lens uses the light beams that have passed through different areas of the pupil of the objective lens to form multiple light intensity distributions regarding the subject image, and the relative When determining the positional relationship of the objective lens by a light receiving means having a light receiving element row made up of a plurality of elements and using the output signal from the light receiving means to determine the in-focus state of the objective lens, there is a A diaphragm having at least one pair of apertures is provided parallel to the direction in which the elements of the light receiving element array are arranged, and the secondary optical system includes at least one pair of lenses.
The pair of lenses are arranged such that their lens surface vertices are shifted by a predetermined amount in opposite directions from the center of the aperture of the diaphragm in a direction perpendicular to the arrangement direction of the elements of the light-receiving element array. A focus detection device characterized by:
(2)前記1対の受光素子列は素子の並び方向と垂直方
向で互いに逆方向に所定量ずらして配置されていること
を特徴とする請求項1記載の焦点検出装置。
(2) The focus detection device according to claim 1, wherein the pair of light-receiving element rows are arranged so as to be shifted by a predetermined amount in opposite directions to each other in a direction perpendicular to the direction in which the elements are arranged.
JP7625689A 1989-03-28 1989-03-28 Focus detector Pending JPH02253222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7625689A JPH02253222A (en) 1989-03-28 1989-03-28 Focus detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7625689A JPH02253222A (en) 1989-03-28 1989-03-28 Focus detector

Publications (1)

Publication Number Publication Date
JPH02253222A true JPH02253222A (en) 1990-10-12

Family

ID=13600126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7625689A Pending JPH02253222A (en) 1989-03-28 1989-03-28 Focus detector

Country Status (1)

Country Link
JP (1) JPH02253222A (en)

Similar Documents

Publication Publication Date Title
JPH0239763B2 (en)
JPS6318166B2 (en)
JPS6333683B2 (en)
JPH04348307A (en) Focus detector
JPH0250115A (en) Optical device for focus detection
JP2643326B2 (en) Single-lens reflex camera with focus detection device
JPS62138808A (en) Focus detecting device
JPH02253222A (en) Focus detector
JP3232692B2 (en) Focus detection device
JP3134429B2 (en) Focus detection device
JPH0667088A (en) Focus detecting device
JPH01266503A (en) Focus detecting device
JP3313769B2 (en) Focus detection device
JP2924367B2 (en) Focus detection device
JP2757373B2 (en) Focus detection device
JP2600823B2 (en) Focus detection device
JP3912891B2 (en) Focus detection device and optical instrument using the same
JP4323592B2 (en) Focus detection device
JPS6278518A (en) Focus detecting device
JPH0360405B2 (en)
JPH03113408A (en) Focus detecting device
JPS59195607A (en) Focusing detector
JPS60125814A (en) Focusing detector
JPH11352396A (en) Focus detector and optical equipment using the same
JPS58221817A (en) Focusing detector