JPH02252246A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH02252246A
JPH02252246A JP7423089A JP7423089A JPH02252246A JP H02252246 A JPH02252246 A JP H02252246A JP 7423089 A JP7423089 A JP 7423089A JP 7423089 A JP7423089 A JP 7423089A JP H02252246 A JPH02252246 A JP H02252246A
Authority
JP
Japan
Prior art keywords
temperature
silicon
heat treatment
forming
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7423089A
Other languages
Japanese (ja)
Inventor
Hideaki Oka
秀明 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP7423089A priority Critical patent/JPH02252246A/en
Priority to SG9602101A priority patent/SG99827A1/en
Priority to DE69033736T priority patent/DE69033736T2/en
Priority to EP90102710A priority patent/EP0383230B1/en
Priority to DE69030775T priority patent/DE69030775T2/en
Priority to DE69032773T priority patent/DE69032773T2/en
Priority to SG9601960A priority patent/SG108807A1/en
Priority to EP93118614A priority patent/EP0598410B1/en
Priority to EP93118613A priority patent/EP0598409B1/en
Priority to EP93118615A priority patent/EP0608503B1/en
Priority to DE69030822T priority patent/DE69030822T2/en
Publication of JPH02252246A publication Critical patent/JPH02252246A/en
Priority to US07/790,107 priority patent/US6235563B1/en
Priority to HK98115536A priority patent/HK1014293A1/en
Priority to US09/568,917 priority patent/US6403497B1/en
Priority to US10/143,102 priority patent/US20020132452A1/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a polycrystalline silicon film with large grain diameter by a simple process by a method wherein a semiconductor layer whose main body is silicon is formed on insulative amorphous material, and the temperature is raised up to a value for heat treatment by spending a specified time. CONSTITUTION:By LPCVD method, a silicon layer 102 is formed on insulative amorphous material, at a temperature of 500-560 deg.C. The layer 102 is heat-treated in an inert gas atmosphere like nitrogen, at 550-650 deg.C for 2-10 hours, thereby forming a polycrystalline silicon 103. By thermally oxidizing the layer 103 at a gate oxidation temperature of 1000-1200 deg.C, a gate oxide film 104 is formed. In this case, crystal in a region where crystallization is not completed is damaged by rapid temperature rise, so that the crystallizability after gate oxidation becomes high when the temperature rise speed is smaller than 20 deg.C/min. After that, a gate electrode 105, a source-drain region 106, and an interlayer insulating film 107 are arranged, thereby forming a TFT. Hence a semiconductor element of high performance can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体装置の製造方法に係わり、特に、絶縁
性非晶質材料上に半導体素子を形成する製造方法1こ関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a semiconductor element on an insulating amorphous material.

[従来の技術] ガラス、石英等の絶縁性非晶質基板や、5i02等の絶
縁性非晶質層上に、高性能な半導体装置を形成する試み
が成されている。
[Prior Art] Attempts have been made to form a high-performance semiconductor device on an insulating amorphous substrate such as glass or quartz, or an insulating amorphous layer such as 5i02.

近年、大型で高解像度の液晶表示パネルや、高速で高解
像度の密着型イメージセンサや三秋元IC等へのニーズ
が高まるにつれて、上述のような絶縁性非晶質材料上の
高性能な半導体素子の実現が待望されている。
In recent years, as the need for large, high-resolution liquid crystal display panels, high-speed, high-resolution contact-type image sensors, Miakimoto ICs, etc. has increased, high-performance semiconductor devices on insulating amorphous materials such as those mentioned above are becoming increasingly popular. The realization of this is eagerly awaited.

絶縁性非晶質材料上に薄膜トランジスタ(TPT)を形
成する場合を例にとると、 (1)プラズマCVD法等
で形成した非晶質シリコンを素子材としたTPT、  
(2)CVD法等で形成した多結晶シリコンを素子材と
したT P T、  (3)溶融再結晶化法等で形成し
た単結晶シリコンを素子材としたTPT等が検討されて
いる。
Taking the case of forming a thin film transistor (TPT) on an insulating amorphous material as an example, (1) TPT whose element material is amorphous silicon formed by plasma CVD method, etc.;
(2) TPT whose element material is polycrystalline silicon formed by CVD method or the like; (3) TPT whose element material is single crystal silicon formed by melt recrystallization method or the like are being considered.

ところが、これらのTPTのうち非晶質シリコンもしく
は多結晶シリコンを素子材としたTPTは、単結晶シリ
コンを素子材とした場合に比べてTPTの電界効果移動
度が大幅に低く(非晶質シリコンTFT  <  1c
m2/V−sec  、  多結晶シリコンTFT  
〜10cm2/V−see)、高性能なTPTの実現は
困難であった。
However, among these TPTs, TPTs made of amorphous silicon or polycrystalline silicon have significantly lower field-effect mobilities than those made of single-crystal silicon (amorphous silicon TFT < 1c
m2/V-sec, polycrystalline silicon TFT
~10 cm2/V-see), it was difficult to realize a high-performance TPT.

一方、レーザビーム等による溶融再結晶化法は、未だに
十分に完成した技術とは言えず、また、液晶表示パネル
の様に、大面積に素子を形成する必要がある場合には技
術的困難が特に大きい。
On the other hand, the melting and recrystallization method using laser beams, etc. is still not a fully developed technology, and it also poses technical difficulties when it is necessary to form elements over a large area, such as in liquid crystal display panels. Especially big.

[発明が解決しようとする課題] そこで、絶縁性非晶質材料上に高性能な半導体素子を形
成する簡便かつ実用的な方法として、大粒径の多結晶シ
リコンを固相成長させる方法が注目され、研究が進めら
れている。 (Thin 5olid Films 1
00 (1983) p、227 、 JJAP Vo
l、25 No、2 (1986) l)、L121) しかし、従来の技術では、多結晶シリコンをCVD法で
形成し、Si”をイオンイングラして該多結晶シリコン
を非晶質化した後、600°C程度の熱処理を100時
間近く行っていた。そのため、高価なイオン注入装置を
必要としたほか、熱処理時間も極めて長いという欠点が
あった。
[Problem to be solved by the invention] Therefore, a method of solid-phase growth of large-grain polycrystalline silicon has attracted attention as a simple and practical method for forming high-performance semiconductor elements on insulating amorphous materials. and research is underway. (Thin 5 solid films 1
00 (1983) p, 227, JJAP Vo
1, 25 No. 2 (1986) 1), L121) However, in the conventional technology, polycrystalline silicon is formed by a CVD method, and after the polycrystalline silicon is made amorphous by ion implantation of Si'', Heat treatment at about 600° C. was performed for nearly 100 hours.Therefore, in addition to requiring an expensive ion implantation device, the heat treatment time was also extremely long.

そこで、本発明はより簡便かつ実用的な方法で、大粒径
で結晶化率が高い多結晶シリコンを形成する製造方法を
提供するものである。
Therefore, the present invention provides a manufacturing method for forming polycrystalline silicon with large grain size and high crystallinity using a simpler and more practical method.

[課題を解決するための手段] 本発明の半導体装置の製造方法は、 (a)絶縁性非晶質材料上にシリコンを主体とする半導
体層を形成する工程、 (b)所定の熱処理温度まで一定時間をかけて昇温する
工程を少なくとも有することを特徴とする。
[Means for Solving the Problems] The method for manufacturing a semiconductor device of the present invention includes: (a) forming a semiconductor layer mainly composed of silicon on an insulating amorphous material; (b) heating to a predetermined heat treatment temperature. The method is characterized in that it includes at least a step of increasing the temperature over a certain period of time.

更に、本発明の半導体装置の製造方法は、(a)絶縁性
非晶質材料上にシリコンを主体とする半導体層を形成す
る工程、 (b)該半導体層を熱処理等により結晶成長させる工程
、 (c)工程(b)より高い所定の熱処理温度で該半導体
層を処理する工程を少なくとも有することを特徴とする
Further, the method for manufacturing a semiconductor device of the present invention includes: (a) forming a semiconductor layer mainly composed of silicon on an insulating amorphous material; (b) growing crystals of the semiconductor layer by heat treatment or the like; (c) The method is characterized by comprising at least a step of treating the semiconductor layer at a predetermined heat treatment temperature higher than that of step (b).

[実施例] 第1図は、本発明の実施例における半導体装置の製造工
程図の一例である。尚、第1図では半導体素子として薄
膜トランジスタ(TPT)を形成する場合を、例として
いる。
[Example] FIG. 1 is an example of a manufacturing process diagram of a semiconductor device in an example of the present invention. Note that FIG. 1 takes as an example a case where a thin film transistor (TPT) is formed as a semiconductor element.

第1図において、 (a)は、ガラス、石英等の絶縁性
非晶質基板、もしくはS i 02等の絶縁性非晶質材
料層等の絶縁性非晶質材料101上にシリコンN102
を形成する工程である。成膜条件の一例としテハ、LP
CVD法で500℃〜560°C程度で膜厚100人〜
2000人程度のシリコン膜、を形成する等の方法があ
る。ただし、成膜方法はこれに限定されるものではない
In FIG. 1, (a) shows silicon N102 on an insulating amorphous material 101 such as an insulating amorphous substrate such as glass or quartz, or an insulating amorphous material layer such as Si02.
This is the process of forming. As an example of film forming conditions, Teha, LP
Film thickness of 100~ at about 500℃~560℃ using CVD method
There are methods such as forming a silicon film of about 2,000 layers. However, the film forming method is not limited to this.

(b)は、該シリコン層102を熱処理等により結晶成
長させる工程である。熱処理条件は、工程(a)のシリ
コン層の成膜方法によってその最j!I条件が異なるが
、550℃〜650°C程度で2〜10時間程度窒素も
しくはAr等の不活性ガス雰囲気中で熱処理することで
多結晶シリコQJW103が形成される。
(b) is a step of growing crystals of the silicon layer 102 by heat treatment or the like. The heat treatment conditions vary depending on the method of forming the silicon layer in step (a). Polycrystalline silicon QJW 103 is formed by heat treatment at about 550° C. to 650° C. for about 2 to 10 hours in an inert gas atmosphere such as nitrogen or Ar, although the I conditions are different.

(c)は、該多結晶シリコン[103を熱酸化法によっ
て酸化し、ゲート絶縁膜104を形成する工程である。
(c) is a step of oxidizing the polycrystalline silicon [103] by a thermal oxidation method to form a gate insulating film 104.

ゲート酸化温度は1000℃〜1200℃程度である。The gate oxidation temperature is about 1000°C to 1200°C.

多結晶シリコン層103は、工程(b)で同相成長法で
結晶成長させたものであるが、その結晶化率は必ずしも
高くない。特に、LPCV、D法で500°C〜560
°C程度の比較的低温で形成したシリコン膜(非晶質シ
リコン、若しくは非晶質相中に微少な結晶領域が存在す
る微結晶シリコンになっている。)を熱処理で固相成長
させた場合は、その結晶化率は、50%〜70%程度と
低い。その為、該多結晶シリコン層を熱酸化法で酸化す
る場合に、1000°0〜1200℃程度の高温まで短
時間に急激に昇温すると、50%〜30%程度残ってい
る未結晶化領域の結晶性が損なわれることが、我々の検
討の結果明らかとなった。
Although the polycrystalline silicon layer 103 is crystal-grown by the in-phase growth method in step (b), its crystallization rate is not necessarily high. In particular, 500°C to 560°C with LPCV and D method.
When a silicon film (amorphous silicon or microcrystalline silicon in which a minute crystalline region exists in an amorphous phase) formed at a relatively low temperature of about °C is grown in solid phase by heat treatment. The crystallization rate is as low as about 50% to 70%. Therefore, when the polycrystalline silicon layer is oxidized by a thermal oxidation method, if the temperature is rapidly raised to a high temperature of about 1000°C to 1200°C, about 50% to 30% of the uncrystallized region remains. Our investigation revealed that the crystallinity of .

現在のところ明確な因果関係は明らかではないが、昇温
か急激な場合は、 (1)未結晶化領域で多数の結晶層が発生し、微細な結
晶粒が多数成長する。
Although there is currently no clear cause-and-effect relationship, when the temperature rises rapidly, (1) many crystal layers are generated in the uncrystallized region, and many fine crystal grains grow.

(2)昇温〜熱酸化過程中に進行する未結晶領域の結晶
化があまり進まない。
(2) Crystallization of the non-crystalline region that progresses during the temperature rising to thermal oxidation process does not progress very much.

等の原因が考えられる。そこで、我々は、この様な間頭
を解決する手段として、1000°C〜1200°C程
度の熱酸化温度まで昇温する際の昇温速度及び昇温方法
を制御することで、多結晶シリコン層の結晶性を大幅に
向上させる方法を見いだした。
Possible causes include: Therefore, as a means to solve this problem, we have developed polycrystalline silicon by controlling the heating rate and method when heating it to a thermal oxidation temperature of about 1000°C to 1200°C. We have found a way to significantly improve the crystallinity of the layer.

さらに、LPCVD法で形成した膜の成膜温度とゲート
酸化時の昇温方法にも重要な相関があることを見いだし
た。即ち、LPCVD法で高温(例えば、580℃〜6
10℃程度)で形成したシリコン層と、低温(例えば、
500°C〜550℃程度)で形成したシリコン層を比
べると、ゲート酸化温度までの昇温が急激な場合は、低
温で形成したシリコン層の方が結晶化率が低く、TPT
の電界効果移動度も小さかったが、本発明の昇温方法を
採用した場合は、逆に低温で形成したシリコン層の方が
結晶粒径が大きく、結晶化度も大きく、TPTの電界効
果移動度も大きかった。尚、これラノ値は、LPCVD
法で580℃〜610℃程度の高温で形成した膜では得
られない値であった。
Furthermore, it has been found that there is an important correlation between the film formation temperature of the film formed by the LPCVD method and the temperature raising method during gate oxidation. That is, high temperature (for example, 580 ° C to 6
A silicon layer formed at a temperature of about 10℃) and a silicon layer formed at a low temperature (for example,
When comparing silicon layers formed at a temperature of about 500°C to 550°C, if the temperature rises rapidly to the gate oxidation temperature, the silicon layer formed at a lower temperature has a lower crystallinity, and TPT
The field effect mobility of TPT was also small, but when the temperature raising method of the present invention was adopted, on the contrary, the silicon layer formed at a low temperature had a larger crystal grain size and a higher crystallinity, and the field effect mobility of TPT was lower. It was also big. In addition, this Rano value is LPCVD
This was a value that could not be obtained with a film formed at a high temperature of about 580° C. to 610° C. by the method.

これは現在のところ以下に述べる理由によると考えられ
る。(1)低温で形成した膜の方は、非晶質シリコンも
しくは非晶質相中に微少な結晶領域が存在する微結晶シ
リコンになっている。従って、高温で形成した膜と比べ
て、固相成長時の多結晶核発生密度が低く、大粒径の多
結晶シリコンを固相成長によって形成できる。 (2)
ただし、低温で形成した膜は、固相成長後の非晶質相の
割合が多く、ゲート酸化時の急激な昇温によって、前述
の理由で結晶性が損なわれていた。と考えられる。従っ
て、本発明はCVD法で形成した膜に限らず、蒸着法、
プラズマCVD法、EB蒸着法、MBE法、スパッタ法
、CVD法等で非晶質シリコンもしくは微結晶シリコン
を成膜した場合や、微結晶シリコンもしくは多結晶シリ
コン等をプラズマCVD法、CVD法、蒸着法、EB蒸
着法、MBE法、スパッタ法等で形成後、〜Si、Ar
This is currently considered to be due to the reasons described below. (1) Films formed at low temperatures are amorphous silicon or microcrystalline silicon in which minute crystal regions exist in an amorphous phase. Therefore, compared to a film formed at a high temperature, the density of polycrystalline nucleation during solid phase growth is lower, and polycrystalline silicon with large grain size can be formed by solid phase growth. (2)
However, films formed at low temperatures have a high proportion of amorphous phase after solid-phase growth, and the rapid temperature rise during gate oxidation impairs crystallinity for the reasons mentioned above. it is conceivable that. Therefore, the present invention is not limited to films formed by the CVD method, but also includes evaporation methods,
When amorphous silicon or microcrystalline silicon is formed by plasma CVD method, EB evaporation method, MBE method, sputtering method, CVD method, etc., or when microcrystalline silicon or polycrystalline silicon is formed by plasma CVD method, CVD method, vapor deposition method, etc. ~Si, Ar
.

B、  P、  He、  Ne、  Kr、  H等
の元素をイオン打ち込みして、該微結晶シリコンもしく
は多結晶シリコン等を完全もしくは一部を非晶質化する
等の方法で形成した場合にも有効である。中でも特に、
as−depoの膜の非晶質相の割合が高く、多結晶核
発生密度の低い(即ち、固相成長法で大粒径の多結晶シ
リコンを形成し易い)膜はど、本発明はその効果が大き
い。
It is also effective when formed by ion implantation of elements such as B, P, He, Ne, Kr, H, etc. to completely or partially amorphize the microcrystalline silicon or polycrystalline silicon, etc. It is. In particular,
As-depo films have a high ratio of amorphous phase and a low polycrystalline nucleation density (that is, it is easy to form large-grain polycrystalline silicon by solid phase growth), and the present invention Great effect.

続いて、本発明における熱処理条件特に所定の温度まで
の昇温方法について述べる。第2図は本発明の実施例に
おける昇温方法の模式図の一例である。第2図において
、 (a)は所定の温度(T1)まで所定の昇温速度で
昇温して、所定の温度(T+)で、例えばアルゴン、窒
素等不活性ガス雰囲気中でアニールし、シリコン層1θ
2を固相成長させて多結晶シリコン層103を形成し、
続いて、所定のゲート酸化温度(T2)まで所定の昇温
速度で昇温してゲート酸化を行う場合を示す。T1から
T2への昇温速度は、前述の通り20℃/分程度(望ま
しくは5℃/分)より遅い方が1、ゲート酸化後の結晶
化率が高く望ましい。また、昇温の途中でアルゴン、窒
素等の不活性ガス雰囲気から酸素、水蒸気、塩化水素等
のうちの少なくとも1種以上を含む雰囲気に切り換え酸
化を進行させながら昇温させる方法もある。 (この方
法は、以下に述べる昇温方法にも適用できる。)尚、昇
温速度は常に一定である必要はなく、上述の値の範囲で
変動しても無論構わない。また、温度T1で熱処理した
後、−旦試料を取り出して、再び所定の昇温速度でT2
まで昇温する方法もある。 (ただし、連続的に熱処理
した方が、時間的に有利であるほか、結晶性も優れてい
た。) 第2図(b)は所定の温度(T1)まで所定の昇温速度
で昇温して、所定の温度(T1)でアニールし、シリコ
ン層102を固相成長させて多結晶シリコン層103を
形成し、続いて、所定のゲート酸化温度(T2)まで高
温になるほど昇温速度を小さくして昇温し、ゲート酸化
を行う場合を示す。特に、温度が800°C〜1000
°C程度を越えた領域では昇温速度を5℃/分より小さ
くした方が望ましい。また、逆に700°C程度以下で
は昇温速度を10℃/分より大きくしてもよい。
Next, the heat treatment conditions in the present invention, particularly the method of raising the temperature to a predetermined temperature, will be described. FIG. 2 is an example of a schematic diagram of a temperature raising method in an embodiment of the present invention. In Fig. 2, (a) is silicon which is heated to a predetermined temperature (T1) at a predetermined temperature increase rate and then annealed at a predetermined temperature (T+) in an inert gas atmosphere such as argon or nitrogen. layer 1θ
2 is grown in a solid phase to form a polycrystalline silicon layer 103,
Next, a case will be shown in which gate oxidation is performed by increasing the temperature at a predetermined temperature increase rate to a predetermined gate oxidation temperature (T2). As mentioned above, it is preferable that the temperature increase rate from T1 to T2 is slower than about 20° C./min (preferably 5° C./min) because the crystallization rate after gate oxidation is high. There is also a method in which the atmosphere is switched from an inert gas atmosphere such as argon or nitrogen to an atmosphere containing at least one of oxygen, water vapor, hydrogen chloride, etc. during the temperature increase, and the temperature is increased while oxidation progresses. (This method can also be applied to the heating method described below.) Note that the heating rate does not always need to be constant, and may of course vary within the above-mentioned value range. In addition, after heat treatment at temperature T1, the sample was taken out once again, and the temperature was increased again at the predetermined heating rate to T2.
There is also a way to raise the temperature. (However, continuous heat treatment was more advantageous in terms of time and also had better crystallinity.) Figure 2 (b) shows that the temperature was raised at a predetermined rate to a predetermined temperature (T1). Then, the silicon layer 102 is annealed at a predetermined temperature (T1) to form a polycrystalline silicon layer 103 by solid-phase growth, and then the temperature increase rate is reduced as the temperature increases to a predetermined gate oxidation temperature (T2). In this example, the gate oxidation is performed by increasing the temperature and performing gate oxidation. In particular, the temperature is between 800°C and 1000°C.
In the region where the temperature exceeds about .degree. C., it is preferable to set the temperature increase rate to less than 5.degree. C./min. On the other hand, at temperatures below about 700°C, the temperature increase rate may be set higher than 10°C/min.

第2図(c)は所定の温度(T+)まで所定の昇温速度
で昇温しで、所定の温度(T+)でアニールし、シリコ
ンM102を固相成長させて多結晶シリコン層103を
形成し、続いて、所定の温度(Ta)まで所定の昇温速
度で昇温し、一定時間保持した後、所定のゲート酸化温
度(T3)まで所定の昇温速度で昇温するを場合を示す
。ゲート酸化温度(T3)より低い温度(T2)で所定
時間(例えば10分〜1時間程度)保持することで、結
晶性を損なわずに、結晶化率を高めることが出来る。従
って、T2で所定時間保持した後でゲート酸化温度まで
昇温する際は昇温速度を早くしても欠陥の発生は起こり
難い。T2は700°C〜900℃程度が望ましい。尚
、所定の温度(T2)は一定に保つ必要はない。例えば
5℃/分よりも遅い昇温速度でゆっくり昇温させてもよ
い。また所定の温度に保持する温度(T2)は複数あっ
てもよい。例えば700°C程度で一旦保持した後で8
00°C程度で再ガ保持する等の方法もあり、より膜中
の欠陥が低減される効果がある。
In FIG. 2(c), the temperature is raised to a predetermined temperature (T+) at a predetermined temperature increase rate, and then annealed at a predetermined temperature (T+) to grow silicon M102 in solid phase to form a polycrystalline silicon layer 103. Then, the temperature is raised to a predetermined temperature (Ta) at a predetermined temperature increase rate, held for a certain period of time, and then the temperature is raised to a predetermined gate oxidation temperature (T3) at a predetermined temperature increase rate. . By holding the temperature (T2) lower than the gate oxidation temperature (T3) for a predetermined period of time (for example, about 10 minutes to 1 hour), the crystallization rate can be increased without impairing the crystallinity. Therefore, when the temperature is raised to the gate oxidation temperature after being maintained at T2 for a predetermined time, defects are unlikely to occur even if the temperature rise rate is increased. T2 is preferably about 700°C to 900°C. Note that it is not necessary to keep the predetermined temperature (T2) constant. For example, the temperature may be increased slowly at a temperature increase rate slower than 5° C./min. Further, there may be a plurality of temperatures (T2) to be maintained at a predetermined temperature. For example, after being held at about 700°C,
There is also a method of re-holding at about 00°C, which is effective in further reducing defects in the film.

第2図(d)は、所定のゲート酸化温度(T I)まで
所定の昇温速度で昇温してゲート酸化を行う場合であり
、所定の温度に保持して同相成長を行う段階を特に設け
ずに昇温しつつ同相成長を進行させる場合であり、処理
時間の短縮ができる。T+への昇温速度は、昇温しつつ
固相成長を進めるため、5〜10℃/分(望ましくは2
℃/分)より遅い方が、結晶化率が高く望ましい。尚、
昇温速度は常に一定である必要はなく、上述の値の範囲
で変動しても無論構わない。
FIG. 2(d) shows the case where gate oxidation is performed by raising the temperature at a predetermined rate to a predetermined gate oxidation temperature (T I), and the stage where in-phase growth is performed while maintaining the predetermined temperature is particularly This is a case in which in-phase growth is allowed to proceed while raising the temperature without providing the same, and the processing time can be shortened. The temperature increase rate to T+ is 5 to 10℃/min (preferably 2
The slower the crystallization rate (°C/min), the higher the crystallization rate, which is desirable. still,
The temperature increase rate does not always need to be constant, and may of course vary within the above-mentioned value range.

第2図(e)は、所定のゲート酸化温度(T+)まで、
高温になるほど昇温速度を小さくして昇温し、ゲート酸
化を行う場合を示す。特に、温度が700°C〜100
0°C程度を越えた領域では昇温速度を5℃/分より小
さくした方が、多結晶シリコンの結晶性が改善され望ま
しい。また逆に温度が450°C以下の領域では昇温速
度を40’C/分より大きくしても多結晶シリコンの結
晶性に影響はほとんどなく、昇温時間の短縮につながる
。500°C〜700°C程度の領域では、同相成長が
進行するため、5℃/分(望ましくは2℃/分)より昇
温速度を小さくした方が望ましい。
FIG. 2(e) shows that up to a predetermined gate oxidation temperature (T+),
A case is shown in which gate oxidation is performed by increasing the temperature at a lower temperature increase rate as the temperature increases. Especially when the temperature is between 700°C and 100°C.
In the region where the temperature exceeds about 0°C, it is preferable to set the temperature increase rate to less than 5°C/min because this improves the crystallinity of polycrystalline silicon. On the other hand, in a region where the temperature is 450° C. or lower, even if the heating rate is increased to more than 40'C/min, the crystallinity of polycrystalline silicon is hardly affected, leading to a reduction in the heating time. In the region of about 500°C to 700°C, in-phase growth progresses, so it is preferable to set the temperature increase rate lower than 5°C/min (preferably 2°C/min).

尚、第2図(a)〜(e)の内の複数を組み合わせて用
いることで、より欠陥の発生を抑制し、結晶性及び結晶
化率を向上させることも可能である。また、第2図(a
)〜(e)は本実施例の一例であり、本発明はこれに限
定されるものではない。
Note that by using a combination of a plurality of materials shown in FIGS. 2(a) to 2(e), it is possible to further suppress the occurrence of defects and improve crystallinity and crystallization rate. In addition, Fig. 2 (a
) to (e) are examples of the present embodiment, and the present invention is not limited thereto.

第1図(d)は、半導体素子を形成する工程である。尚
、第1図(d)では、半導体素子としてTPTを形成す
る場合を例としている。図において、104はゲート絶
縁膜、105はゲート電極、106はソース・ドレイン
領域、107は眉間絶縁膜、108はコンタクト穴、1
09は配線を示す。TPT形成法の一例としては、ゲー
ト電極を形成後、ソース・ドレイン領域をイオン注入法
、熱拡散法、プラズマドーピング法等で形成し、眉間絶
縁膜をCVD法、スパッタ法、プラズマCVD法等でJ
f5成する。さらに、該眉間絶縁膜にコンタクト穴を開
け、配線を形成することでTPTが形成される。
FIG. 1(d) shows a step of forming a semiconductor element. Note that FIG. 1(d) takes as an example a case where a TPT is formed as a semiconductor element. In the figure, 104 is a gate insulating film, 105 is a gate electrode, 106 is a source/drain region, 107 is an insulating film between the eyebrows, 108 is a contact hole, 1
09 indicates wiring. As an example of the TPT formation method, after forming the gate electrode, the source/drain regions are formed by ion implantation, thermal diffusion, plasma doping, etc., and the glabella insulating film is formed by CVD, sputtering, plasma CVD, etc. J
f5 is formed. Furthermore, a TPT is formed by making a contact hole in the glabella insulating film and forming wiring.

尚、本実施例では高温の熱処理として、ゲート酸化を行
う場合を例としたが本発明はこれに限定されるものでは
ない。例えば、所定の温度(例えば、1000℃〜12
00℃程度)まで所定の昇温速度で昇温した後、該所定
の温度で単に熱処理を行なうだけでもよい。ただし、絶
縁ゲート型半導体素子を形成する場合は、ゲート酸化工
程で上述の熱処理を兼ねることが、工程の短縮にもなり
有効である。
In this embodiment, gate oxidation is performed as the high-temperature heat treatment, but the present invention is not limited thereto. For example, at a predetermined temperature (e.g. 1000°C to 12°C)
It is also possible to simply perform heat treatment at the predetermined temperature after raising the temperature at a predetermined temperature increase rate to about 00°C. However, when forming an insulated gate type semiconductor element, it is effective to also perform the above-mentioned heat treatment in the gate oxidation step, as this will shorten the process.

本発明に基づく半導体装置の製造方法で作製した多結晶
シリコンTPT (Nチャンネル)の電界効果移動度は
、150〜2000m2/v−5ecであり、高性能な
多結晶シリコンTPTを簡便なプロセスで形成すること
が出来る。
The field effect mobility of polycrystalline silicon TPT (N-channel) manufactured by the semiconductor device manufacturing method based on the present invention is 150 to 2000 m2/v-5ec, and high-performance polycrystalline silicon TPT can be formed by a simple process. You can.

さらに、前記TPT製造工程に水素ガスもしくはアンモ
ニアガスを少なくとも含む気体のプラズマ雰囲気に半導
体素子をさらす工程等を設け、前記TPTを水素化する
と、結晶粒界に存在する欠陥密度が低減され、前記電界
効果移動度はさらに向上する。
Furthermore, when the TPT manufacturing process includes a step of exposing the semiconductor element to a plasma atmosphere of a gas containing at least hydrogen gas or ammonia gas, and the TPT is hydrogenated, the defect density existing in the grain boundaries is reduced, and the electric field Effect mobility is further improved.

また、チャンネル領域に不純物をドーピングして、Vt
h (L、きい値電圧)を制御する手段も極めて有効で
ある。固相成長法で形成した多結晶シリコンTPTでは
、Nチャンネルトランジスタがデプレッション方向にv
thがシフトし、Pチャンネルトランジスタがエンハン
スメント方向にシフトする傾向がある。又、上記TPT
を水素化した場合、その傾向がより顕著になる。そこで
、チャンネル領域に1015〜10”/am3程度の不
純物をドープすると、vthのシフトを抑えることがで
きる。例えば、第1図において、ゲートN極を形成する
前に、イオンインプラ法等でB(ボロン)等の不純物を
l Q I I 〜l Q l 3 / c m 2程
度のドーズ量で打ち込む等の方法がある。特に、ドーズ
量が前述の値程度であれば、Pチャンネルトランジスタ
、Nチャンネルトランジスタ共オフ電流が最小になるよ
うに、vthを制御することができる。従って、0MO
8型のTPT素子を形成する場合においてもP c h
、  N c hを選択的にチャンネルドープせずに、
全面を同一の工程でチャンネルドープすることもできる
Also, by doping impurities into the channel region, Vt
A means for controlling h (L, threshold voltage) is also extremely effective. In a polycrystalline silicon TPT formed by solid phase growth, an N-channel transistor is
th shifts, and the P-channel transistor tends to shift in the enhancement direction. Also, the above TPT
When hydrogenated, this tendency becomes more pronounced. Therefore, if the channel region is doped with an impurity of about 1015 to 10"/am3, the shift in vth can be suppressed. For example, in FIG. 1, before forming the gate N pole, B( There are methods such as implanting impurities such as boron) at a dose of about 1QI to 1QI3/cm2.In particular, if the dose is about the above value, P-channel transistor, N-channel transistor, etc. vth can be controlled so that the transistor off-state current is minimized.Therefore, 0MO
Even when forming an 8-type TPT element, P c h
, N ch without selective channel doping,
The entire surface can also be channel doped in the same process.

尚、本発明は、第1図の実施例に示したTPT以外にも
、絶縁ゲート型半導体素子全般に応用できるほか、バイ
ポーラトランジスタ、静電誘導型トランジスタ、太陽電
池・光センサをはじめとする光電変換素子等の半導体素
子を多結晶半導体を素子材として形成する場合にきわめ
て有効な製造方法となる。
In addition to the TPT shown in the embodiment shown in FIG. 1, the present invention can be applied to insulated gate semiconductor devices in general, as well as photovoltaic devices such as bipolar transistors, static induction transistors, solar cells, and optical sensors. This is an extremely effective manufacturing method when forming a semiconductor element such as a conversion element using a polycrystalline semiconductor as the element material.

[発明の効果] 以上述べたように、本発明によればより簡便な製造プロ
セスで大粒径の多結晶シリコン膜を形成することが出来
る。その結果、絶縁性非晶質材料上に高性能な半導体素
子を形成することが可能となり、大型で高解像度の液晶
表示パネルや高速で高解像度の密着型イメージセンサや
三次元IC等を容易に形成できるようになった。
[Effects of the Invention] As described above, according to the present invention, a polycrystalline silicon film with a large grain size can be formed with a simpler manufacturing process. As a result, it has become possible to form high-performance semiconductor elements on insulating amorphous materials, making it easy to manufacture large, high-resolution liquid crystal display panels, high-speed, high-resolution contact image sensors, 3D ICs, etc. can now be formed.

また、本発明は、第1図の実施例に示したTPT以外に
も、絶縁ゲート型半導体素子全般に応用できるほか、バ
イポーラトランジスタ、静電誘導型トランジスタ、太陽
電池・光センサをはじめとする光電変換素子等の半導体
素子を多結晶半導体を素子材として形成する場合にきわ
めて有効な製造方法となる。
In addition to the TPT shown in the embodiment of FIG. 1, the present invention can be applied to insulated gate semiconductor devices in general, as well as photovoltaic devices such as bipolar transistors, static induction transistors, solar cells, and optical sensors. This is an extremely effective manufacturing method when forming a semiconductor element such as a conversion element using a polycrystalline semiconductor as the element material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の実施例・における半導
体装置の製造工程図である。 第2図(a)〜(e)は本発明の実施例における昇温方
法の模式図である。 絶縁性非晶質財料 シリコン層 多結晶シリコン層 ゲート絶縁膜 ゲート電極 ソース・ドレイン領域 層間絶縁膜 コンタクト穴 配線 出願人セイコーエプソン株式会社 代理人弁理土鈴木喜三部(他1名) (a) (b) (c) 101 剥り1→生蓼り9粉4オオ料 第 図 時 間 第2図 (c) 時 間 第2図 (d) 時 間 第2図 (a) 時 間 第2図 (b) 時 間 第2図 (e)
FIGS. 1(a) to 1(d) are process diagrams for manufacturing a semiconductor device in an embodiment of the present invention. FIGS. 2(a) to 2(e) are schematic diagrams of a temperature raising method in an example of the present invention. Insulating amorphous material Silicon layer Polycrystalline silicon layer Gate insulating film Gate electrode Source/drain region Interlayer insulating film Contact hole Wiring Applicant Seiko Epson Co., Ltd. Attorney Kizo Suzuki (and one other person) (a) (b) (c) 101 Peeling 1 → Seedling 9 powder 4 ingredients Chart Time Figure 2 (c) Time Figure 2 (d) Time Figure 2 (a) Time Figure 2 (b) Time Figure 2(e)

Claims (1)

【特許請求の範囲】 1) (a)絶縁性非晶質材料上にシリコンを主体とする半導
体層を形成する工程、 (b)所定の熱処理温度まで一定時間をかけて昇温する
工程を少なくとも有することを特徴とする半導体装置の
製造方法。 2) (a)絶縁性非晶質材料上にシリコンを主体とする半導
体層を形成する工程、 (b)該半導体層を熱処理等により結晶成長させる工程
、 (c)工程(b)より高い所定の熱処理温度で該半導体
層を処理する工程を少なくとも有することを特徴とする
半導体装置の製造方法。 3)工程(c)が、所定の熱処理温度まで一定時間をか
けて昇温する工程を少なくとも含むことを特徴とする請
求項2記載の半導体装置の製造方法。 4)前記所定の熱処理温度まで一定時間をかけて昇温す
る工程において昇温速度が20℃/分より遅い段階が存
在することを特徴とする請求項1又は請求項3記載の半
導体装置の製造方法。 5)前記所定の熱処理温度が700℃〜1200℃であ
ることを特徴とする請求項4記載の半導体装置の製造方
法。 6)前記の所定の温度まで昇温する工程、若しくはそれ
に続く工程が、ゲート絶縁膜を形成する工程の一部であ
ることを特徴とする請求項5記載の半導体装置の製造方
法。
[Claims] 1) At least (a) a step of forming a semiconductor layer mainly composed of silicon on an insulating amorphous material, and (b) a step of raising the temperature to a predetermined heat treatment temperature over a certain period of time. A method for manufacturing a semiconductor device, comprising: 2) (a) A step of forming a semiconductor layer mainly composed of silicon on an insulating amorphous material, (b) A step of growing crystals of the semiconductor layer by heat treatment, etc., (c) A higher predetermined amount than step (b). 1. A method of manufacturing a semiconductor device, comprising at least the step of treating the semiconductor layer at a heat treatment temperature of . 3) The method of manufacturing a semiconductor device according to claim 2, wherein step (c) includes at least the step of raising the temperature to a predetermined heat treatment temperature over a certain period of time. 4) Manufacturing the semiconductor device according to claim 1 or claim 3, wherein in the step of raising the temperature to the predetermined heat treatment temperature over a certain period of time, there is a stage where the temperature increase rate is slower than 20° C./min. Method. 5) The method of manufacturing a semiconductor device according to claim 4, wherein the predetermined heat treatment temperature is 700°C to 1200°C. 6) The method of manufacturing a semiconductor device according to claim 5, wherein the step of raising the temperature to the predetermined temperature or the step subsequent thereto is part of a step of forming a gate insulating film.
JP7423089A 1989-02-14 1989-03-27 Manufacture of semiconductor device Pending JPH02252246A (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
JP7423089A JPH02252246A (en) 1989-03-27 1989-03-27 Manufacture of semiconductor device
EP93118614A EP0598410B1 (en) 1989-02-14 1990-02-12 A method of manufacturing a semiconductor device
EP93118613A EP0598409B1 (en) 1989-02-14 1990-02-12 A method of manufacturing a semiconductor device
EP90102710A EP0383230B1 (en) 1989-02-14 1990-02-12 Manufacturing Method of a Semiconductor Device
DE69030775T DE69030775T2 (en) 1989-02-14 1990-02-12 Manufacturing method of a semiconductor device
DE69032773T DE69032773T2 (en) 1989-02-14 1990-02-12 Method of manufacturing a semiconductor device
SG9601960A SG108807A1 (en) 1989-02-14 1990-02-12 A semiconductor device and its manufacturing method
SG9602101A SG99827A1 (en) 1989-02-14 1990-02-12 A method of manufacturing a semiconductor device
DE69033736T DE69033736T2 (en) 1989-02-14 1990-02-12 Method of manufacturing a semiconductor device
EP93118615A EP0608503B1 (en) 1989-02-14 1990-02-12 A semiconductor device and its manufacturing method
DE69030822T DE69030822T2 (en) 1989-02-14 1990-02-12 Semiconductor device and method for its manufacture
US07/790,107 US6235563B1 (en) 1989-02-14 1991-11-07 Semiconductor device and method of manufacturing the same
HK98115536A HK1014293A1 (en) 1989-02-14 1998-12-24 A method of manufacturing a semiconductor device
US09/568,917 US6403497B1 (en) 1989-02-14 2000-05-10 Method of manufacturing semiconductor device by two stage heating of deposited noncrystalline semiconductor
US10/143,102 US20020132452A1 (en) 1989-02-14 2002-05-09 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7423089A JPH02252246A (en) 1989-03-27 1989-03-27 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH02252246A true JPH02252246A (en) 1990-10-11

Family

ID=13541164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7423089A Pending JPH02252246A (en) 1989-02-14 1989-03-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH02252246A (en)

Similar Documents

Publication Publication Date Title
JPH02140915A (en) Manufacture of semiconductor device
JP2961375B2 (en) Method for manufacturing semiconductor device
JPH02283036A (en) Manufacture of semiconductor device
JPH08172196A (en) Thin-film transistor and manufacture thereof
JPH02275641A (en) Manufacture of semiconductor device
JPH11261078A (en) Manufacture of semiconductor device
JPH02252246A (en) Manufacture of semiconductor device
JPS63146436A (en) Manufacture of thin film transistor
JP3287834B2 (en) Heat treatment method for polycrystalline semiconductor thin film
JP2811763B2 (en) Method for manufacturing insulated gate field effect transistor
JP2933081B2 (en) Method for manufacturing semiconductor device
JP2773203B2 (en) Method for manufacturing semiconductor device
JPH03293731A (en) Manufacture of semiconductor device
JP2910752B2 (en) Method for manufacturing semiconductor device
JPH01276617A (en) Manufacture of semiconductor device
JP3093762B2 (en) Method for manufacturing semiconductor device
JP3468781B2 (en) Method for manufacturing thin film transistor
JPH01276616A (en) Manufacture of semiconductor device
JP2876598B2 (en) Method for manufacturing semiconductor device
JP3141909B2 (en) Semiconductor device manufacturing method
JPS62287615A (en) Formation of polycrystalline silicon film
JPH04144139A (en) Manufacture of semiconductor device
JPH0272614A (en) Manufacture of semiconductor device
Yudasaka et al. Polysilicon thin film transistors
JPH04286369A (en) Semiconductor device and manufacture thereof