JPH02252214A - Cooling method for forcible cooling type superconducting coil - Google Patents

Cooling method for forcible cooling type superconducting coil

Info

Publication number
JPH02252214A
JPH02252214A JP1075289A JP7528989A JPH02252214A JP H02252214 A JPH02252214 A JP H02252214A JP 1075289 A JP1075289 A JP 1075289A JP 7528989 A JP7528989 A JP 7528989A JP H02252214 A JPH02252214 A JP H02252214A
Authority
JP
Japan
Prior art keywords
superconducting coil
coil
cooling
gas
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1075289A
Other languages
Japanese (ja)
Inventor
Masanobu Taneda
種田 雅信
Tetsuya Otani
哲也 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1075289A priority Critical patent/JPH02252214A/en
Publication of JPH02252214A publication Critical patent/JPH02252214A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To efficiently cool a superconducting coil by injecting refrigerant helium gas when the temperature of the superconducting coil is high, externally precooling the coil, and feeding the gas into the the coil to cool it when the temperature of the coil drops. CONSTITUTION:When the temperature of a superconducting coil 21 is high, a helium injection valve 29 is opened to inject refrigerant helium gas from a refrigerator from the valve 29, and the coil 21 is externally precooled. The injected gas is sucked from a suction valve 31, and returned to the refrigerator. When the temperature of the coil 21 is reduced by precooling, the valves 29, 31 are closed, and the gas is fed in the coil 21. In this case, since the coil 21 is precooled, the gas is smoothly fed into the coil 21. Remaining gas in a vacuum tank 12 is discharged by a vacuum pump 14. Thus, the desired coil can be efficiently cooled.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、核融合分野等に使用される強制冷却型(ケイ
プル・イン・コンジット型)超電導コイルの冷却方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for cooling a forced cooling type (caple-in-conduit type) superconducting coil used in the field of nuclear fusion and the like.

〈従来の技術〉 核融合炉のプラズマ閉じ込め用に使用される超電導コイ
ルは、非常に強力な磁場の下で使用されるため、その電
磁力に耐え得るようにするために、パイプ状のコンジッ
ト材内に超電導素線を挿通してなる超電導線(第3図参
照)を、コイル状に積層して構成される強制冷却型(ケ
イプル・イン・コンジット型)のもの(第4図参照)が
採用されている。
<Conventional technology> Superconducting coils used for plasma confinement in nuclear fusion reactors are used under extremely strong magnetic fields, so in order to withstand the electromagnetic force, a pipe-shaped conduit material is required. The forced cooling type (caple-in-conduit type), which consists of superconducting wires (see Figure 3) stacked in a coil shape, is used (see Figure 4). has been done.

このタイプの超電導コイル1の冷却方法には、従来より
第7図に示すように、真空槽4内において、図外の冷凍
機から冷却通路20を介して送られてきた超臨界圧極低
温の冷媒ヘリウムガスを、液体ヘリウムボイラー3内の
熱交換器3でさらに冷却した後、冷却通路2bを介して
超電導コイル1内に流して該超電導コイル1を冷媒ヘリ
ウムガスにより強制冷却していた。
As shown in FIG. 7, this type of cooling method for the superconducting coil 1 conventionally involves supercritical pressure cryogenic energy sent from a refrigerator (not shown) through a cooling passage 20 in a vacuum chamber 4. After the refrigerant helium gas was further cooled by the heat exchanger 3 in the liquid helium boiler 3, it was forced to flow into the superconducting coil 1 through the cooling passage 2b, and the superconducting coil 1 was forcibly cooled by the refrigerant helium gas.

また、他の冷却方法として、超電導コイルの層間に銅板
のフィンを挿入し、このフィンに、冷却用配管とバイパ
スする冷却管を設けて、初期の予冷には、このフィンを
介して冷却するようにしたものがある(例えば、37回
低温工学会予稿集(P2O))。
In addition, as another cooling method, a copper plate fin is inserted between the layers of the superconducting coil, and a cooling pipe is provided in this fin to bypass the cooling piping, and cooling is performed through this fin for initial precooling. (For example, the Proceedings of the 37th Society of Cryogenic Engineering (P2O)).

〈発明が解決しようとする課題〉 しかし、前者の場合、予冷時には超電導コイル1の温度
が高い(最初は室温)ため、冷媒ヘリウムガスの温度も
熱を吸収して高くなり、粘性が大きくなる。すると、超
電導コイル1内での冷媒ヘリウムガスの圧力損失が大き
くなり、結果として冷媒ヘリウムガスの流量が小さくな
り、予冷に長時間を要した。
<Problems to be Solved by the Invention> However, in the former case, since the temperature of the superconducting coil 1 is high during precooling (initially room temperature), the temperature of the refrigerant helium gas absorbs heat and becomes high, resulting in increased viscosity. Then, the pressure loss of the refrigerant helium gas within the superconducting coil 1 became large, and as a result, the flow rate of the refrigerant helium gas became small, and precooling took a long time.

また、後者の場合、予冷時間を短縮させることができる
が、冷却装置が交流磁場中にて使用されるので、銅板フ
ィンが余分な渦電流を起こし、超電導コイル1の安定性
を低下させるという問題があった。
In the latter case, the pre-cooling time can be shortened, but since the cooling device is used in an alternating current magnetic field, the copper plate fins generate extra eddy currents, reducing the stability of the superconducting coil 1. was there.

本発明は上記問題点に鑑み、超電導コイルの安定性を低
下させることなく短時間で効率よく超電導コイルを予冷
することができる強制冷却型超電導コイルの冷却方法を
提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a method for cooling a forced-cooling superconducting coil that can efficiently precool a superconducting coil in a short time without reducing the stability of the superconducting coil.

く課題を解決するための手段〉 この課題を解決するための本発明の技術手段は、真空゛
槽12内で冷却流路を介して強制冷却型超電導コイル2
1に冷媒を流して該コイル21を強制冷却するようにし
たものにおいて、その噴出した冷媒を強制冷却型超電導
コイル21より上流側の冷却流路から超電導コイル21
に冷媒を噴出すると共に、強制冷却型超電導コイル21
より下流側の冷却流路から吸入して、強制冷却型超電導
コイル21を予冷するようにした点にある。
Means for Solving the Problem> The technical means of the present invention for solving this problem is to cool the forcibly cooled superconducting coil 2 through the cooling channel in the vacuum chamber 12.
1 in which the coil 21 is forcibly cooled by flowing a refrigerant through the superconducting coil 21, the ejected refrigerant is passed through the cooling channel upstream of the forced cooling type superconducting coil 21 to the superconducting coil 21.
At the same time, the forced cooling type superconducting coil 21
The point is that the forced cooling type superconducting coil 21 is pre-cooled by drawing in from the cooling flow path on the more downstream side.

〈実施例〉 以下、本発明を図示の実施例に従って説明すると、第1
図及び第2図において、11は真空容器、12は真空槽
である。13は真空槽12の外周に設けた断熱槽で、発
泡材、パーライト等により構成されている。14は真空
ポンプである。15は液体ヘリウムボイラーで、内部に
液体ヘリウム16が収納される。
<Example> Hereinafter, the present invention will be explained according to the illustrated example.
In the figures and FIG. 2, 11 is a vacuum container, and 12 is a vacuum chamber. Reference numeral 13 denotes a heat insulating tank provided around the outer periphery of the vacuum tank 12, and is made of foam material, perlite, or the like. 14 is a vacuum pump. 15 is a liquid helium boiler in which liquid helium 16 is stored.

18a、 18b、 18cは冷却流路で、冷却流路1
8a側から図示省略の冷凍機にて冷却された超臨界圧極
低温の冷媒ヘリウムガスが圧送される。19は熱交換器
で、冷却流路18a、18b間に介在され、冷却流路1
8aから圧送されてくる冷媒ヘリウムガスを液体ヘリウ
ムボイラー15内でさらに冷却する。
18a, 18b, 18c are cooling channels, cooling channel 1
Supercritical pressure cryogenic refrigerant helium gas cooled by a refrigerator (not shown) is pumped from the 8a side. A heat exchanger 19 is interposed between the cooling channels 18a and 18b, and is connected to the cooling channel 1.
The refrigerant helium gas pumped from 8a is further cooled in the liquid helium boiler 15.

21は強制冷却型超電導コイル(ケイプル・イン・コン
ジット型)で、第3図に示すようにパイプ状のコンジッ
ト材22内に超電導素線23を挿通して成る超電導線2
4を、第4図に示すようにコイル状に積層して構成され
ている。第3図に示すように超電導線24のコンジット
材22と超電導素線23との間に冷却チャンネル25が
形成されている。
21 is a forced cooling type superconducting coil (caple-in-conduit type), and as shown in FIG.
4 are stacked in a coil shape as shown in FIG. As shown in FIG. 3, a cooling channel 25 is formed between the conduit material 22 of the superconducting wire 24 and the superconducting wire 23.

この超電導コイル21の一端は冷却流路18bに連通さ
れ、他端は冷却流路18cに連通されており、冷媒ヘリ
ウムガスが超電導コイル21の冷却チャンネル25を通
って冷却流路18cから液体ヘリウムボイラー15へと
流れ、このとき冷媒ヘリウムガスによって超電導コイル
21を強制冷却するようになっている。
One end of this superconducting coil 21 is communicated with the cooling channel 18b, and the other end is communicated with the cooling channel 18c, and refrigerant helium gas passes through the cooling channel 25 of the superconducting coil 21 and from the cooling channel 18c to the liquid helium boiler. 15, and at this time, the superconducting coil 21 is forcibly cooled by the refrigerant helium gas.

27は冷却流路18cに設けた膨張弁である。28は送
出流路で、液体ヘリウムボイラーI5内のへりラムガス
を前記図示省略の冷凍機に送出する。
27 is an expansion valve provided in the cooling channel 18c. Reference numeral 28 denotes a delivery channel for delivering the helium gas in the liquid helium boiler I5 to the refrigerator (not shown).

29はヘリウム噴出バルブで、超電導コイル21よりも
上流側である冷却流路18bの中途部に分岐流路30を
介して設けられている。31はヘリウム吸入パルプで、
超電導コイル21よりも下流側である冷却流路18cの
中途部に分岐流路32を介して設けられている。
Reference numeral 29 denotes a helium jetting valve, which is provided in the middle of the cooling channel 18b on the upstream side of the superconducting coil 21 via a branch channel 30. 31 is helium inhalation pulp,
It is provided in the middle of the cooling channel 18c downstream of the superconducting coil 21 via a branch channel 32.

上記のような構成において、超電導コイル21を冷却す
る場合、まず、超電導コイル21のコイルの温度が高い
とき(100K程度以上)は、ヘリウム噴出バルブ29
及びヘリウム吸入パルプ31を開にし、冷凍機からの冷
媒ヘリウムガスを冷却流路18a、熱交換器19及び冷
却流路18bを介して圧送して、ヘリウム噴出バルブ2
9から真空槽12中へ噴出させ、その噴出した冷媒ヘリ
ウムガスによって超電導コイル21を外部より予冷する
。真空槽12の圧力は1気圧程度であり、真空槽12へ
噴出した冷媒ヘリウムガスは、ヘリウム吸入パルプ31
より吸入され、冷却流路18c及び送出流路28を通し
て冷凍機へ戻される。なお、このとき冷媒ヘリウムガス
によつて真空容器11をも冷却することになるので、断
熱槽13によって室温部との断熱が行なわれる。
In the above configuration, when cooling the superconducting coil 21, first, when the temperature of the superconducting coil 21 is high (approximately 100 K or more), the helium injection valve 29 is cooled.
and the helium suction pulp 31 is opened, and the refrigerant helium gas from the refrigerator is sent under pressure through the cooling channel 18a, the heat exchanger 19, and the cooling channel 18b, and the helium injection valve 2 is opened.
9 into the vacuum chamber 12, and the superconducting coil 21 is precooled from the outside by the ejected refrigerant helium gas. The pressure of the vacuum chamber 12 is approximately 1 atm, and the refrigerant helium gas ejected into the vacuum chamber 12 is absorbed into the helium suction pulp 31.
The air is sucked in from the air and returned to the refrigerator through the cooling channel 18c and the delivery channel 28. At this time, since the vacuum container 11 is also cooled by the refrigerant helium gas, the insulation tank 13 provides insulation from the room temperature.

そして、上記予冷によって超電導コイル21が100に
程度以下に冷却されると、第2図に示すように噴出バル
ブ29及び吸入バルブ31を共に閉とし、冷却機からの
冷媒ヘリウムガスを、冷却流路18a、熱交換器19、
冷却流路18b及び冷却流路18cを介して超電導コイ
ル21内部に流す。このとき、予冷によって超電導コイ
ル21は既にtoo K以下程度に冷却されているので
、超電導コイル21内を冷媒ヘリウムガスがスムーズに
流れる。なお、真空槽12中に残留したヘリウムガスは
真空ポンプ14により排気する。
When the superconducting coil 21 is cooled down to about 100% by pre-cooling, the jet valve 29 and the suction valve 31 are both closed as shown in FIG. 18a, heat exchanger 19,
It flows into the superconducting coil 21 via the cooling channel 18b and the cooling channel 18c. At this time, since the superconducting coil 21 has already been cooled down to about too K or less by pre-cooling, the refrigerant helium gas flows smoothly within the superconducting coil 21. Note that the helium gas remaining in the vacuum chamber 12 is exhausted by the vacuum pump 14.

第5図は他の実施例を示し、超電導コイル21よりも上
流側である冷却流路18aの中途部に、三方弁型のヘリ
ウム噴出バルブ34を設けると共に、超電導コイル21
よりも下流側である冷却流路18cの中途部に、三方弁
型のヘリウム吸入バルブ35を設けている。そして、超
電導コイル21を冷却する場合、まずヘリウム噴出バル
ブ34から真空槽12内へ噴出し、その噴出した冷媒ヘ
リウムガスをヘリウム吸入バルブ35により吸入するこ
とによって、冷媒ヘリウムガスにて超電導コイル21を
外部より予冷する。その後、冷却流路18a、熱交換器
19、冷却流路18b及び冷却流路18cを介して超電
導コイル21内部に冷媒ヘリウムガスを流し、超電導コ
イル21を冷却する。
FIG. 5 shows another embodiment, in which a three-way helium injection valve 34 is provided in the middle of the cooling channel 18a on the upstream side of the superconducting coil 21.
A three-way helium suction valve 35 is provided in the middle of the cooling flow path 18c on the downstream side. When cooling the superconducting coil 21, first, the helium gas is ejected from the helium injection valve 34 into the vacuum chamber 12, and the ejected refrigerant helium gas is sucked in by the helium suction valve 35, thereby cooling the superconducting coil 21 with the refrigerant helium gas. Pre-cool from outside. Thereafter, refrigerant helium gas is flowed into the superconducting coil 21 through the cooling channel 18a, the heat exchanger 19, the cooling channel 18b, and the cooling channel 18c to cool the superconducting coil 21.

第6図は他の実施例を示し、前記断熱槽13を省略し、
真空槽12内に超電導コイル21を取り囲むように真空
容器37を設け、超電導コイル21よりも上流側の冷却
流路18bの中途部に、真空容器37内に連通した分岐
流路38を設けると共に、分岐流路38の中途にヘリウ
ム噴出バルブ39を設け、また超電導コイル21よりも
下流側の冷却流路18cの中途部に、真空容器37内に
連通した分岐流路40を設けると共に、分岐流路40の
中途にヘリウム吸入バルブ41を設けている。そして、
超電導コイル21を冷却する場合、まずヘリウム噴出バ
ルブ39及びヘリウム吸入バルブ41を開放し、ヘリウ
ム噴出バルブ39から真空容器37内にヘリウムガスを
噴出すると共に、その噴出した冷媒ヘリウムガスをヘリ
ウム吸入バルブ41により吸入することによって、冷媒
ヘリウムガスにて超電導コイル21を外部より予冷する
。その後、バルブ39.41を閉じて、冷却流路18a
、熱交換器19、冷却流路18b及び冷却流路18cを
介して超電導コイル21内に冷媒ヘリウムガスを流し、
超電導コイル21を冷却する。
FIG. 6 shows another embodiment, in which the insulation tank 13 is omitted,
A vacuum container 37 is provided in the vacuum chamber 12 so as to surround the superconducting coil 21, and a branch channel 38 that communicates with the vacuum container 37 is provided in the middle of the cooling channel 18b on the upstream side of the superconducting coil 21. A helium jetting valve 39 is provided in the middle of the branch channel 38, and a branch channel 40 communicating with the inside of the vacuum vessel 37 is provided in the middle of the cooling channel 18c on the downstream side of the superconducting coil 21. A helium suction valve 41 is provided in the middle of 40. and,
When cooling the superconducting coil 21, first open the helium injection valve 39 and the helium suction valve 41, and eject helium gas from the helium injection valve 39 into the vacuum container 37, and at the same time, transfer the ejected refrigerant helium gas to the helium suction valve 41. By inhaling the refrigerant helium gas, the superconducting coil 21 is precooled from the outside. Thereafter, the valves 39.41 are closed and the cooling channels 18a
, flowing refrigerant helium gas into the superconducting coil 21 via the heat exchanger 19, the cooling channel 18b and the cooling channel 18c,
The superconducting coil 21 is cooled.

〈発明の効果〉 本発明によれば、強制冷却型超電導コイル21より上流
側の冷却流路から超電導コイル21に冷媒を噴出すると
共に、その噴出した冷媒を、強制冷却型超電導コイル2
1より下流側の冷却流路から吸入して、強制冷却型超電
導コイル21を予冷するようにしたので、超電導コイル
21の温度が高い状態のときには、超電導コイル21の
外部を冷媒ヘリウムガスが流れるため、超電導コイル2
1への冷媒の流量が多くなり、従って超電導コイル21
の冷却速度が速くなる。しかも銅板ファンを取付けてい
ないので余分な渦電流発熱を防ぐことができ、超電導コ
イルの安定性を低下させることもなくなり、その効果は
著大である。
<Effects of the Invention> According to the present invention, refrigerant is jetted from the cooling channel upstream of the forced cooling type superconducting coil 21 to the superconducting coil 21, and the jetted refrigerant is transferred to the forced cooling type superconducting coil 2.
Since the forced cooling type superconducting coil 21 is pre-cooled by suction from the cooling channel downstream from 1, when the temperature of the superconducting coil 21 is high, refrigerant helium gas flows outside the superconducting coil 21. , superconducting coil 2
The flow rate of refrigerant to the superconducting coil 21 increases, and therefore the superconducting coil 21
cooling rate becomes faster. Moreover, since no copper plate fan is attached, excess eddy current heat generation can be prevented, and the stability of the superconducting coil will not be reduced, which is a significant effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は本発明の一実施例を示し、第1図は
予冷時の状態を示す冷却装置の側断面図、第2図は定常
時の状態を示す冷却装置の側断面図、第3図は超電導線
の断面図、第4図は強制冷却型超電導コイルの断面図で
ある。第5図は他の実施例を示す冷却装置の断面図、第
6図は他の実施例を示す冷却装置の断面図である。第7
図は従来例を示す冷却装置の断面図である。 12・・・真空槽、18a、 18b、 18c・・・
冷却流路、21・・・強制冷却型超電導コイル。
1 to 4 show an embodiment of the present invention, FIG. 1 is a side sectional view of the cooling device showing the state during precooling, and FIG. 2 is a side sectional view of the cooling device showing the steady state. , FIG. 3 is a sectional view of a superconducting wire, and FIG. 4 is a sectional view of a forced cooling type superconducting coil. FIG. 5 is a sectional view of a cooling device showing another embodiment, and FIG. 6 is a sectional view of a cooling device showing another embodiment. 7th
The figure is a sectional view of a conventional cooling device. 12... Vacuum chamber, 18a, 18b, 18c...
Cooling channel, 21... forced cooling type superconducting coil.

Claims (1)

【特許請求の範囲】[Claims] (1)真空槽(12)内で冷却流路を介して強制冷却型
超電導コイル(21)に冷媒を流して該コイル(21)
を強制冷却するようにしたものにおいて、 強制冷却型超電導コイル(21)より上流側の冷却流路
から超電導コイル(21)に冷媒を噴出すると共に、そ
の噴出した冷媒を強制冷却型超電導コイル(21)より
下流側の冷却流路から吸入して、強制冷却型超電導コイ
ル(21)を予冷するようにしたことを特徴とする強制
冷却型超電導コイルの冷却方法。
(1) A refrigerant is passed through the forced cooling type superconducting coil (21) through the cooling channel in the vacuum chamber (12) to cool the coil (21).
In a device configured to forcibly cool the superconducting coil (21), a refrigerant is ejected from the cooling channel upstream of the forced cooling superconducting coil (21) to the superconducting coil (21), and the ejected refrigerant is transferred to the forced cooling superconducting coil (21). ) A cooling method for a forced cooling type superconducting coil, characterized in that the forced cooling type superconducting coil (21) is precooled by suction from a cooling channel on the downstream side.
JP1075289A 1989-03-27 1989-03-27 Cooling method for forcible cooling type superconducting coil Pending JPH02252214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1075289A JPH02252214A (en) 1989-03-27 1989-03-27 Cooling method for forcible cooling type superconducting coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1075289A JPH02252214A (en) 1989-03-27 1989-03-27 Cooling method for forcible cooling type superconducting coil

Publications (1)

Publication Number Publication Date
JPH02252214A true JPH02252214A (en) 1990-10-11

Family

ID=13571930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1075289A Pending JPH02252214A (en) 1989-03-27 1989-03-27 Cooling method for forcible cooling type superconducting coil

Country Status (1)

Country Link
JP (1) JPH02252214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9018805B2 (en) 2011-03-31 2015-04-28 Rolls-Royce Plc Superconducting machines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9018805B2 (en) 2011-03-31 2015-04-28 Rolls-Royce Plc Superconducting machines

Similar Documents

Publication Publication Date Title
US4692560A (en) Forced flow cooling-type superconducting coil apparatus
JP2003148844A (en) Cryogenic cooling and refrigeration system and method
JP4151757B2 (en) Cryogenic cooling system and method with open loop short-term cooling for superconducting field windings
CN113035486A (en) Refrigerating system of low-temperature superconducting magnet
JP2002043117A (en) Conductively cooled superconducting magnet
US11519641B2 (en) Ejector-based cryogenic refrigeration system with two-stage regenerator
JPH0550674B2 (en)
JPH02252214A (en) Cooling method for forcible cooling type superconducting coil
JP2009009908A (en) Superconductive power transmission cable and its system
JPS61179508A (en) Forced cooling superconductive coil device
JPH0341704A (en) Low temperature precooler for superconductive magnet
WO2019029035A1 (en) Forced-convection liquid cooling method for magnet, and cooling system therefor
JPH07142234A (en) Apparatus for cooling cryogenic-temperature superconducting coil
CN207529745U (en) A kind of cryogenic media diversion pipe for cryogenic system uniform decrease in temperature
JPH10311618A (en) Heat radiation shielding plate cooling device
JP2635165B2 (en) Forced cooling superconducting coil device
JPH0536526A (en) Method for cooling forced cooling conductor
JPS61125002A (en) Forcibly cooled superconductive coil device
JPH03188602A (en) Forcedly cooled superconducting magnet
JPH0370914B2 (en)
JP2008153579A (en) Cryogenic cooling device and control method for its refrigerant liquid level
JPS60190134A (en) Liquid-cooled stator winding
Nagamine et al. Superconducting solenoid and its cooling system for pulsed muon channel
JPS6216001B2 (en)
JPH0126035B2 (en)