JPH02250850A - Purification of naphthalenecarboxylic acid - Google Patents

Purification of naphthalenecarboxylic acid

Info

Publication number
JPH02250850A
JPH02250850A JP1071268A JP7126889A JPH02250850A JP H02250850 A JPH02250850 A JP H02250850A JP 1071268 A JP1071268 A JP 1071268A JP 7126889 A JP7126889 A JP 7126889A JP H02250850 A JPH02250850 A JP H02250850A
Authority
JP
Japan
Prior art keywords
cerium
cobalt
manganese
acid
heavy metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1071268A
Other languages
Japanese (ja)
Inventor
Yoshiharu Douko
道古 義治
Teruaki Yamada
輝明 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumikin Chemical Co Ltd filed Critical Sumikin Chemical Co Ltd
Priority to JP1071268A priority Critical patent/JPH02250850A/en
Publication of JPH02250850A publication Critical patent/JPH02250850A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To produce the title compound by oxidizing a substituted naphthalene with an O2 gas in the presence of oxidizing catalysts of heavy metals of Ce, Co and Mn and bromine in a liquid phase, distilling away a solvent from the reaction product, dissolving the resulting substance in an alkali aqueous solution, recovering the insoluble catalyst, circulating and reusing the catalyst. CONSTITUTION:In obtaining a naphthalenecarboxylic acid(NCA) by oxidizing a substituted naphthalene with a molecular oxygen-containing gas in a solvent containing a lower aliphatic monocarboxylic acid by using oxidizing catalysts comprising a heavy metal consisting of cerium, cobalt and manganese and bromine in a liquid phase, the solvent is distilled away from the reaction product, an alkali aqueous solution is added to the resulting substance, a formed naphthalenecarboxylic acid is dissolved in the alkali aqueous solution and insoluble cerium, cobalt and manganese are recovered and effectively recycled and used. Consequently, the heavy metal catalysts can be recovered in high recovery ratio, a catalytic cost is inexpensive and this method is industrially advantageous.

Description

【発明の詳細な説明】 [産業上の利用分野コ この発明は、置換ナフタレンを低級脂肪族カルボン酸を
含有する溶媒中、重金属および臭素からなる酸化触媒の
存在下、分子状酸素含有ガスによって酸化し、ナフタレ
ンカルボン酸(以下rNCA」という)を製造する方法
において、酸化触媒として使用する重金属触媒を回収し
て循環使用する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] This invention involves the oxidation of substituted naphthalene with a molecular oxygen-containing gas in a solvent containing a lower aliphatic carboxylic acid in the presence of an oxidation catalyst consisting of a heavy metal and bromine. The present invention also relates to a method for recovering and recycling a heavy metal catalyst used as an oxidation catalyst in a method for producing naphthalene carboxylic acid (hereinafter referred to as "rNCA").

[従来の技術] NCA、例えばナフトエ酸は、写真薬、染料の原料とし
て、また、ナフタレンジカルボン酸類、特に2.6一体
は、耐熱性の優れたフィルムや繊維製品の製造に用いら
れるポリエチレンナフタレート、ポリエステル、ポリア
ミド等の原料として使用されている。
[Prior Art] NCA, such as naphthoic acid, is used as a raw material for photographic chemicals and dyes, and naphthalene dicarboxylic acids, especially 2.6 monomer, are used as polyethylene naphthalate, which is used in the production of films and textile products with excellent heat resistance. It is used as a raw material for polyester, polyamide, etc.

さらに、ナフタレントリカルボン酸、ナフタレンテトラ
カルボン酸は、高機能性樹脂等の原料として有望視され
ている。
Furthermore, naphthalenetricarboxylic acid and naphthalenetetracarboxylic acid are seen as promising raw materials for highly functional resins and the like.

従来、NCAの製造方法として多くの提案が行われてい
る。例えば、アルキルナフタレン、アシルナフタレンを
、酢酸等の低級脂肪族モノカルボン酸を含む溶媒中、コ
バルトおよびマンガンよりなる重金属と臭素からなる触
媒の存在下、分子状酸素含有ガスで酸化する方法(特公
昭4g−43893号公報、特公昭56−21017号
公報、特公昭59−13495号号公報、特開昭49−
42654号公報、特開昭60−89445号公報、特
開昭60−89446号公報)、あるいは、前記酸化反
応をコバルトおよびセリウムからなる重金属と臭素を触
媒として行なう方法(特開昭62−212344号公報
)等が知られている。
Conventionally, many proposals have been made as methods for manufacturing NCA. For example, a method of oxidizing alkylnaphthalenes and acylnaphthalenes with a molecular oxygen-containing gas in a solvent containing a lower aliphatic monocarboxylic acid such as acetic acid in the presence of a catalyst consisting of heavy metals consisting of cobalt and manganese and bromine (Tokuko Showa) 4g-43893, JP 56-21017, JP 59-13495, JP 49-
42654, JP 60-89445, JP 60-89446), or a method in which the oxidation reaction is carried out using a heavy metal consisting of cobalt and cerium and bromine as a catalyst (JP 62-212344). Publications) etc. are known.

本発明者らは、前記ナフタレンジカルボン酸の製造につ
いて鋭意試験研究の結果、重金属触媒としてセリウムを
コバルトおよびマンガンと併用することにより、公知の
コバルトおよびマンガンを使用する場合に比較し、その
相乗効果によって高収率でナフタレンジカルボン酸が製
造できると共に、コバルトおよびマンガン使用時に見ら
れる酸素含有ガス吹込み管の閉塞や、反応容器内壁への
反応生成物の付着が殆ど見られないことを究明し、先に
特許出願(特願昭62−319394 ) した。
As a result of extensive testing and research into the production of naphthalene dicarboxylic acid, the present inventors found that by using cerium in combination with cobalt and manganese as a heavy metal catalyst, compared to the case of using known cobalt and manganese, the synergistic effect of We found that naphthalene dicarboxylic acid can be produced in high yield, and that there is almost no clogging of the oxygen-containing gas blowing pipe or adhesion of reaction products to the inner wall of the reaction vessel, which occurs when cobalt and manganese are used. A patent application (Japanese Patent Application No. 62-319394) was filed.

しかし、前記酸化反応を工業的規模で経済的に実施し、
安価にNCAを製造するためには、重金属触媒を回収し
、循環使用することが非常に重要である。
However, if the oxidation reaction is carried out economically on an industrial scale,
In order to produce NCAs at low cost, it is very important to recover and recycle heavy metal catalysts.

前記コバルト、マンガンの回収方法としては、P−キシ
レンの液相酸化によるテレフタル酸の製造において、生
成したテレフタル酸を分離した濾液から溶媒を回収した
のち、その残留物より炭酸塩として回収する方法(特公
昭46−14339号公報、特開昭47−34088号
公報)、あるいは、使用したコバルト、マンガンと同時
に回収される酸化反応に有害な酸化反応副生物を、分子
状酸素で再度酸化して除去し、コバルト、マンガンの活
性を回復せしめる方法(特開昭49−106986号公
報)等が知られている。
As a method for recovering cobalt and manganese, in the production of terephthalic acid by liquid phase oxidation of P-xylene, the solvent is recovered from the filtrate from which the generated terephthalic acid is separated, and then the carbonate is recovered from the residue ( (Japanese Patent Publication No. 46-14339, Japanese Patent Application Laid-Open No. 47-34088), or by-products of the oxidation reaction that are harmful to the oxidation reaction and are recovered at the same time as the used cobalt and manganese are removed by re-oxidizing them with molecular oxygen. However, a method for restoring the activity of cobalt and manganese (Japanese Unexamined Patent Publication No. 106986/1986) is known.

重金属触媒の1種としてセリウムをアルキルナフタレン
等の酸化反応に使用した事例は少なく、セリウムを回収
して循環使用する方法については、未だ検討されていな
いのが現状である。また、コバルトおよびマンガンをセ
リウムと同時に回収して活性を回復せしめたのち、循環
使用する方法についても未だ検討されていない。
There are few cases in which cerium has been used as a type of heavy metal catalyst in oxidation reactions of alkylnaphthalenes, etc., and currently no method of recovering and recycling cerium has been studied. Further, a method of recovering cobalt and manganese at the same time as cerium to restore their activity and then recycling them has not yet been studied.

[解決しようとする問題点コ この発明は、置換ナフタレン等の液相酸化によるNCA
の製造、特にナフタレンジカルボン酸の製造において、
重金属触媒として使用するセリウム、マンガンおよびコ
バルトを同時に回収し、循環使用する方法を提供するこ
とを目的とする。
[Problems to be solved] This invention solves the problem of NCA by liquid phase oxidation of substituted naphthalene, etc.
in the production of naphthalene dicarboxylic acid, especially naphthalene dicarboxylic acid.
The purpose of the present invention is to provide a method for simultaneously recovering and recycling cerium, manganese, and cobalt used as heavy metal catalysts.

[問題点を解決するための手段] 本発明者らは、前記アルキルナフタレン等の液相酸化に
よるNCAの製造において、セリウムを重金属触媒の1
種として使用時の重金属触媒の回収方法について鋭意試
験研究の結果、前記セリウム、コバルトおよびマンガン
を重金属触媒とするNCAの製造方法において、反応生
成物より目的物であるNCAを分離したのち、反応母液
から溶媒である低級脂肪族モノカルボン酸を分離回収し
、溶媒を分離回収した後の反応母液濃縮物より公知の方
法で重金属触媒の回収を試みたところ、コバルトおよび
マンガンが殆ど全量回収されるのに対し、セリウムは仕
込み量の僅か0.1 mo1%しか回収できなかった。
[Means for Solving the Problems] The present inventors have discovered that cerium is used as one of the heavy metal catalysts in the production of NCA by liquid phase oxidation of alkylnaphthalenes, etc.
As a result of extensive testing and research on methods for recovering heavy metal catalysts when used as seeds, we found that in the above-mentioned method for producing NCA using cerium, cobalt, and manganese as heavy metal catalysts, after separating the target NCA from the reaction products, the reaction mother liquor is recovered. When an attempt was made to separate and recover the lower aliphatic monocarboxylic acid, which is the solvent, and recover the heavy metal catalyst using a known method from the reaction mother liquor concentrate after the solvent was separated and recovered, it was found that almost all of the cobalt and manganese were recovered. On the other hand, only 0.1 mo1% of the charged amount of cerium could be recovered.

その原因について種々試験研究の結果、セリウムは、反
応母液濃縮物に残留せず、目的物であるNCAに同伴さ
れていることを究明した。
As a result of various tests and studies regarding the cause, it was determined that cerium did not remain in the reaction mother liquor concentrate, but was accompanied by the target product, NCA.

すなわち、反応混合物より分離した目的物であるNCA
中のセリウムの含有量を測定したところ、セリウム仕込
み量のほぼ全量がNCAに含有されていることが判明し
た。
That is, the target product NCA separated from the reaction mixture
When the cerium content was measured, it was found that almost the entire amount of cerium was contained in NCA.

そこで、分離したセリウム含有のNCA中から、セリウ
ムを公知の有機溶媒を用い、その溶解度差を利用して回
収する方法につき、鋭意検討を行ったが、高収率で分離
することは不可能であった。
Therefore, we conducted extensive research on a method of recovering cerium from the separated cerium-containing NCA using a known organic solvent and taking advantage of the difference in solubility, but it was not possible to separate cerium with a high yield. there were.

すなわち、NCAを溶解する物質としては、N。In other words, N is a substance that dissolves NCA.

N−ジメチル、アセトアミド、N、N−ジメチルホルム
アミド、ジメチルスルオキシド等が知られているが、何
れも溶解度は余り大きくなく、そのうえ高価で、工業的
に使用するには経済的な方法ではない。
N-dimethyl, acetamide, N,N-dimethylformamide, dimethyl sulfoxide, etc. are known, but none of them have very high solubility and are expensive, so they are not economical methods for industrial use.

さらに、NCAを溶解せずセリウムを溶解する溶媒につ
いて検討したが、見い出すことはできなかった。
Furthermore, we investigated a solvent that does not dissolve NCA but dissolves cerium, but we were unable to find any.

そこで本発明者らは、NCAはアルカリ塩とすれば水溶
性となることに着目し、反応生成物から低級脂肪族カル
ボン酸を分離回収した濃縮反応母液からセリウムをアル
カリ不溶分として、コバルトおよびマンガンと共に回収
できないかを試験したところ、驚くべきことに、両者は
極めて効率よく分離し、セリウム、コバルトおよびマン
ガンのほぼ全量が同時回収できることを究明し、この発
明に到達した。
Therefore, the present inventors focused on the fact that NCA becomes water-soluble if it is made into an alkali salt, and from the concentrated reaction mother liquor in which lower aliphatic carboxylic acids are separated and recovered from the reaction product, cerium is used as an alkali-insoluble component, and cobalt and manganese are When conducting tests to see if they could be recovered together, it was surprisingly discovered that the two could be separated extremely efficiently and almost all of cerium, cobalt and manganese could be recovered at the same time, leading to the present invention.

すなわちこの発明は、置換ナフタレンを低級脂肪族モノ
カルボン酸を含有する溶媒中、セリウム、コバルトおよ
びマンガンからなる重金属と臭素を酸化触媒として、分
子状酸素含有ガスにより液相酸化してナフタレンカルボ
ン酸を製造する方法において、酸化反応によって生成し
た反応生成物から溶媒を留去したのち、アルカリ水溶液
を添加してナフタレンカルボン酸を溶解せしめ、不溶の
セリウム、コバルトおよびマンガンを回収し、循環使用
することを特徴とするナフタレンカルボン酸の製造方法
である。
That is, this invention oxidizes substituted naphthalene in a solvent containing a lower aliphatic monocarboxylic acid, using a heavy metal consisting of cerium, cobalt and manganese, and bromine as an oxidation catalyst, and a molecular oxygen-containing gas to produce naphthalene carboxylic acid. In the manufacturing method, after distilling off the solvent from the reaction product produced by the oxidation reaction, an aqueous alkali solution is added to dissolve the naphthalene carboxylic acid, and insoluble cerium, cobalt and manganese are recovered and recycled. This is a characteristic method for producing naphthalenecarboxylic acid.

この発明における原料である置換ナフタレンとしては、
メチル基、エチル基およびイソプロピル基等のアルキル
基、またはアセチル基、ホルミル基などのアシル基を1
個以上有する全ての異性体が使用できる。
The substituted naphthalene that is the raw material in this invention is:
Alkyl groups such as methyl group, ethyl group and isopropyl group, or acyl groups such as acetyl group and formyl group,
All isomers having more than one can be used.

この発明において使用する低級脂肪族モノカルボン酸と
しては、酢酸、プロピオン酸、酪酸等が使用可能である
が、酢酸が好ましい。
As the lower aliphatic monocarboxylic acid used in this invention, acetic acid, propionic acid, butyric acid, etc. can be used, but acetic acid is preferable.

混合して使用する溶剤としては、クロロベンゼン、ブロ
モベンゼンのように酸化に対して比較的安定な溶媒を使
用する。
As the solvent used in combination, a solvent relatively stable against oxidation, such as chlorobenzene and bromobenzene, is used.

酸化触媒としては、セリウム、コバルトおよびマンガン
からなる重金属と、臭素を併用して使用する。これらの
酸化触媒は、溶媒に溶けるものが望ましい、セリウム、
コバルトおよびマンガンについては、酢酸塩、臭化物等
が好ましく、臭素については、臭化カリウム、臭化ナト
リウム等が好ましい。
As the oxidation catalyst, a heavy metal consisting of cerium, cobalt and manganese and bromine are used in combination. These oxidation catalysts are preferably soluble in solvents, such as cerium,
For cobalt and manganese, acetate, bromide, etc. are preferred, and for bromine, potassium bromide, sodium bromide, etc. are preferred.

この発明方法が適用できるNCAとしては、カルボキシ
ル基が1〜4の化合物、すなわち、ナフトエ酸、ナフタ
レンジカルボン酸、ナフタレントリカルボン酸、ナフタ
レンテトラカルボン酸およびそれらの異性体である。
NCAs to which the method of the present invention can be applied are compounds having 1 to 4 carboxyl groups, ie, naphthoic acid, naphthalene dicarboxylic acid, naphthalenetricarboxylic acid, naphthalenetetracarboxylic acid, and isomers thereof.

重金属触媒の回収に使用するアルカリとしては、水酸化
ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カ
リウム、炭酸水素ナトリウムまたは炭酸水素カリウムの
水溶液が使用できる。
As the alkali used for recovering the heavy metal catalyst, an aqueous solution of sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, or potassium bicarbonate can be used.

[作  用] 置換ナフタレンを低級脂肪族モノカルボン酸を含有する
溶媒中、セリウム、コバルトおよびマンガンからなる重
金属と臭素よりなる酸化触媒の存在下、分子状酸素含有
ガスにより液相酸化せしめ、生成した反応生成物から溶
媒を留去したのち、アルカリ水溶液を添加して1〜3時
間反応せしめると、NCAは完全に溶解するが、セリウ
ム、コバルトおよびマンガンは溶解せず、不溶分として
沈殿する。そこで、通常の固液分離装置、例えば、遠心
濾過装置あるいはフィルタープレス等により固液分離す
れば、セリウム、コバルトおよびマンガンは極めて効率
的に分離することができる。そして回収したこれらの重
金属は、そのままで次の酸化反応に循環使用しても、そ
の効果は最初とほとんど変わらない。
[Function] Substituted naphthalene is oxidized in a liquid phase with a molecular oxygen-containing gas in a solvent containing a lower aliphatic monocarboxylic acid in the presence of a heavy metal consisting of cerium, cobalt and manganese, and an oxidation catalyst consisting of bromine. After the solvent is distilled off from the reaction product, an aqueous alkaline solution is added and the reaction is allowed to proceed for 1 to 3 hours. Although NCA is completely dissolved, cerium, cobalt and manganese are not dissolved and precipitate as insoluble components. Therefore, cerium, cobalt, and manganese can be separated extremely efficiently by performing solid-liquid separation using an ordinary solid-liquid separation device, such as a centrifugal filtration device or a filter press. Even if these recovered heavy metals are recycled as they are for the next oxidation reaction, the effect will be almost the same as the initial one.

[発明の効果コ 以上のとおりこの発明方法によれば、セリウム、コバル
トおよびマンガンからなる重金属触媒を、同時にほぼ9
9%以上という高い回収率で回収し、循環使用すること
ができると共に、触媒コストが安価となり、工業的実施
において極めて有利である。
[Effects of the Invention] As described above, according to the method of this invention, a heavy metal catalyst consisting of cerium, cobalt and manganese can be simultaneously
It can be recovered with a high recovery rate of 9% or more and recycled, and the cost of the catalyst is low, which is extremely advantageous in industrial implementation.

[実施例] 実施例1 第1回目の反応 容量0.52のチタン製オートクレーブに、触媒として
酢酸コバルト四水塩4.98 g 、酢酸マンガン四水
塩4.89 g 、酢酸セリウム−水塩6.71g、臭
化カリウム7.14 g 、酢酸カリウム5.91 g
、溶媒として酢酸230gを仕込み、攪拌しながら反応
圧力30 kg/cm2・G、反応温度200℃にて過
剰の空気を吹込みながら、2.6−ジイツプルビルナフ
タレン71.00 gを4時間かけて送入し、そのあと
1時間空気のみを吹込んで第1回目の酸化反応を完結せ
しめた。この反応生成物よりエバポレーターを用いて酢
酸を留去した。そしてその残渣に10%水酸化ナトリウ
ム水溶液1 、200 gを添加して溶解し、1時間還
流したのちアルカリ不溶分を濾別回収し、水洗浄して乾
燥したのち、プラズマ発光分析法により重金属を定量し
たところ、仕込み量に対してセリウム99.8%、コバ
ルト99.7%、マンガン99.9%が含まれていた。
[Example] Example 1 In a titanium autoclave with a first reaction capacity of 0.52, 4.98 g of cobalt acetate tetrahydrate, 4.89 g of manganese acetate tetrahydrate, and 6 cerium acetate hydrate were added as catalysts. .71 g, potassium bromide 7.14 g, potassium acetate 5.91 g
, 230 g of acetic acid was charged as a solvent, and 71.00 g of 2.6-dipurvylnaphthalene was added for 4 hours while stirring and blowing in excess air at a reaction pressure of 30 kg/cm2・G and a reaction temperature of 200°C. After that, only air was blown in for 1 hour to complete the first oxidation reaction. Acetic acid was distilled off from this reaction product using an evaporator. Then, 1.200 g of a 10% aqueous sodium hydroxide solution was added and dissolved in the residue, and after refluxing for 1 hour, the alkali-insoluble matter was collected by filtration, washed with water, dried, and heavy metals were removed using plasma emission spectrometry. When quantitatively determined, it contained 99.8% of cerium, 99.7% of cobalt, and 99.9% of manganese based on the amount charged.

また、濾液に10%塩酸水溶液を添加し、酸性域にする
と固体が析出した。この固体を濾別して水洗浄したのち
、液体クロマトグラフィーを用いて定量したところ、2
,6−ナフタレンジカルボン酸が仕込んだ2,6−ジイ
ツプロビルナフタレンに対して92.7モル%含有され
ていた。
Further, a 10% aqueous hydrochloric acid solution was added to the filtrate to make it in an acidic range, and solids were precipitated. After separating this solid by filtration and washing with water, it was quantified using liquid chromatography.
, 6-naphthalene dicarboxylic acid was contained in an amount of 92.7 mol % based on the charged 2,6-diituprobylnaphthalene.

第2回目以降の反応 第1回目の反応で回収したアルカリ不溶分を、第1回目
の重金属触媒の代替として使用し、臭化カリウム、酢酸
カリウムおよび酢酸を、第1回目の反応と同量仕込み、
第1回目と同様の操作で2.6−ジイツブロビルナフタ
レンを添加し、第1回目と同様の条件で反応せしめた。
Second and subsequent reactions The alkali insoluble matter recovered from the first reaction is used as a substitute for the heavy metal catalyst used in the first reaction, and potassium bromide, potassium acetate, and acetic acid are charged in the same amounts as in the first reaction. ,
2,6-diitubrobylnaphthalene was added in the same manner as in the first time, and the reaction was carried out under the same conditions as in the first time.

そして第1回目と同様の操作により後処理したのち分析
したところ、2,6−ナフタレンカルボン酸の収率は9
1.6%、セリウム、コバルトおよびマンガンの収率は
、第1回目の仕込み量に対し、セリウム99.6%、コ
バルト99.5%、マンガン99.8%であった。
After post-treatment in the same manner as the first time, the yield of 2,6-naphthalenecarboxylic acid was 9.
The yields of cerium, cobalt, and manganese were 99.6% for cerium, 99.5% for cobalt, and 99.8% for manganese based on the first charge.

第3回目以降の反応については、第2回目と同様条件で
順次繰り返し合計10回実施した。
For the third and subsequent reactions, the reaction was repeated 10 times in total under the same conditions as the second reaction.

なお、2,6−ナフタレンジカルボン酸、重金属の定量
は、第5回、第10回に行った。
Note that 2,6-naphthalene dicarboxylic acid and heavy metals were determined in the 5th and 10th tests.

その結果を第1表に示す。The results are shown in Table 1.

第  1  表 件、同一操作によって、重金属触媒を同時に回収して循
環使用し、同様に反応せしめた。
In the first case, a heavy metal catalyst was recovered and recycled at the same time by the same operation, and the reaction was carried out in the same manner.

その結果を第2表に示す。The results are shown in Table 2.

第  2  表 第1表に示すとおり、セリウム、コバルトおよびマンガ
ンのほぼ全量を同時に回収・循環使用することができ、
しかも、2,6−ナフタレンカルボン酸の収率の低下も
殆どない。
Table 2 As shown in Table 1, almost the entire amount of cerium, cobalt and manganese can be recovered and recycled at the same time.
Moreover, there is almost no decrease in the yield of 2,6-naphthalenecarboxylic acid.

実施例2 アルカリとして水酸化ナトリウムに替えて炭酸ナトリウ
ムを使用した以外は、実施例1と同様条第2表に示すと
おり、重金属触媒のほぼ全量を同時に回収・循環使用す
ることができる。
Example 2 Same as Example 1 except that sodium carbonate was used as the alkali instead of sodium hydroxide.As shown in Table 2, almost the entire amount of the heavy metal catalyst can be recovered and recycled at the same time.

実施例3 重金属回収用アルカリとして1.水酸化カリウムを使用
した以外は、実施例1と同様条件、同一操作によって、
重金属触媒を回収して循環使用し、同様に反応せしめた
。その結果を第3表に示す。
Example 3 As an alkali for heavy metal recovery 1. The same conditions and operations as in Example 1 were carried out except that potassium hydroxide was used.
The heavy metal catalyst was recovered, recycled and used for the same reaction. The results are shown in Table 3.

第  3  表 第3表に示すとおり、重金属触媒のほぼ全量を同時に回
収・循環使用することができる。
Table 3 As shown in Table 3, almost the entire amount of heavy metal catalyst can be recovered and recycled at the same time.

実施例4 還流冷却管、ガス吹き込み管、ガス排出管、原料供給管
および攪拌機を有する容量0.52のチタン製のオート
クレーブに、酢酸300g、酢酸コバルト4水塩0.8
77g、酢酸マンガン4水塩0.862g、酢酸セリウ
ム1水塩1.18 g、臭化カリウム0.503 gを
仕込み、反応温度160℃、反応圧力30 kg/cm
2・Gで、メチルナフタレン0.5g/minと空気1
.5N27w1nで供給しながら1時間40分間酸化反
応を行った。
Example 4 300 g of acetic acid and 0.8 g of cobalt acetate tetrahydrate were placed in a titanium autoclave with a capacity of 0.52 and equipped with a reflux condenser tube, a gas blowing tube, a gas discharge tube, a raw material supply tube, and a stirrer.
77 g, manganese acetate tetrahydrate 0.862 g, cerium acetate monohydrate 1.18 g, potassium bromide 0.503 g, reaction temperature 160°C, reaction pressure 30 kg/cm.
2.G, methylnaphthalene 0.5g/min and air 1
.. The oxidation reaction was carried out for 1 hour and 40 minutes while supplying 5N27w1n.

反応終了後、エバポレーターを用いて酢酸を留去し、そ
の残渣に10%水酸化ナトリウム水溶液200gを添加
し、溶解したのち1時間還流せしめた。そしてアリカリ
不溶分を濾別回収して水洗浄して乾燥したのち、プラズ
マ発光分析法により重金属を定量したところ、仕込み量
に対してセリウム99.8%、コバルト99.8%、マ
ンガン99.8%が含まれていた。また、濾液に10%
塩酸水溶液を添加し、酸性域にすると固体が析出した。
After the reaction was completed, acetic acid was distilled off using an evaporator, and 200 g of a 10% aqueous sodium hydroxide solution was added to the residue, dissolved, and then refluxed for 1 hour. After the alkali insoluble matter was collected by filtration, washed with water, and dried, the heavy metals were quantified by plasma emission spectrometry.The results showed that cerium was 99.8%, cobalt was 99.8%, and manganese was 99.8% based on the amount charged. % was included. Also, add 10% to the filtrate.
Aqueous hydrochloric acid solution was added to make the mixture acidic, and a solid precipitated out.

この固体を濾別して水洗浄したのち、液体ガスクロマト
グラフィーを用いて定量したところ、ナフトエ酸が仕込
んだメチルナフタレンに対して88.7モル%含有され
ていた。
After this solid was filtered and washed with water, it was quantified using liquid gas chromatography, and it was found that the content of naphthoic acid was 88.7 mol % based on the charged methylnaphthalene.

第1回目の反応で回収したアルカリ不溶分を、第1回目
の重金属触媒の代替として使用し、臭化カリウム、酢酸
カリウムおよび酢酸を、第1回目の反応と同量仕込み、
第1回目と同様の操作でメチルナフタレンを添加し、第
1回目と同様の条件で反応せしめた。
The alkali insoluble matter recovered in the first reaction was used as a substitute for the heavy metal catalyst in the first reaction, and potassium bromide, potassium acetate, and acetic acid were charged in the same amounts as in the first reaction.
Methylnaphthalene was added in the same manner as in the first time, and the reaction was carried out under the same conditions as in the first time.

そして第1回目と同様の操作により後処理したのち分析
したところ、ナフトエ酸の収率は88.2%、セリウム
、コバルトおよびマンガンの収率は、第1回目の仕込み
量に対し、セリウム99.6%、コバルト99.5%、
マンガン99.8%であった。
After post-treatment in the same manner as in the first round, analysis revealed that the yield of naphthoic acid was 88.2%, and the yield of cerium, cobalt, and manganese was 99.9% compared to the amount charged in the first round. 6%, cobalt 99.5%,
The manganese content was 99.8%.

第3回目以降の反応については、第2回目と同様条件で
順次繰り返し、合計10回実施した。
For the third and subsequent reactions, the reactions were repeated one after another under the same conditions as the second reaction, for a total of 10 reactions.

なお、ナフトエ酸、重金属触媒の定量は、第5回目と第
10回目に行った。その結果を第4表に示す。
Note that the naphthoic acid and heavy metal catalyst were quantified at the 5th and 10th times. The results are shown in Table 4.

第4表に示すとおり、重金属触媒のほぼ全量を同時に回
収・循環使用することができ、しかも、ナフトエ酸の収
率低下も殆どない。
As shown in Table 4, almost the entire amount of the heavy metal catalyst can be recovered and recycled at the same time, and there is almost no decrease in the yield of naphthoic acid.

第  4  表Table 4

Claims (3)

【特許請求の範囲】[Claims] (1)置換ナフタレンを低級脂肪族モノカルボン酸を含
有する溶媒中、セリウム、コバルトおよびマンガンから
なる重金属と臭素を酸化触媒として、分子状酸素含有ガ
スにより液相酸化してナフタレンカルボン酸を製造する
方法において、酸化反応によって生成した反応生成物か
ら溶媒を留去したのち、アルカリ水溶液を添加してナフ
タレンカルボン酸を溶解せしめ、不溶のセリウム、コバ
ルトおよびマンガンを回収し、循環使用することを特徴
とするナフタレンカルボン酸の製造方法。
(1) Naphthalene carboxylic acid is produced by oxidizing substituted naphthalene in a solvent containing a lower aliphatic monocarboxylic acid using a molecular oxygen-containing gas using a heavy metal consisting of cerium, cobalt, and manganese and bromine as an oxidation catalyst. The method is characterized in that after the solvent is distilled off from the reaction product produced by the oxidation reaction, an aqueous alkali solution is added to dissolve the naphthalene carboxylic acid, and insoluble cerium, cobalt and manganese are recovered and recycled. A method for producing naphthalenecarboxylic acid.
(2)アルキル基、アシル基で置換された置換ナフタレ
ンを使用することを特徴とする特許請求の範囲第1項記
載の方法。
(2) The method according to claim 1, characterized in that a substituted naphthalene substituted with an alkyl group or an acyl group is used.
(3)アルカリとして水酸化ナトリウム、炭酸ナトリウ
ム、水酸化カリウム、炭酸水素カリウム、炭酸カリウム
または炭酸水素ナトリウムを使用することを特徴とする
特許請求の範囲第1項または第2項記載の方法。
(3) The method according to claim 1 or 2, characterized in that sodium hydroxide, sodium carbonate, potassium hydroxide, potassium hydrogen carbonate, potassium carbonate, or sodium hydrogen carbonate is used as the alkali.
JP1071268A 1989-03-23 1989-03-23 Purification of naphthalenecarboxylic acid Pending JPH02250850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1071268A JPH02250850A (en) 1989-03-23 1989-03-23 Purification of naphthalenecarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1071268A JPH02250850A (en) 1989-03-23 1989-03-23 Purification of naphthalenecarboxylic acid

Publications (1)

Publication Number Publication Date
JPH02250850A true JPH02250850A (en) 1990-10-08

Family

ID=13455803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1071268A Pending JPH02250850A (en) 1989-03-23 1989-03-23 Purification of naphthalenecarboxylic acid

Country Status (1)

Country Link
JP (1) JPH02250850A (en)

Similar Documents

Publication Publication Date Title
US6153790A (en) Method to produce aromatic dicarboxylic acids using cobalt and zirconium catalysts
KR101169469B1 (en) Extraction process for removal of impurities from mother liquor in the synthesis of carboxylic acid
EP2450342B1 (en) Process for production of a dried carboxylic acid cake suitable for use in polyester production
AU732522B2 (en) Method to produce aromatic carboxylic acids
JPH0240653B2 (en)
KR20040108594A (en) Extraction process for removal of impurities from mother liquor in the synthesis of carboxylic acid
KR20010005647A (en) Process for preparing 2,6-naphthalenedicarboxylic acid
JP2011116792A (en) Method for producing highly pure aromatic polycarboxylic acid
KR20010072217A (en) Improved Process for Producing Pure Carboxylic Acids
US4587355A (en) Oxidation with a solid catalyst
WO2006103693A1 (en) A process for the preparation of p-toluic acid by liquid phase oxidation of p-xylene in water
JPH02250851A (en) Purification of naphthalenecarboxylic acid
JPH02250850A (en) Purification of naphthalenecarboxylic acid
US4754060A (en) Process for producing naphthalenedicarboxylic acid together with trimellitic acid
JPH02233521A (en) Separation and recovery of cerium compound
JPH03240750A (en) Production of high-purity naphthalenecarboxylic acid
JPH02252613A (en) Separating and recovering method of cerium compound
JP4839501B2 (en) Method for producing high purity aromatic polycarboxylic acid
JPH0323216A (en) Method for separating and recovering cerium compound
JP3187212B2 (en) Continuous production method of naphthalenedicarboxylic acid
JPH03223233A (en) Production of naphthalene carboxylic acid ester
JPH0323215A (en) Method for recovering cerium compound
JPH0665143A (en) Production of naphthalendicarboxylic acid
JPS6293249A (en) Production of 2,6-di 2-hydroxy-2-propyl naphthalene
JPH03287565A (en) Method for recovering catalyst for producing naphthalenecarboxylic acid