JPH02248921A - Optical phase modulating element - Google Patents

Optical phase modulating element

Info

Publication number
JPH02248921A
JPH02248921A JP7102089A JP7102089A JPH02248921A JP H02248921 A JPH02248921 A JP H02248921A JP 7102089 A JP7102089 A JP 7102089A JP 7102089 A JP7102089 A JP 7102089A JP H02248921 A JPH02248921 A JP H02248921A
Authority
JP
Japan
Prior art keywords
optical
electric field
electrodes
optical element
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7102089A
Other languages
Japanese (ja)
Other versions
JPH0527089B2 (en
Inventor
Yukio Toyoda
幸夫 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP7102089A priority Critical patent/JPH02248921A/en
Publication of JPH02248921A publication Critical patent/JPH02248921A/en
Publication of JPH0527089B2 publication Critical patent/JPH0527089B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a clear video by arraying electrodes in parallel on the surface of a substrate which has electrooptic effect and arranging exposed optical element in a flat-plate shape so that the electric field directions of adjacent elements are different from each other. CONSTITUTION:One plane plate is constituted by arranging a couple of optical elements 11 and 13 in parallel and the electrodes 12 and 14 are arrayed in parallel and exposed on the substrate surface. Then the laminating directions of the electrodes 12 and 14 are intersected orthogonally with each other so that the electric field directions are intersected orthogonally with each other. Namely, the electric field directions of the couple of optical elements 11 and 13 are intersected orthogonally with each other, so the influence of the light diffraction of those optical element is reduced. Consequently, image parts in an X and a Y direction never become unclear and the clear video is formed on a screen 6.

Description

【発明の詳細な説明】 利用産業分野 この発明は、立体テレビ、光切換えスイッチ等に用いる
光位相変調器を構成する光位相変調素子に係り、特に電
気光学効果を有する基板表面に、複数の電極を平行に配
列して露出する複数の光素子を、例えば電界方向が直交
するよう配置して構成し、鮮明な映像を変調透過でき立
体テレビ等にて立体感を著しく向上させ得る光位相変調
素子に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Application This invention relates to an optical phase modulation element constituting an optical phase modulator used in stereoscopic televisions, optical changeover switches, etc. An optical phase modulation element that is configured by arranging a plurality of optical elements that are exposed by arranging them in parallel, for example, so that the electric field directions are orthogonal, and that can modulate and transmit clear images and significantly improve the stereoscopic effect on stereoscopic televisions, etc. Regarding.

電気光学効果を利用した光位相変調素子は、光伝送路の
入射光を遮断、選択、変換するために用いられ、(Pb
LaXZrTi)03、LiNbO3、B112Si0
20等のセラミックス基板からなり、電界方向が入射光
の偏光方向(電界方向)と45°の交差角度を形成して
なる光素子を配置して構成され、立体テレビ、光切換え
スイッチなどの多用途の適用が考えられている。
An optical phase modulation element that utilizes the electro-optic effect is used to block, select, and convert incident light on an optical transmission line.
LaXZrTi)03, LiNbO3, B112Si0
It is made of a ceramic substrate such as No. 20, and is constructed by arranging optical elements whose electric field direction forms an intersection angle of 45 degrees with the polarization direction (electric field direction) of incident light. are being considered for application.

光位相変調素子を立体テレビに採用した場合の一例を第
4図に示す。
FIG. 4 shows an example in which an optical phase modulation element is used in a three-dimensional television.

すなわち、光源(CRTXI)から発せられた光(映像
)は、レンズ(2X3)を介して偏光板(4)に入射す
るが、この際、所定方向に電界を有する光のみが透過し
て光素子(5)に達する。
That is, the light (image) emitted from the light source (CRTXI) enters the polarizing plate (4) through the lens (2x3), but at this time, only light having an electric field in a predetermined direction is transmitted and the light is transmitted through the optical element. (5) is reached.

さらに、光素子(5)に入射した光は、該光素子(5)
に所定の電圧が印加されると、各電極間に形成される電
界により、光の電界方向を90°回転して透過しスクリ
ーン(6)に達する。
Furthermore, the light incident on the optical element (5)
When a predetermined voltage is applied to the screen (6), due to the electric field formed between each electrode, the direction of the electric field of the light is rotated by 90 degrees and transmitted, reaching the screen (6).

従来技術の問題点 背景技術 例えば、光源(CRTXI)から十字の映像を出した場
合を想定し、光素子(5)を透過する光の様子を、その
光路を模式的に示す第5図の斜視説明図に基づいて説明
する。
Problems with the Prior Art Background Art For example, assuming a case where a cross image is emitted from a light source (CRTXI), the perspective view of FIG. 5 schematically shows the optical path of the light passing through the optical element (5). The explanation will be based on an explanatory diagram.

第5図に示す光素子(5)は、電気光学効果を有する短
冊状の基板素子(7)と、Ni等の金属箔からなる電極
(8)を交互に積層固着し、該電極(8)が光透過面方
向に貫通した、いわゆる積層電極構成からなっている。
The optical element (5) shown in FIG. 5 is made by alternately laminating and fixing a strip-shaped substrate element (7) having an electro-optic effect and an electrode (8) made of metal foil such as Ni. It has a so-called laminated electrode configuration in which the electrodes penetrate in the direction of the light transmitting surface.

この構成からなる光素子(5)は各電極(8)に電圧を
印加することによって、図中Y方向に電界を形成するこ
とになる。
The optical element (5) having this configuration forms an electric field in the Y direction in the figure by applying a voltage to each electrode (8).

ここで、偏光子(第4図の符号4参照)を通過した光(
映像)が、図示の如く十字の場合、上記積層電極構成か
らなる光素子(5)を通過し、スクリーン(6)上に形
成される映像のX方向の部分(図中斜線部)が非常に不
鮮明となることが確認されている。
Here, the light that has passed through the polarizer (see number 4 in Figure 4) (
When the image (image) is a cross as shown in the figure, the portion in the X direction (the shaded area in the figure) of the image that passes through the optical element (5) having the laminated electrode structure and is formed on the screen (6) is very large. It has been confirmed that the image becomes unclear.

また、図示しないが電界方向が、第5図中X方向に形成
される光素子(第2図a図参照)を用いた場合には、ス
クリーン上に形成される映像のY方向の部分(第5図中
黒部)が非常に′不鮮明となる。
Furthermore, although not shown, when using an optical element in which the electric field direction is formed in the X direction in FIG. The black area in Figure 5) becomes very unclear.

上述の如〈従来から知られる電界方向が一方向に限られ
た光素子を用いた構成では、その電界方向と直交する方
向の映像が不鮮明となり、本来立体テレビに要求される
立体感を得ることが困雌となり、かかる光素子の構成を
改善することが強く望まれていた。
As mentioned above, in the conventional configuration using an optical element in which the electric field direction is limited to one direction, the image in the direction perpendicular to the electric field direction becomes unclear, making it difficult to obtain the three-dimensional effect originally required for three-dimensional television. However, there has been a strong desire to improve the structure of such optical devices.

さらに第2図a図、第5図に示す積層電極構成からなる
光素子のほか、電気光学効果を有する基板表面に形成さ
れた溝部に金属膜をめっき法等にて被着形成したいわゆ
る溝型電極構成(第2図す図参照)、基板の表面に金属
膜をスパッタ法等にて被着形成したいわゆる平面電極構
成(第2図C図参照)を有する等公知のいずれの光素子
においても、基板表面(光透過面)に複数の電極を平行
に配列して露出する構成からなり、電界方向が一方向に
限られた光素子を用いた光位相変調器では上記の如き現
象が発生することを確認した。
Furthermore, in addition to optical devices having the laminated electrode structure shown in FIG. 2a and FIG. In any of the known optical elements, such as an electrode configuration (see Figure 2) or a so-called planar electrode configuration (see Figure 2C) in which a metal film is deposited on the surface of a substrate by sputtering or the like. The above phenomenon occurs in an optical phase modulator that uses an optical element that has a configuration in which multiple electrodes are arranged in parallel and exposed on the substrate surface (light-transmitting surface), and the electric field direction is limited to one direction. It was confirmed.

発明の目的 この発明は、上記現状に鑑み提案するもので、光位相変
調素子の光透過面に入射する光(映像)のすべてを光透
過面の部位の違いにかかわらず完全に均一に変調し、特
に立体テレビに採用した際に、立体感のある鮮明な映像
が得られる光位相変調素子の提供を目的とする。
Purpose of the Invention The present invention is proposed in view of the above-mentioned current situation, and is a method to completely uniformly modulate all the light (image) incident on the light transmission surface of an optical phase modulation element regardless of the difference in the part of the light transmission surface. The object of the present invention is to provide an optical phase modulation element that can provide clear images with a three-dimensional effect, especially when used in a three-dimensional television.

発明の概要 本発明者は、上述した第5図に示す光素子(5)の構成
を詳細に検討した結果、各電極(8)間に位置する基板
素子(7)が実質的に回折格子となり、該光素子(5)
を通過する光が光回折の影響を受は結果的にその一部が
不鮮明となることを確認した。
Summary of the Invention As a result of a detailed study of the configuration of the optical element (5) shown in FIG. , the optical element (5)
It was confirmed that the light passing through is affected by optical diffraction, resulting in a part of it becoming unclear.

平面電極構成、溝型電極構成からなる光素子においても
同様に光回折の影響によるものと推測される。
It is presumed that this is also caused by the influence of light diffraction in optical elements having a planar electrode configuration or a groove-type electrode configuration.

そこで、発明者は上記の各光素子の光透過面を複数に分
割し、各々分割された部分に発生する電界の方向が異な
るよう電極の配置構成に工夫をしたところ、光回折の影
響が低減されることを知見し、例えば、隣接する一対の
光素子の電界方向を直交するように板状に配置した構成
とすると、目的とする鮮明な映ず象が得られることを知
見し、この発明を完成した。
Therefore, the inventor divided the light transmission surface of each of the above optical elements into multiple parts, and devised an arrangement of electrodes so that the direction of the electric field generated in each divided part was different, thereby reducing the effect of light diffraction. For example, they found that if a pair of adjacent optical elements are arranged in a plate-like configuration so that the electric field directions are orthogonal to each other, the desired clear image can be obtained, and the present invention has been made. completed.

すなわち、この発明は、 電気光学効果を有する基板表面に、複数の電極を平行に
配列して露出する光素子を、隣接する素子の電界方向が
相互に異なるように平板状に並列したことを特徴とする
光位相変調素子である。
That is, the present invention is characterized in that optical elements each having a plurality of electrodes arranged in parallel and exposed on the surface of a substrate having an electro-optic effect are arranged in a flat plate shape such that the electric field directions of adjacent elements are different from each other. This is an optical phase modulation element.

図面に基づ〈発明の開示 第1図a−d図には積層電極構成の光素子を用いて構成
したこの発明による光位相変調素子の実施例を示してい
る。
Based on the Drawings (Disclosure of the Invention) FIGS. 1A to 1D show an embodiment of an optical phase modulation element according to the present invention constructed using an optical element having a laminated electrode structure.

第2図a−c図は光素子の斜視説明図である。FIGS. 2a-2c are perspective explanatory views of the optical element.

第3図はこの発明による光位相変調素子を透過する光の
様子を模式的に示す斜視説明図である。
FIG. 3 is a perspective view schematically showing the state of light passing through the optical phase modulation element according to the present invention.

構成 第1図a図に示す光位相変調素子(10)は、従来の光
位相変調器に使用される光素子の光透過面を図で左右方
向に2分割した広さの面積を有する一対の光素子(11
X13)を並列して一枚の平板状に構成したもので、そ
れぞれ基板表面に複数の電極(12X14)を平行に配
列して露出するが、互いに電界方向が直交するように電
極(12X14)の積層方向が直交している。
Structure The optical phase modulation element (10) shown in Figure 1a is a pair of optical phase modulators each having an area as wide as dividing the light transmitting surface of an optical element used in a conventional optical phase modulator into two in the left and right direction in the figure. Optical element (11
A plurality of electrodes (12 x 14) are arranged in parallel and exposed on the surface of each substrate. The stacking directions are orthogonal.

a図において、光素子(11)に形成される電界方向は
図中上下(Y)方向で、光素子(13)に形成される電
界方向は図中左右(X)方向となる。
In figure a, the direction of the electric field formed in the optical element (11) is in the vertical (Y) direction in the figure, and the direction of the electric field formed in the optical element (13) is in the left-right (X) direction in the figure.

同す図の光位相変調素子(20)は、第1図と同様に一
対の光素子(21X22)とからなるが、それぞれ光透
過面を図で上下方向に2分割した広さの面積を有し、隣
接する素子の電界方向が相互に直交するよう平板状に並
列してあり、上部の光素子(21)に形成される電界方
向は図中上下(Y)方向、下部の光素子(22)に形成
される電界方向は図中左右(X)方向となる。
The optical phase modulation element (20) in the same figure consists of a pair of optical elements (21 x 22) as in Fig. 1, but each has an area as wide as dividing the light transmitting surface into two in the vertical direction in the figure. However, the electric field directions of adjacent elements are arranged in parallel to each other in a flat plate shape, and the direction of the electric field formed in the upper optical element (21) is the vertical (Y) direction in the figure, and the direction of the electric field formed in the lower optical element (22) is ) is the direction of the electric field formed in the left-right (X) direction in the figure.

同C図の光位相変調素子(30)は、光透過面を16分
割した広さの面積を有する16つの光素子(31X32
)・・・・・・(35X36)・・・・・・(図では1
部のみを示す)からなり、隣接する素子の電界方向が相
互に直交するように平板状に並列する構成からなる。
The optical phase modulation element (30) in Figure C consists of 16 optical elements (31 x 32
)...(35X36)...(1 in the figure)
(only portions are shown), which are arranged in parallel in a flat plate shape so that the electric field directions of adjacent elements are orthogonal to each other.

すなわち、光位相変調素子(30)の光透過面は16分
割されているが、例えば、図示している4面のみを考え
ると、光素子(31X36)及び(32X35)に形成
される電界方向はそれぞれ同一のため、実質的に光透過
面を2分割した第1図及び第2図の構成と同様な効果を
得ることができる。
That is, the light transmission surface of the optical phase modulation element (30) is divided into 16 parts, but for example, considering only the four surfaces shown in the figure, the direction of the electric field formed in the optical element (31X36) and (32X35) is Since they are the same, it is possible to obtain substantially the same effect as the configuration shown in FIGS. 1 and 2 in which the light transmitting surface is divided into two.

理論的にはこの分割数をできるだけ多くするこ゛とによ
って、−層映像の鮮明度を向上させることが可能となる
が、実装に際しては、各光素子が小さくなり電極への配
線等、組立てが煩雑になるばかりでなく、互いの隣接す
る光素子間からの漏れ光の増大を招くことから、これら
の分割数を、要求される形状寸法や光学的特性等に応じ
て適宜選定することが望ましい。
Theoretically, it is possible to improve the clarity of the -layer image by increasing the number of divisions as much as possible, but when it comes to implementation, each optical element becomes smaller and the assembly, such as wiring to electrodes, becomes more complicated. Not only this, but also an increase in light leakage from adjacent optical elements is caused, so it is desirable to select the number of divisions as appropriate depending on the required dimensions, optical characteristics, etc.

第1図d図に示す光位相変調素子(40)は、同a図と
同様に光透過面を図で左右方向に2分割した広さの面積
を有する一対の光素子(41X43)とからなるが、隣
接する素子の電界方向が相互に異なるように平板状に並
列しである。
The optical phase modulation element (40) shown in Fig. 1d consists of a pair of optical elements (41 x 43) having an area as wide as the light transmitting surface divided into two in the left and right direction in the same way as in Fig. 1a. However, the elements are arranged in parallel in a flat plate shape so that the electric field directions of adjacent elements are different from each other.

さらに、一対の光素子(41X43)の各基板表面には
複数の電極(42X44)を平行に配列して露出して、
それぞれの電極(42X44)の積層方向は図で上下線
に対して45e′傾斜しているが、互いに電界方向が直
交している。
Furthermore, a plurality of electrodes (42x44) are arranged in parallel and exposed on the surface of each substrate of the pair of optical elements (41x43).
Although the stacking direction of each electrode (42×44) is inclined by 45e' with respect to the vertical line in the figure, the electric field directions are orthogonal to each other.

かかる構成の光位相変調素子(40)も第1図a図、b
図の構成と同様の効果を有し、前述の0図の如き分割数
の多い構成とすることもできる。
The optical phase modulation element (40) having such a configuration is also shown in FIGS. 1a and 1b.
It has the same effect as the configuration shown in the figure, and can also be configured with a large number of divisions as in the above-mentioned figure 0.

あるいは前記0図の構成において、各小光素子のいくつ
かをd図の如き電界方向の組み合せの光素子を配列して
、隣接する素子の電界方向が相互に異なるように平板状
に並列する構成とするのもよい。
Alternatively, in the configuration shown in Fig. 0, some of the small optical elements are arranged in combinations of electric field directions as shown in Fig. d, and arranged in parallel in a flat plate shape so that the electric field directions of adjacent elements are different from each other. It is also good to say.

この発明において、電気光学効果を有する基板表面に複
数の電極を平行に配列して露出する少なくとも一対の光
素子としては、それぞれ(PbLaXZrTi)Os(
以下PLZTという)、LiNbO3、B112Si0
20等の電気光学効果を有する公知のセラミックス基板
が適用可能であり、表面に露出配置する電極も、種々方
法にて設けることができる。
In this invention, at least a pair of optical elements each having a plurality of electrodes arranged in parallel and exposed on the surface of a substrate having an electro-optic effect are each made of (PbLaXZrTi)Os(
(hereinafter referred to as PLZT), LiNbO3, B112Si0
A known ceramic substrate having an electro-optic effect such as No. 20 can be used, and the electrodes exposed on the surface can also be provided by various methods.

例えば、第2図a図に示すように、短冊状の基板素子(
51)とNi等の金属箔電極(52)を交互に積層固着
し、電極(52)が光透過面方向に貫通した積層電極構
成の光素子(50)、同す図に示す如く、基板(53)
表面に所定間隔で溝部(54)を設け、該溝部(54)
に導電性ペーストあるいはCu等の金属膜からなる電極
(55)を設けた、所謂溝型電極構成の光素子、あるい
は、同C図に示す如く、基板(56)の表面に、Ni、
 Cu等の金属膜の平面電極(57)を蒸着、スパッタ
法にて被着形成した、所謂平面電極構成の光素子等、公
知の光素子を採用することができる。
For example, as shown in Figure 2a, a strip-shaped substrate element (
51) and metal foil electrodes (52) such as Ni are alternately laminated and fixed, and the electrode (52) penetrates in the direction of the light transmitting surface. 53)
Grooves (54) are provided on the surface at predetermined intervals, and the grooves (54)
An optical element with a so-called groove electrode structure, in which an electrode (55) made of a conductive paste or a metal film such as Cu is provided on the surface of the substrate (56), or as shown in FIG.
It is possible to employ a known optical element, such as an optical element having a so-called plane electrode structure, in which a plane electrode (57) of a metal film such as Cu is deposited by vapor deposition or sputtering.

作用・効果 上述した構成のうち第1図a図に示したこの発明による
光位相変調素子を立体テレビに採用した場合、第3図に
示す如く、偏光子(図示せず)を通過した光(映像)は
、一対の光素子(11X13)のいずれをも通過してス
クリーン(6)に到達する。
Effects and Effects When the optical phase modulation element according to the present invention shown in FIG. 1A of the above-described configuration is adopted in a stereoscopic television, as shown in FIG. 3, the light ( The image (image) passes through both of the pair of optical elements (11×13) and reaches the screen (6).

上記一対の光素子(11X13)は互いに電界の方向が
直交しているため、それぞれの光素子の光回折による影
響を低減し、図中左右(X)方向、上下(Y)方向のい
ずれの映像部分も不鮮明になることなく、スクリーン(
6)上に鮮明な映像を形成することができる。
Since the directions of the electric fields of the pair of optical elements (11 x 13) are orthogonal to each other, the influence of light diffraction of each optical element is reduced, and the image in either the left/right (X) direction or the up/down (Y) direction in the figure is The screen (
6) A clear image can be formed on the screen.

実施例 電極間距離0.5mm、厚み(光路長さ)0.5mmと
なるように多数のPLZT基板間に2−厚みのNi電極
を挾み、50mmX50mm寸法の光透過平面を有する
第5図に示す従来の光位相変調素子を作製した。
Example A 2-thick Ni electrode was sandwiched between a number of PLZT substrates so that the distance between the electrodes was 0.5 mm and the thickness (light path length) was 0.5 mm. The conventional optical phase modulation device shown in the figure was fabricated.

また、電極間距離0.5mm、厚み(光路長さ)0.5
mmとなるように多数のPLZT基板間に2弾厚みのN
i電極を挟み、50mmX25mm寸法の光透過平面を
有し、50mmの長手方向に電極の積層方向を設定した
ものと、25mmの短辺方向に電極の積層方向を設定し
たものとを組合せて、第1図a図と同構成の光位相変調
素子を作製した。
In addition, the distance between the electrodes is 0.5 mm, and the thickness (optical path length) is 0.5 mm.
Two bullets of N between a large number of PLZT substrates so that
A light transmitting plane with dimensions of 50 mm x 25 mm is placed between the i-electrodes, and the lamination direction of the electrodes is set in the longitudinal direction of 50 mm, and the lamination direction of the electrodes is set in the short side direction of 25 mm. An optical phase modulation element having the same configuration as that in Figure 1a was fabricated.

上記の各素子をプロジェクタ−に使用したところ、従来
の素子の場合は、第5図の場合と同様に横方向の解像度
が縦方向の175程度に低下した。
When each of the above elements was used in a projector, in the case of the conventional element, the resolution in the horizontal direction was reduced to about 175 in the vertical direction, as in the case of FIG.

これに対して、この発明による素子の場合は、縦及び横
の解像度が同程度となり、極めて鮮明な映像が得られた
On the other hand, in the case of the element according to the present invention, the vertical and horizontal resolutions were approximately the same, and extremely clear images were obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a−d図には積層電極構成の光素子を用いて構成
したこの発明による光位相変調素子の実施例を示してい
る。 第2図a−c図は光素子の斜視説明図である。 第3図はこの発明による光位相変調素子を透過する光の
様子を模式的に示す斜視説明図である。 第4図は光位相変調素子を立体テレビに採用した場合の
光路説明図である。 第5図は従来の光素子を透過する光の様子を模式的に示
す斜視説明図である。 1・・・光源、2,3・・・レンズ、4・・・偏光子、
5・・・光素子、6・・・スクリーン、10,20,3
0,40・・・光位相変調素子、11.13,21,2
2,31,32,35,36・・・光素子、12.14
,42,44・・・電極。
FIGS. 1A to 1D show an embodiment of an optical phase modulation element according to the present invention constructed using an optical element having a laminated electrode structure. FIGS. 2a-2c are perspective explanatory views of the optical element. FIG. 3 is a perspective view schematically showing the state of light passing through the optical phase modulation element according to the present invention. FIG. 4 is an explanatory diagram of the optical path when the optical phase modulation element is employed in a three-dimensional television. FIG. 5 is a perspective view schematically showing how light passes through a conventional optical element. 1... Light source, 2, 3... Lens, 4... Polarizer,
5... Optical element, 6... Screen, 10, 20, 3
0,40... Optical phase modulation element, 11.13,21,2
2, 31, 32, 35, 36... optical element, 12.14
, 42, 44...electrode.

Claims (1)

【特許請求の範囲】 1 電気光学効果を有する基板表面に、複数の電極を平行に
配列して露出する光素子を、隣接する素子の電界方向が
相互に異なるように平板状に並列したことを特徴とする
光位相変調素子。
[Claims] 1. Optical elements in which a plurality of electrodes are arranged in parallel and exposed on the surface of a substrate having an electro-optical effect are arranged in a flat form in such a way that the electric field directions of adjacent elements are different from each other. Characteristic optical phase modulation element.
JP7102089A 1989-03-22 1989-03-22 Optical phase modulating element Granted JPH02248921A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7102089A JPH02248921A (en) 1989-03-22 1989-03-22 Optical phase modulating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7102089A JPH02248921A (en) 1989-03-22 1989-03-22 Optical phase modulating element

Publications (2)

Publication Number Publication Date
JPH02248921A true JPH02248921A (en) 1990-10-04
JPH0527089B2 JPH0527089B2 (en) 1993-04-20

Family

ID=13448421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7102089A Granted JPH02248921A (en) 1989-03-22 1989-03-22 Optical phase modulating element

Country Status (1)

Country Link
JP (1) JPH02248921A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5762482U (en) * 1980-09-29 1982-04-13
JPS57172316A (en) * 1981-04-17 1982-10-23 Yokogawa Hokushin Electric Corp Image pickup device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5762482U (en) * 1980-09-29 1982-04-13
JPS57172316A (en) * 1981-04-17 1982-10-23 Yokogawa Hokushin Electric Corp Image pickup device

Also Published As

Publication number Publication date
JPH0527089B2 (en) 1993-04-20

Similar Documents

Publication Publication Date Title
US4127322A (en) High brightness full color image light valve projection system
EP0608458B1 (en) A method of operating an optical modulator device
JPS62500123A (en) Electro-optical device for scanning multiple light beams and modulating information
CA2307880A1 (en) Discrete element light modulating microstructure devices
EP0075015A1 (en) Liquid crystal light valve with birefringence compensation
JP2000171824A (en) Spatial light modulating device
CN112099285A (en) Liquid crystal lens device and virtual reality zooming method
JP2012098394A (en) Liquid crystal lens array element and method for driving the same, and stereoscopic image display device
US3272917A (en) First and second order diffraction color projection system
US7057787B2 (en) Architecture for large-FOR EO-crystal-based agile beam steering
KR900003956A (en) Video projection device
US4993811A (en) Ridge array light valve device
US6657693B1 (en) Liquid crystal display
US3449038A (en) Electro-optical switching devices
CA1075388A (en) Electro-optic matrix display
US6486996B1 (en) Discrete element light modulating microstructure devices
JPH02248921A (en) Optical phase modulating element
CN112305778B (en) Method and system for expanding field angle of integrated imaging three-dimensional display system
JPS58500883A (en) Improved high-resolution light valve device for electronic imaging
US3305630A (en) Deformable medium color projection system
JP3982571B2 (en) Wide viewing angle LCD
JPS6318171B2 (en)
JPH09159980A (en) Double-surface type electro-optic moduation array
JPH06265927A (en) Liquid crystal spatial light modulator
CN116626940A (en) Liquid crystal wave plate and driving method thereof