JPH02248437A - Foamed heat-insulation material - Google Patents

Foamed heat-insulation material

Info

Publication number
JPH02248437A
JPH02248437A JP1069742A JP6974289A JPH02248437A JP H02248437 A JPH02248437 A JP H02248437A JP 1069742 A JP1069742 A JP 1069742A JP 6974289 A JP6974289 A JP 6974289A JP H02248437 A JPH02248437 A JP H02248437A
Authority
JP
Japan
Prior art keywords
gas
fluorocarbon
insulation material
carbon dioxide
foamed heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1069742A
Other languages
Japanese (ja)
Other versions
JP2718985B2 (en
Inventor
Kazuto Uekado
一登 上門
Hideo Nakamoto
中元 英夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP6974289A priority Critical patent/JP2718985B2/en
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to DE69027972T priority patent/DE69027972T2/en
Priority to PCT/JP1990/000376 priority patent/WO1990011320A1/en
Priority to EP90904679A priority patent/EP0424539B1/en
Priority to US07/602,248 priority patent/US5109032A/en
Priority to KR1019900702499A priority patent/KR940002885B1/en
Priority to AU52650/90A priority patent/AU614691B2/en
Publication of JPH02248437A publication Critical patent/JPH02248437A/en
Application granted granted Critical
Publication of JP2718985B2 publication Critical patent/JP2718985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/04Arrangements using dry fillers, e.g. using slag wool which is added to the object to be insulated by pouring, spreading, spraying or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PURPOSE:To obtain a foamed heat-insulation material while reducing the amount of a fluorocarbon blowing agent used by mixing under agitation a specified premix component containing a fluorocarbon blowing agent with a isocyanate component comprising hydrophobic zeolite and an organic polyisocyanate. CONSTITUTION:A foamed heat-insulation material is produced by mixing a premix component comprising a polyether, a foam stabilizer, a catalyst, water and a fluorocarbon blowing agent under agitation with an isocyanate component comprising zeolite rendered hydrophobic by surface treatment with a silicone. According to the above process, the amount of the fluorocarbon blowing agent used can be reduced by effectively utilizing carbon dioxide produced by the reaction of water with the organic polyisocyanate as a blowing gas, and the carbon dioxide remaining in cells can be removed by the gradual adsorption by the hydrophobic zeolite. Therefore, the thermal conductivity of the gas in cells can be decreased to improve the thermal conductivity of the obtained foamed heat-insulation material, so that a foamed heat-insulation material having excellent heat insulating performances can be provided. Therefore, it can contribute to the solution of a fluorocarbon pollution problem and also to the energy saving.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷蔵庫、冷凍庫等に用いる発泡断熱材に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a foamed heat insulating material used in refrigerators, freezers, etc.

従来の技術 近年、省エネルギーの観点より発泡断熱材の熱伝導率を
低減し、断熱性を向上させるというニーズがあると同時
に、発泡剤であるフロンの使用量を削減し、フロンの影
響によるオゾン破壊及び地球の温暖化等の環境問題の改
善に寄与していくことが極めて重要なテーマとなってい
る。
Conventional technology In recent years, there has been a need to reduce the thermal conductivity of foamed insulation materials and improve their insulation properties from the perspective of energy conservation. Contributing to the improvement of environmental problems such as global warming and global warming has become an extremely important theme.

このため、代表的な発泡断熱材である硬質ウレタンフオ
ームの製造にあたっては、主原料として用いるポリオー
ルや有機ポリイソシアネート、助剤原料である整泡剤、
触媒1発泡剤に対し、種々の改善地組みがなされている
。基本的に、硬質ウレタンフオームの熱伝導率を低減す
るには、気泡中のガス成分の気体熱伝導率を改善するこ
とが重要であゃ、特に発泡剤としてトリクロロフルオロ
メタン(以下R−11と称する)を用い、R−11ガス
でフオーム気泡中を満たすことが効果的手段とされてき
た。しかしながら一方においてはフロン公害問題等の見
地よりフロン使用量を減らすためには、有機ポリイソシ
アネートと水との反応によって得られる炭酸ガスを発泡
剤の一部として用いることも可能である。しかし、この
ような構成においては、炭酸ガスが発泡断熱材の気泡内
に残存するため発泡断熱材の断熱性能は低いものとなる
For this reason, in the production of rigid urethane foam, which is a typical foam insulation material, polyols and organic polyisocyanates are used as main raw materials, foam stabilizers are used as auxiliary raw materials,
Various improvements have been made to Catalyst 1 blowing agents. Basically, in order to reduce the thermal conductivity of rigid urethane foam, it is important to improve the gas thermal conductivity of the gas component in the bubbles. Filling the foam bubbles with R-11 gas has been considered an effective means. However, on the other hand, in order to reduce the amount of fluorocarbon used from the viewpoint of fluorocarbon pollution, it is also possible to use carbon dioxide gas obtained by the reaction of organic polyisocyanate and water as part of the blowing agent. However, in such a configuration, the carbon dioxide gas remains in the cells of the foamed heat insulating material, so that the heat insulating performance of the foamed heat insulating material is low.

このような課題解決のアプローチとして例えば、特開昭
57−49628号公報で示されるように吸着剤で不純
ガス成分を除く方法が提案されている。すなわち、ゼオ
ライト等から成る吸着剤を原料中にあらかじめ混合し、
発泡時に発生した炭酸ガスを吸着剤にて吸着除去し、結
果的にフロンガスで気泡内を満たすことにより断熱性を
向上させることが特徴となっている。
As an approach to solving this problem, a method of removing impure gas components using an adsorbent has been proposed, for example, as shown in Japanese Patent Application Laid-Open No. 57-49628. That is, an adsorbent made of zeolite etc. is mixed into the raw material in advance,
The carbon dioxide gas generated during foaming is adsorbed and removed by an adsorbent, and as a result, the bubbles are filled with chlorofluorocarbon gas, thereby improving insulation properties.

発明が解決しようとする課題 上記特開昭67−49628号公報における気泡内ガス
のフロンガス純化のメカニズムを考察するならば、まず
、ゼオライト等から成る炭酸ガス吸着剤は、炭酸ガスを
吸着する以上に水分を選択優先的に吸着するため、主た
る炭酸ガス発生因子である水分とイソシアネートとの反
応においては、原料混合時に即座に水分が吸着剤に吸着
されてしまい、炭酸ガスの生成そのものを起こさせない
Problems to be Solved by the Invention If we consider the mechanism of fluorocarbon purification of the gas inside the bubbles in the above-mentioned Japanese Patent Application Laid-open No. 67-49628, firstly, the carbon dioxide adsorbent made of zeolite etc. can absorb more than carbon dioxide gas. Since water is selectively and preferentially adsorbed, in the reaction between water and isocyanate, which is the main factor in generating carbon dioxide gas, water is immediately adsorbed by the adsorbent when raw materials are mixed, preventing the generation of carbon dioxide gas itself.

すなわち、あらかじめゼオライトを添加した有機ポリソ
シアネートと、水添加したポリオ−p成分を瞬時に混合
して発泡に供しても、泡化開始の時点では、すでに水分
はゼオライトに吸着脱水され、フロン単独発泡と同じ形
態で発泡が行なわれる。
In other words, even if an organic polysocyanate to which zeolite has been added in advance and a polyop-p component to which water has been added are instantaneously mixed and subjected to foaming, water has already been adsorbed and dehydrated by the zeolite by the time foaming begins, and fluorocarbons alone Foaming is carried out in the same form as foaming.

さらには、泡化時の重合過程でカルボジイミド反応が微
量の炭酸ガスを発生させるが、このようなガスは容易に
吸着される結果、気泡内ガスの純化が行なわれ、優れた
断熱性能が得られる。
Furthermore, during the polymerization process during foaming, the carbodiimide reaction generates a small amount of carbon dioxide gas, but this gas is easily adsorbed, purifying the gas inside the bubbles and providing excellent insulation performance. .

よって、特開昭57−49628号公報は脱水により主
たるco2発生の原因を取り除き、かつ、カルボジイミ
ド反応によって微量に発生するCO2を除く点で気泡内
ガスをフロンガスに純化でき、断熱性能向上が図れるも
のである。しかしながら炭酸ガスを発泡ガスとして利用
する点においては、炭酸ガスの発生量がカルボジイミド
反応における微量なものに限定されるため、結果的にフ
ロン使用量の低減が困難となる問題があった。故に発泡
ガスとしての炭酸ガス利用を図る点と、気泡内ガスのフ
ロン純化という課題、すなわち、フロン問題解決のため
のフロン量削減と、高断熱化の両立に関しては、特開昭
67−49628号公報では実現困難であり、この技術
確立が大きな課題である。
Therefore, Japanese Patent Application Laid-Open No. 57-49628 removes the main cause of CO2 generation through dehydration, and also purifies the gas inside the bubbles into chlorofluorocarbon gas by removing the trace amount of CO2 generated by the carbodiimide reaction, which improves insulation performance. It is. However, in using carbon dioxide gas as a foaming gas, the amount of carbon dioxide gas generated is limited to a trace amount in the carbodiimide reaction, and as a result, there is a problem in that it is difficult to reduce the amount of fluorocarbon used. Therefore, regarding the use of carbon dioxide gas as a foaming gas and the problem of purifying fluorocarbon gas in the bubbles, that is, reducing the amount of fluorocarbons to solve the fluorocarbon problem and achieving high insulation, please refer to Japanese Patent Application Laid-Open No. 67-49628. This is difficult to achieve using the official gazette, and establishing this technology is a major challenge.

課題を解決するだめの手段 本発明は、上記課題を解決するために、シリコーンによ
り表面処理した疎水化ゼオライトから成る吸着剤を添加
混合したイソシアネート成分と、ポリエーテル、整泡剤
、触媒、水、フロン発泡剤を混合したプレミックス成分
とを混合し、発泡断熱材を得るものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides an isocyanate component mixed with an adsorbent made of hydrophobized zeolite surface-treated with silicone, polyether, a foam stabilizer, a catalyst, water, A foamed heat insulating material is obtained by mixing a premix component containing a freon foaming agent.

作  用 上記構成によって、シリコーンにより表面処理した疎水
化ゼオライトは、水に対し不活性であり、脱水吸着はな
く水と有機ポリイソシアネートとの反゛応を阻害するこ
とはない。この結果、発泡時においては、有機ポリイソ
シアネートと水との反応によって得られる炭酸ガスを利
用することができフロン発泡剤の使用量は削減可能であ
る。そして、泡化後、疎水化ゼオライトにより炭酸ガス
が吸着除去され、気泡内ガスのフロンガスへの°純化が
行なわれる。このような作用により、フロン使用量の削
減と熱伝導率改善の両立が達成され、環境問題と省エネ
ルギーの従来相反していた技術課題に対して解決できる
のである。
Effect With the above structure, the hydrophobized zeolite surface-treated with silicone is inert to water, does not absorb dehydration, and does not inhibit the reaction between water and organic polyisocyanate. As a result, during foaming, carbon dioxide gas obtained by the reaction between organic polyisocyanate and water can be used, and the amount of fluorocarbon foaming agent used can be reduced. After foaming, carbon dioxide gas is adsorbed and removed by the hydrophobized zeolite, and the gas inside the bubbles is purified into fluorocarbon gas. Due to this effect, it is possible to achieve both a reduction in the amount of fluorocarbon used and an improvement in thermal conductivity, and it is possible to solve the conventionally contradictory technical issues of environmental problems and energy conservation.

実施例 以下、実施例を挙げて本発明の発泡断熱材を説明する。Example EXAMPLES Hereinafter, the foamed heat insulating material of the present invention will be explained with reference to Examples.

表1に一実施例の原料処方を示した。Table 1 shows the raw material formulation of one example.

ポリエーテ1vAは、芳香族アミン矛ポリエーテルで水
酸基価460m9 KOH/9、整泡剤Aは信越化学■
製F−335、触媒Aは花王■製カオライザー應1、発
泡剤は純水とフロン−11であり、各原料は所定の配合
部数で混合し、プレミックス成分として構成する。
Polyether 1vA is an aromatic amine polyether with a hydroxyl value of 460m9 KOH/9, and foam stabilizer A is Shin-Etsu Chemical.
F-335 manufactured by Kao Corporation, Catalyst A is Kaolizer 1 manufactured by Kao ■, and blowing agents are pure water and Freon-11. Each raw material is mixed in a predetermined proportion to form a premix component.

一方、イソシアネート成分は、アミン当量136のクル
ードMDIから成る有機ポリインシアネートAと、疎水
化ゼオライトから構成している。疎水化ゼオライトは、
あらかじめ東ソー■製合成ゼオライ)5A(粉末タイプ
)100重量部に信越化学■製シリコーンKF−9sを
3重量部を加え、100℃で加熱しながら攪拌混合し、
上記ゼオライト表面にシリコーン皮膜を形成した試製品
を用いた。
On the other hand, the isocyanate component is composed of organic polyinsyanate A consisting of crude MDI having an amine equivalent of 136 and hydrophobized zeolite. Hydrophobized zeolite is
3 parts by weight of silicone KF-9s manufactured by Shin-Etsu Chemical ■ were added in advance to 100 parts by weight of synthetic zeolite 5A (powder type) manufactured by Tosoh ■, and the mixture was stirred and mixed while heating at 100°C.
A sample product with a silicone film formed on the zeolite surface was used.

このようにして調合したプレミックス成分とイソシアネ
ート成分を所定の配合部数混合し、発泡断熱材を得た。
A predetermined number of parts of the premix component and isocyanate component prepared in this manner were mixed to obtain a foamed heat insulating material.

このときの反応性及び発泡断熱材の密度、熱伝導率及び
気泡ガス組成を表1に示した。
Table 1 shows the reactivity, density, thermal conductivity, and bubble gas composition of the foamed heat insulating material.

なお、同時に比較例として疎水化ゼオライトを添加しな
い場合、及び従来のゼオライト東ソー■製合成ゼオライ
)ERAを添加した場合についても同様に表1に示した
(比較例A、B)。
At the same time, Table 1 also shows a case where no hydrophobized zeolite was added as a comparative example, and a case where a conventional zeolite (synthetic zeolite manufactured by Tosoh ■) ERA was added (Comparative Examples A and B).

表  1 このように本発明の発泡断熱材は、気泡中の炭酸ガスは
ほとんどなくフロンガスで満たされ優れた断熱性能を示
すと共に、フロン使用量を削減できることが判った。こ
れは、疎水化ゼオライトが水との吸着反応に不活性であ
るため有機ポリイソシアネートと水との反応を阻害させ
ることがなく、発生した炭酸ガスを発泡ガスとして利用
した後、気泡内に含まれる炭酸ガスを吸着したことを示
している。疎水化ゼオライトの分子状態については不明
であるが、シリコーン樹脂の皮膜がゼオライト粉末表面
に形成され、吸着ガスへのバリヤー層となっている結果
、少なくとも水とイソシアネートが反応に要する時間(
約10秒間)は、水に対して不活性であると同時に、炭
酸ガスの吸着については、吸着速度は遅いものの実用上
問題のない特性を有するのである。この結果、水とイソ
シアネートの反応により発生した炭酸ガスが発泡ガスと
して有効に利用でき、フロン使用量が少なくても所定密
度まで低減可能であり、かつ、経時的に気泡中の炭酸ガ
スを疎水化ゼオライトが吸着するため最終的には、炭酸
ガスは除かれ、フロンガスに純化される結果、気体熱伝
導率が改善され、発泡断熱材の熱伝導率も優れたものと
なるのである。
Table 1 As described above, it was found that the foamed heat insulating material of the present invention has excellent heat insulation performance as the bubbles contain almost no carbon dioxide gas and are filled with fluorocarbon gas, and can reduce the amount of fluorocarbon used. This is because the hydrophobized zeolite is inert to the adsorption reaction with water, so it does not inhibit the reaction between the organic polyisocyanate and water, and after using the generated carbon dioxide gas as a foaming gas, it is contained in the bubbles. This indicates that carbon dioxide gas has been adsorbed. Although the molecular state of hydrophobized zeolite is unknown, a silicone resin film is formed on the surface of the zeolite powder and serves as a barrier layer to adsorbed gases, so at least the time required for the reaction between water and isocyanate (
(for about 10 seconds), it is inert to water, and at the same time, it has characteristics that pose no practical problems in terms of carbon dioxide adsorption, although the adsorption rate is slow. As a result, the carbon dioxide gas generated by the reaction between water and isocyanate can be effectively used as a foaming gas, making it possible to reduce the density to a specified level even if the amount of CFC used is small, and making the carbon dioxide in the bubbles hydrophobic over time. Due to the adsorption of zeolite, carbon dioxide gas is ultimately removed and purified into chlorofluorocarbon gas, resulting in improved gas thermal conductivity and superior thermal conductivity of the foam insulation material.

このように本発明の発泡断熱材は、オゾン層破壊等の環
境問題の主原因とされているフロン−11の使用量削減
が可能で、かつ優れた断熱性能により省エネルギーに寄
与することが、両立して実現でき、提供できるのである
In this way, the foamed insulation material of the present invention can reduce the amount of Freon-11 used, which is considered to be the main cause of environmental problems such as ozone layer depletion, and contributes to energy savings through its excellent insulation performance. It can be realized and provided by

なお、比較例において、疎水化ゼオライトを添加しない
場合、気泡ガスとして炭酸ガスが多量に存在するため熱
伝導率は、悪く、又、ゼオライトを添加した場合、水を
瞬間的に吸着除去する結果、炭酸ガスの発生がなく、密
度は高く、同体積に発泡させるにはフロン使用量は増加
すると予測でき、フロン使用量削減には結びつかない。
In addition, in the comparative example, when hydrophobized zeolite was not added, the thermal conductivity was poor due to the presence of a large amount of carbon dioxide as bubble gas, and when zeolite was added, as a result of instantaneous adsorption and removal of water, Since no carbon dioxide gas is generated and the density is high, it can be predicted that the amount of fluorocarbon used will increase to foam the same volume, and this will not lead to a reduction in the amount of fluorocarbon used.

ただし、気泡中はフロンガスで純化されるため熱伝導率
は優・れたものとなる。
However, since the bubbles are purified with fluorocarbon gas, the thermal conductivity is excellent.

発明の効果 以上のように本発明は、ポリエーテル、整泡剤。Effect of the invention As described above, the present invention relates to polyether and foam stabilizers.

触媒、水、フロン発泡剤からなるプレミックス成分と、
疎水化ゼオライトと有機ポリイソシアネートからなるイ
ンシアネート成分とを混合攪拌し、発泡断熱材として生
成しているため、水と有機ポリイソシアネートとの反応
によって発生する炭酸ガスを発泡ガスとして有効に利用
してフロン発泡剤の使用量削減を行なうと共に、疎水化
ゼオライトにより気泡内に発生残留した炭酸ガスを経時
的に吸着除去が可能である。この結果、気泡中の気体熱
伝導率が低減し、発泡断熱材の熱伝導率が改善され、優
れた断熱性能を有する発泡断熱材が提供できる。すなわ
ち、フロン公害問題の解決に寄与できると共に省エネル
ギーに寄与することができるのである。
A premix component consisting of a catalyst, water, and a fluorocarbon blowing agent,
Hydrophobized zeolite and an incyanate component made of organic polyisocyanate are mixed and stirred to produce a foamed insulation material, so carbon dioxide gas generated by the reaction between water and organic polyisocyanate can be effectively used as foaming gas. In addition to reducing the amount of fluorocarbon blowing agent used, the hydrophobized zeolite can adsorb and remove carbon dioxide gas that remains in the bubbles over time. As a result, the gas thermal conductivity in the cells is reduced, the thermal conductivity of the foamed heat insulating material is improved, and a foamed heat insulating material having excellent heat insulation performance can be provided. In other words, it can contribute to solving the problem of fluorocarbon pollution, and it can also contribute to energy conservation.

Claims (1)

【特許請求の範囲】[Claims] ポリエーテル、整泡剤、触媒、水、フロン発泡剤からな
るプレミックス成分と、シリコーンにより表面処理した
疎水化ゼオライトと、有機ポリイソシアネートからなる
イソシアネート成分とを混合攪拌し、発泡生成した発泡
断熱材。
A foamed insulation material produced by mixing and stirring a premix component consisting of polyether, a foam stabilizer, a catalyst, water, and a CFC blowing agent, a hydrophobized zeolite surface-treated with silicone, and an isocyanate component consisting of an organic polyisocyanate. .
JP6974289A 1989-03-22 1989-03-22 Foam insulation Expired - Fee Related JP2718985B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP6974289A JP2718985B2 (en) 1989-03-22 1989-03-22 Foam insulation
PCT/JP1990/000376 WO1990011320A1 (en) 1989-03-22 1990-03-20 Expanded heat-insulating material
EP90904679A EP0424539B1 (en) 1989-03-22 1990-03-20 Expanded heat-insulating material
US07/602,248 US5109032A (en) 1989-03-22 1990-03-20 Foamed heat insulation material
DE69027972T DE69027972T2 (en) 1989-03-22 1990-03-20 EXTENDED THERMAL INSULATING MATERIAL
KR1019900702499A KR940002885B1 (en) 1989-03-22 1990-03-20 Expanded heat-insulating material
AU52650/90A AU614691B2 (en) 1989-03-22 1990-03-20 Expanded heat-insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6974289A JP2718985B2 (en) 1989-03-22 1989-03-22 Foam insulation

Publications (2)

Publication Number Publication Date
JPH02248437A true JPH02248437A (en) 1990-10-04
JP2718985B2 JP2718985B2 (en) 1998-02-25

Family

ID=13411562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6974289A Expired - Fee Related JP2718985B2 (en) 1989-03-22 1989-03-22 Foam insulation

Country Status (1)

Country Link
JP (1) JP2718985B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002021A1 (en) * 1989-07-28 1991-02-21 Matsushita Refrigeration Company Foamed heat-insulating material
US5792801A (en) * 1995-01-24 1998-08-11 Matsushita Refrigeration Company Thermal insulation foamed material having carbon dioxide absorbents and method for manufacturing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002021A1 (en) * 1989-07-28 1991-02-21 Matsushita Refrigeration Company Foamed heat-insulating material
US5792801A (en) * 1995-01-24 1998-08-11 Matsushita Refrigeration Company Thermal insulation foamed material having carbon dioxide absorbents and method for manufacturing same
US5877226A (en) * 1995-01-24 1999-03-02 Matsushita Refrigeration Company Thermal insulating foamed material having carbon dioxide adsorbents and method for manufacturing the same

Also Published As

Publication number Publication date
JP2718985B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
KR0184681B1 (en) Thermal insulating foamed material having carbon dioxide absorbent and method for manufacturing the same
KR20160095229A (en) Poly-urethane manufacturing method using n_2 adsorbent
KR940002885B1 (en) Expanded heat-insulating material
JPH02248437A (en) Foamed heat-insulation material
JP2809716B2 (en) Foam insulation
JP2718999B2 (en) Foam insulation
JP2719001B2 (en) Foam insulation
JPH03121143A (en) Foamed thermal insulant
JP2776582B2 (en) Foam insulation
JPS5749628A (en) Preparation of urethane foam
JP2005194531A (en) Preparation process of rigid polyurethane foam
JPS6154332B2 (en)
JPH11290649A (en) Carbon dioxide gas adsorbing agent, foamed heat insulation material and heat insulated box
JP3641080B2 (en) Manufacturing method of foam insulation
JP3860263B2 (en) Foam heat insulating material, foam heat insulating material manufacturing method, and heat insulating box
JP2000109593A (en) Heat insulating wall and its manufacture
JPH03244621A (en) Foamed heat insulation material
JPH03137137A (en) Foamed heat insulating material
JPH08196865A (en) Gaseous carbon dioxide adsorbent, foamed heat insulator and heat insulating box
JP3942700B2 (en) Manufacturing method of foam insulation
WO1999024499A1 (en) Foamed insulating material, insulating box body made using said foamed insulating material, and process for preparing foamed insulating material
JPH01121675A (en) Manufacture of heat-insulating box body
JP4239277B2 (en) Foam heat insulating material, foam heat insulating material manufacturing method, and heat insulating box
JPH0873555A (en) Heat-insulation material and heat-insulation box
JPH04224834A (en) Foamed insulation material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees