JP2776582B2 - Foam insulation - Google Patents
Foam insulationInfo
- Publication number
- JP2776582B2 JP2776582B2 JP25904389A JP25904389A JP2776582B2 JP 2776582 B2 JP2776582 B2 JP 2776582B2 JP 25904389 A JP25904389 A JP 25904389A JP 25904389 A JP25904389 A JP 25904389A JP 2776582 B2 JP2776582 B2 JP 2776582B2
- Authority
- JP
- Japan
- Prior art keywords
- gas
- carbon dioxide
- activated carbon
- water
- foaming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、冷蔵庫,冷凍庫等に用いる発泡断熱材に関
するものである。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a foam insulation material used for refrigerators, freezers, and the like.
従来の技術 近年、省エネルギーの観点より発泡断熱材の熱伝導率
を低減し、断熱性を向上させるというニーズがあると同
時に、発泡剤であるフロンの使用量を削減し、フロンの
影響によるオゾン破壊及び地球の温暖化等の環境問題の
改善に寄与していくことが極めて重要なテーマとなって
いる。2. Description of the Related Art In recent years, from the viewpoint of energy saving, there has been a need to reduce the thermal conductivity of foam insulation and improve heat insulation, and at the same time, to reduce the amount of CFC used as a foaming agent, and to reduce ozone depletion due to the influence of CFC. It is an extremely important theme to contribute to the improvement of environmental problems such as global warming.
このため、代表的な発泡断熱材である硬質ウレタンフ
ォームの製造にあたっては、主原料として用いるポリオ
ールや有機ポリイソシアネート,助剤原料である整泡
剤,触媒,発泡剤に対し、種々の改善取組みがなされて
いる。基本的に、硬質ウレタンフォームの熱伝導率を低
減するには、気泡中のガス成分の気体熱伝導率を改善す
ることが重要であり、特に発泡剤としてトリクロロフル
オロメタン(以下R−11と称する)を用い、R−11ガス
とフォーム気泡中を満たすことが効果的手段とされてき
た。しかしながら一方においてはフロン公害問題等の見
地よりフロン使用量を減らすためには、有機ポリイソシ
アネートと水との反応によって得られる炭酸ガスを発泡
剤の一部として用いることも可能である。しかし、この
ような構成においては、炭酸ガスが発泡断熱材の気泡内
に残存するため発泡断熱材の断熱性能は低いものとな
る。For this reason, in the production of rigid urethane foam, which is a typical foam insulation material, various improvements have been made to polyols and organic polyisocyanates used as main raw materials, and foam stabilizers, catalysts, and foaming agents used as auxiliary materials. It has been done. Basically, in order to reduce the thermal conductivity of the rigid urethane foam, it is important to improve the gas thermal conductivity of the gas component in the gas bubbles. In particular, trichlorofluoromethane (hereinafter referred to as R-11) as a blowing agent ) Has been considered as an effective means to fill the R-11 gas and the foam bubbles. However, on the other hand, carbon dioxide gas obtained by the reaction between organic polyisocyanate and water can be used as a part of the blowing agent in order to reduce the amount of fluorocarbon used from the viewpoint of fluorocarbon pollution. However, in such a configuration, since the carbon dioxide gas remains in the cells of the foamed heat insulating material, the heat insulating performance of the foamed heat insulating material is low.
このような課題解決のアプローチとして例えば、特開
昭57−49628号公報で示されるように吸着剤で不純ガス
成分を除く方法が提案されている。すなわち、ゼオライ
ト等からなる吸着剤を原料中にあらかじめ混合し、発泡
時に発生した炭酸ガスを吸着剤にて吸着除去し、結果的
にフロンガスで気泡内を満たすことにより断熱性を向上
させることが特徴となっている。As an approach for solving such a problem, for example, a method of removing an impurity gas component with an adsorbent has been proposed as disclosed in JP-A-57-49628. That is, the adsorbent composed of zeolite or the like is preliminarily mixed into the raw material, and the carbon dioxide gas generated at the time of foaming is adsorbed and removed by the adsorbent. It has become.
発明が解決しようとする課題 上記特開昭57−49628号公報における気泡内ガスのフ
ロンガス純化のメカニズムを考察するならば、まず、ゼ
オライト等から成る炭酸ガス吸着剤は、炭酸ガスを吸着
する以上に水分を選択優先的に吸着するため、主たる炭
酸ガス発生因子である水分とイソシアネートとの反応に
おいては、原料混合時に即座に水分が吸着剤に吸着され
てしまい、炭酸ガスの生成そのものを起こさせない。す
なわち、あらかじめゼオライト等からなる炭酸ガス吸着
剤を添加した有機ポリイソシアネートと、水添加したポ
リオール成分を瞬時に混合して発泡に供しても、泡化開
始の時点では、すでに水分はゼオライト等からなる炭酸
ガス吸着剤に吸着脱水され、フロン単独発泡と同じ形態
で発泡が行なわれる。さらには、泡化時の重合過程でカ
ルボジイミド反応が微量の炭酸ガスを発生させるが、こ
のようなガスは容易に吸着される結果、気泡内ガスの純
化が行なわれ、優れた脱熱性能が得られる。Problems to be Solved by the Invention When considering the mechanism of purifying CFCs in gas in bubbles in JP-A-57-49628, first, a carbon dioxide adsorbent made of zeolite or the like is more than adsorbing carbon dioxide. Since water is preferentially adsorbed, in the reaction between water, which is a main carbon dioxide gas generating factor, and isocyanate, the water is immediately adsorbed to the adsorbent when the raw materials are mixed, and the generation of carbon dioxide gas itself does not occur. That is, even if the organic polyisocyanate to which the carbon dioxide adsorbent made of zeolite or the like is added in advance and the polyol component added with water is instantaneously mixed and foamed, at the time of the foaming start, the moisture already consists of zeolite or the like. It is adsorbed and dehydrated by a carbon dioxide adsorbent, and foaming is performed in the same form as freon alone foaming. Furthermore, the carbodiimide reaction generates a small amount of carbon dioxide in the polymerization process during foaming, but such gas is easily adsorbed, so that the gas inside the bubbles is purified and excellent heat removal performance is obtained. Can be
よって、特開昭57−49628号公報は脱水により主たるC
O2発生の原因を取り除き、かつ、カルボジイミド反応に
よって微量に発生するCO2を除く点で気泡内ガスをフロ
ンガスに純化でき、断熱性能向上が図れるものである。
しかしながら炭酸ガスを発泡ガスとして利用する点にお
いては、炭酸ガスの発生量がカルボジイミド反応におけ
る微量なものに限定されるため、結果的にフロン使用量
の低減が困難となる問題があった。故に発泡ガスとして
の炭酸ガス利用を図る点と、気泡内ガスのフロン純化と
いう課題、すなわち、フロン問題解決のためのフロン量
削減と、高断熱化の両立に関しては、特開昭57−49628
号公報では実現困難であり、この技術確立が大きな課題
である。本発明は上記課題に鑑み発泡断熱材の熱伝導率
を悪化させることなく、オゾン層破壊といった環境問題
を解決する発泡断熱材を提供するものである。Therefore, JP-A-57-49628 discloses that the main C
The gas in the bubbles can be purified into Freon gas by removing the cause of O 2 generation and removing a small amount of CO 2 generated by the carbodiimide reaction, thereby improving the heat insulation performance.
However, in using carbon dioxide as a foaming gas, the amount of carbon dioxide generated is limited to a very small amount in the carbodiimide reaction, and as a result, there has been a problem that it is difficult to reduce the amount of fluorocarbon used. Therefore, the point of utilizing carbon dioxide gas as a foaming gas and the problem of purifying the chlorofluorocarbon in the gas within the gas bubbles, that is, reducing the amount of chlorofluorocarbon to solve the chlorofluorocarbon problem and achieving high heat insulation are both disclosed in Japanese Patent Application Laid-Open No. 57-49628.
However, the establishment of this technology is a major issue. The present invention has been made in view of the above circumstances, and provides a foamed heat insulating material that solves environmental problems such as ozone layer destruction without deteriorating the thermal conductivity of the foamed heat insulating material.
課題を解決するための手段 本発明は、上記課題を解決するために、シリコーンに
より表面処理した粉末活性炭から成る吸着剤を添加混合
したイソシアネート成分と、ポリエーテル,整泡剤,触
媒,水,フロン発泡剤を混合したプレミックス成分とを
混合し、発泡熱断材を得るものである。Means for Solving the Problems In order to solve the above problems, the present invention provides an isocyanate component obtained by adding and adsorbing an adsorbent composed of powdered activated carbon surface-treated with silicone; A premix component mixed with a foaming agent is mixed to obtain a thermally cut foam.
作用 上記構成によって、シリコーンにより表面処理した疎
水化粉末活性炭は、水に対し不活性であり、脱水吸着は
なく水と有機ポリイソシアネートとの反応を阻害するこ
とはない。この結果、発泡時においては、有機ポリイソ
シアネートと水との反応によって得られる炭酸ガスを利
用することができフロン発泡剤の使用量は削減可能であ
る。そして、泡化後、疎水化粉末活性炭により炭酸ガス
が吸着除去され、気泡内ガスのフロンガスへの純化が行
なわれる。このような作用により、フロン使用量の削減
と熱伝導率改善の両立が達成され、環境問題と省エネル
ギーの従来相反していた技術課題に対して解決できるも
のである。Action With the above configuration, the activated carbon powder surface-treated with silicone is inert to water, has no dehydration adsorption, and does not inhibit the reaction between water and the organic polyisocyanate. As a result, at the time of foaming, carbon dioxide gas obtained by the reaction between the organic polyisocyanate and water can be used, and the amount of the chlorofluorocarbon foaming agent can be reduced. Then, after foaming, carbon dioxide gas is adsorbed and removed by the hydrophobized powdered activated carbon, and the gas in the bubbles is purified into Freon gas. By such an operation, both reduction of the amount of chlorofluorocarbon used and improvement of the thermal conductivity are achieved, and it is possible to solve the environmental problems and the energy-saving conventionally contradictory technical problems.
さらには、発泡断熱材中に分散している疎水化粉末活
性炭が、伝熱成分のうち、ふく射伝熱に対し、赤外線を
吸収し伝導伝熱に交換するため、結果的に熱抵抗が増加
し、断熱性能の向上に寄与する。よって、前記環境問題
と省エネルギーの両立に対し、より効率的に作用する利
点を具備できるのである。Furthermore, the hydrophobicized powdered activated carbon dispersed in the foam insulation absorbs infrared rays of the heat transfer components and exchanges them for conduction heat transfer, resulting in an increase in thermal resistance. Contributes to the improvement of the heat insulation performance. Therefore, it is possible to provide an advantage that works more efficiently with respect to both the environmental problem and energy saving.
実 施 例 以下、実施例を挙げて本発明の発泡断熱材を説明す
る。EXAMPLES Hereinafter, the foamed heat insulating material of the present invention will be described with reference to examples.
表に一実施例の原料処方を示した。 The raw material formulation of one example is shown in the table.
ポリエーテルAは、芳香族アミン系ポリエーテルで水
酸基価460mgKOH/g、整泡剤Aは信越化学(株)製F−33
5、触媒Aは花王(株)製カオライザーNo.1、発泡剤は
純水とフロン−11であり、各原料は所定の配合部数で混
合し、プレミックス成分として構成する。Polyether A is an aromatic amine polyether having a hydroxyl value of 460 mg KOH / g, and foam stabilizer A is F-33 manufactured by Shin-Etsu Chemical Co., Ltd.
5. Catalyst A is Kaolyzer No. 1 manufactured by Kao Corporation, and the blowing agent is pure water and chlorofluorocarbon-11. Each raw material is mixed in a predetermined number of parts to constitute a premix component.
一方、イソシアネート成分は、アミン当量135のクル
ードMDIから成る有機ポリイソシアネートAと、疎水化
粉末活性炭から構成している。疎水化粉末活性炭は、あ
らかじめ武田薬品工業(株)モルシーボン4A(粉末活性
炭)100重量部に信越化学(株)製シリコーンKF−99を
3重量部を加え、100℃で加熱しながら攪拌混合し、上
記粉末活性炭表面にシリコーン皮膜を形成した試製品を
用いた。On the other hand, the isocyanate component is composed of organic polyisocyanate A composed of crude MDI having an amine equivalent of 135 and hydrophobized powdered activated carbon. The hydrophobized powdered activated carbon is prepared by adding 3 parts by weight of Shin-Etsu Chemical Co., Ltd. silicone KF-99 to 100 parts by weight of Morsibon 4A (powder activated carbon) Takeda Pharmaceutical Co., Ltd., and stirring and mixing at 100 ° C. while heating. A sample in which a silicone film was formed on the surface of the activated carbon powder was used.
このようにして調合したプレミックス成分とイソシア
ネート成分を所定の配合部数混合し、発泡断熱材を得
た。このときの反応性及び発泡断熱材の密度,熱伝導率
及び気泡ガス組成を表に示した。The premix component thus prepared and the isocyanate component were mixed in a predetermined number of parts to obtain a foamed heat insulating material. The reactivity, density, thermal conductivity and bubble gas composition of the foamed heat insulating material at this time are shown in the table.
なお、同時に比較例として疎水化粉末活性炭を添加し
ない場合、及び従来の粉末活性炭武田薬品工業(株)製
モルシーボン4Aを添加した場合についても同様に表に示
した(比較例A,B)。In addition, at the same time, as a comparative example, the case where no hydrophobized powdered activated carbon was added and the case where conventional powdered activated carbon Morsiebon 4A manufactured by Takeda Pharmaceutical Co., Ltd. was added are also shown in the table (Comparative Examples A and B).
このように本発明の発泡断熱材は、気泡中の炭酸ガス
はほとんどなくフロンガスで満たされ優れた断熱性能を
示すと共に、フロン使用量を削減できることが判った。
これは、疎水化粉末活性炭が水との吸着反応に不活性で
あるため有機ポリイソシアネートと水との反応を阻害さ
せることがなく、発生した炭酸ガスを発泡ガスとして利
用した後、気泡内に含まれる炭酸ガスを吸着したことを
示している。疎水化粉末活性炭の表面状態については不
明であるが、シリコーン樹脂の皮膜がゼオライト粉末表
面に形成され、吸着ガスへのバリヤー層となっている結
果、少なくとも水とイソシアネートが反応に要する時間
(約10秒間)は、水に対して不活性であると同時に、炭
酸ガスの吸着については、吸着速度は遅いものの実用上
問題のない特性を有するのである。この結果、水とイソ
シアネートの反応により発生した炭酸ガスが発泡ガスと
して有効に利用でき、フロン使用量が少なくても所定密
度まで低減可能であり、かつ、経時的に気泡中の炭酸ガ
スを疎水化粉末活性炭を吸着するため最終的には、炭酸
ガスは除かれ、フロンガスに純化される結果、気体熱伝
導率が改善され、発泡断熱材の熱伝導率も優れたものと
なるのである。 As described above, it was found that the foamed heat insulating material of the present invention showed almost no carbon dioxide gas in the air bubbles, was filled with Freon gas, exhibited excellent heat insulating performance, and could reduce the amount of Freon used.
This is because hydrophobized powdered activated carbon is inactive in the adsorption reaction with water and does not hinder the reaction between organic polyisocyanate and water. This indicates that carbon dioxide was absorbed. Although the surface condition of the hydrophobized powdered activated carbon is unknown, a coating of a silicone resin is formed on the surface of the zeolite powder and serves as a barrier layer to the adsorbed gas. As a result, at least the time required for the reaction between water and isocyanate (about 10 (Seconds) is inert to water, and at the same time, has a characteristic of adsorbing carbon dioxide gas, which has a low adsorption speed but no practical problem. As a result, carbon dioxide gas generated by the reaction between water and isocyanate can be effectively used as a foaming gas, and can be reduced to a predetermined density even with a small amount of chlorofluorocarbon. In order to adsorb the powdered activated carbon, the carbon dioxide gas is finally removed, and the carbon dioxide gas is purified to CFC gas. As a result, the thermal conductivity of the gas is improved, and the thermal conductivity of the foam insulation becomes excellent.
さらには、発泡断熱材中に分散している疎水化粉末活
性炭が、伝熱成分のうち、ふく射伝熱に対して赤外線を
吸収し、伝導伝熱に変換するため、結果的に熱抵抗が増
加し断熱性能の向上に寄与するのである。In addition, the activated carbon hydrophobized powder dispersed in the foam insulation absorbs infrared rays from the heat transfer component of the heat transfer component and converts it into conductive heat transfer, resulting in an increase in thermal resistance. This contributes to the improvement of heat insulation performance.
このように本発明の発泡断熱材は、オゾン層破壊等の
環境問題の主原因とされているフロン−11の使用量削減
が可能で、かつ優れた断熱性能により省エネルギーに寄
与することが、両立して実現でき、提供できるのであ
る。As described above, the foamed heat insulating material of the present invention can reduce the amount of use of Freon-11, which is a main cause of environmental problems such as ozone layer destruction, and contribute to energy saving through excellent heat insulating performance. It can be realized and provided.
なお、比較例において、疎水化粉末活性炭を添加しな
い場合、気泡ガスとして炭酸ガスが多量に存在するため
熱伝導率は、悪く、又、粉末活性炭を添加した場合、水
を瞬間的に吸着除去する結果、炭酸ガスの発生がなく、
密度は高く、同体積に発泡させるにはフロン使用量は増
加すると予測でき、フロン使用量削減には結びつかな
い。ただし、気泡中はフロンガスで純化されるため熱伝
導率は優れたものとなる。In the comparative example, when no hydrophobic powdered activated carbon was added, thermal conductivity was poor because a large amount of carbon dioxide gas was present as bubble gas, and when powdered activated carbon was added, water was instantaneously adsorbed and removed. As a result, there is no generation of carbon dioxide,
The density is high, and it can be predicted that the amount of CFC used will increase if foaming to the same volume. However, since the bubbles are purified by Freon gas, the thermal conductivity becomes excellent.
発明の効果 以上のように本発明は、ポリエーテル,整泡剤,触
媒,水,フロン発泡剤からなるプレミックス成分と、疎
水化粉末活性炭と有機ポリイソシアネートからなるイソ
シアネート成分とを混合攪拌し、発泡断熱材として生成
しているため、水と有機ポリイソシアネートとの反応に
よって発生する炭酸ガスを発泡ガスとして有効に利用し
てフロン発泡剤の使用量削減を行なうと共に、疎水化粉
末活性炭により気泡内に発生残留した炭酸ガスを経時的
に吸着除去が可能である。さらには、発泡断熱材中に分
散している疎水化粉末活性炭が、伝熱成分のうち、ふく
射伝熱に対して、赤外線を吸収し、伝導伝熱に変換する
ため、結果的に熱抵抗が増加する。この結果、気泡中の
気体熱伝導とふく射伝熱が低減し、発泡断熱材の熱伝導
率が改善され、優れた断熱性能を有する発泡断熱材が提
供できる。すなわち、フロン公害問題の解決に寄与でき
ると共に省エネルギーに寄与することができるのであ
る。Effect of the Invention As described above, the present invention is to mix and stir a premix component comprising a polyether, a foam stabilizer, a catalyst, water and a fluorocarbon blowing agent, and an isocyanate component comprising a hydrophobized powdered activated carbon and an organic polyisocyanate, Since it is produced as a foamed heat insulating material, the carbon dioxide gas generated by the reaction between water and the organic polyisocyanate is effectively used as a foaming gas to reduce the amount of the chlorofluorocarbon foaming agent used. It is possible to adsorb and remove the carbon dioxide gas generated and remaining over time. Further, the activated carbon hydrophobized powder dispersed in the foamed heat insulating material absorbs infrared rays with respect to the radiant heat transfer among the heat transfer components and converts the heat into conductive heat transfer. To increase. As a result, gas heat conduction and radiation heat transfer in the bubbles are reduced, the thermal conductivity of the foamed heat insulating material is improved, and a foamed heat insulating material having excellent heat insulating performance can be provided. That is, it can contribute to solving the problem of chlorofluorocarbon pollution as well as energy saving.
Claims (1)
発泡剤から成るプレミックス成分と、シリコーンにより
表面処理した疎水化粉末活性炭と有機ポリイソシアネー
トからなるイソシアネート成分とを混合攪拌し発泡生成
した発泡断熱材。1. A premix component comprising a polyether, a foam stabilizer, a catalyst, water, and a CFC blowing agent, and an isocyanate component comprising an organic polyisocyanate and a hydrophobized powder activated carbon surface-treated with silicone are mixed and stirred to form foam. Foam insulation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25904389A JP2776582B2 (en) | 1989-10-04 | 1989-10-04 | Foam insulation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25904389A JP2776582B2 (en) | 1989-10-04 | 1989-10-04 | Foam insulation |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03121142A JPH03121142A (en) | 1991-05-23 |
JP2776582B2 true JP2776582B2 (en) | 1998-07-16 |
Family
ID=17328540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25904389A Expired - Fee Related JP2776582B2 (en) | 1989-10-04 | 1989-10-04 | Foam insulation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2776582B2 (en) |
-
1989
- 1989-10-04 JP JP25904389A patent/JP2776582B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH03121142A (en) | 1991-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2776582B2 (en) | Foam insulation | |
JP2718985B2 (en) | Foam insulation | |
JP2809716B2 (en) | Foam insulation | |
US5109032A (en) | Foamed heat insulation material | |
JP2718999B2 (en) | Foam insulation | |
JP2719001B2 (en) | Foam insulation | |
JPH03121143A (en) | Foamed thermal insulant | |
JPH09132658A (en) | Carbon dioxide gas adsorbent, foamed heat-insulating material, and heat-insulating box | |
JP2000109593A (en) | Heat insulating wall and its manufacture | |
JP3641080B2 (en) | Manufacturing method of foam insulation | |
JP3860263B2 (en) | Foam heat insulating material, foam heat insulating material manufacturing method, and heat insulating box | |
JPH11290649A (en) | Carbon dioxide gas adsorbing agent, foamed heat insulation material and heat insulated box | |
JP4239277B2 (en) | Foam heat insulating material, foam heat insulating material manufacturing method, and heat insulating box | |
JP3115201B2 (en) | Foam insulation and method of manufacturing the same | |
JPS6154332B2 (en) | ||
JPH08196865A (en) | Gaseous carbon dioxide adsorbent, foamed heat insulator and heat insulating box | |
JP3942700B2 (en) | Manufacturing method of foam insulation | |
JPH10263388A (en) | Gaseous carbon dioxide adsorbent, foamed heat insulator and heat insulating box | |
JPH11300201A (en) | Carbonic acid gas adsorbent, from heat insulating material and heat insulating box body | |
JP2000107595A (en) | Carbon dioxide adsorbent, foamed heat insulating material and heat insulating box body | |
JPH0820175B2 (en) | Insulated box | |
WO1999024499A1 (en) | Foamed insulating material, insulating box body made using said foamed insulating material, and process for preparing foamed insulating material | |
Ferrero-Heredia et al. | Thermal conductivity reduction of polyurethane insulating foam by in situ carbon dioxide removal | |
JPH08198996A (en) | Foamed insulating material and insulating box | |
JPH09302123A (en) | Foamed heat insulting material, its production and heat insulating box body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |