JP2718985B2 - Foam insulation - Google Patents

Foam insulation

Info

Publication number
JP2718985B2
JP2718985B2 JP6974289A JP6974289A JP2718985B2 JP 2718985 B2 JP2718985 B2 JP 2718985B2 JP 6974289 A JP6974289 A JP 6974289A JP 6974289 A JP6974289 A JP 6974289A JP 2718985 B2 JP2718985 B2 JP 2718985B2
Authority
JP
Japan
Prior art keywords
gas
carbon dioxide
zeolite
water
foaming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6974289A
Other languages
Japanese (ja)
Other versions
JPH02248437A (en
Inventor
一登 上門
英夫 中元
Original Assignee
松下冷機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP6974289A priority Critical patent/JP2718985B2/en
Application filed by 松下冷機株式会社 filed Critical 松下冷機株式会社
Priority to US07/602,248 priority patent/US5109032A/en
Priority to DE69027972T priority patent/DE69027972T2/en
Priority to EP90904679A priority patent/EP0424539B1/en
Priority to AU52650/90A priority patent/AU614691B2/en
Priority to KR1019900702499A priority patent/KR940002885B1/en
Priority to PCT/JP1990/000376 priority patent/WO1990011320A1/en
Publication of JPH02248437A publication Critical patent/JPH02248437A/en
Application granted granted Critical
Publication of JP2718985B2 publication Critical patent/JP2718985B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/04Arrangements using dry fillers, e.g. using slag wool which is added to the object to be insulated by pouring, spreading, spraying or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷蔵庫,冷凍庫等に用いる発泡断熱材に関
するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a foam insulation material used for refrigerators, freezers, and the like.

従来の技術 近年、省エネルギーの観点より発泡断熱材の熱伝導率
を低減し、断熱性を向上させるというニーズがあると同
時に、発泡剤であるフロンの使用量を削減し、フロンの
影響によるオゾン破壊及び地球の温暖化等の環境問題の
改善に寄与していくことが極めて重要なテーマとなって
いる。
2. Description of the Related Art In recent years, from the viewpoint of energy saving, there has been a need to reduce the thermal conductivity of foam insulation and improve heat insulation, and at the same time, to reduce the amount of CFC used as a foaming agent, and to reduce ozone depletion due to the influence of CFC. It is an extremely important theme to contribute to the improvement of environmental problems such as global warming.

このため、代表的な発泡断熱材である硬質ウレタンフ
ォームの製造にあたっては、主原料として用いるポリオ
ールや有機ポリイソシアネート,助剤原料である整泡
剤,触媒、発泡剤に対し、種々の改善取組みがなされて
いる。基本的に、硬質ウレタンフォームの熱伝導率を低
減するには、気泡中のガス成分の気体熱伝導率を改善す
ることが重要であり、特に発泡剤としてトリクロロフル
オロメタン(以下R−11と称する)を用い、R−11ガス
でフォーム気泡中を満たすことが効果的手段とされてき
た。しかしながら一方においてはフロン公害問題等の見
地よりフロン使用量を減らすためには、有機ポリイソシ
アネートと水との反応によって得られる炭酸ガスを発泡
剤の一部として用いることも可能である。しかし、この
ような構成においては、炭酸ガスが発泡断熱材の気泡内
に残存するため発泡断熱材の断熱性能は低いものとな
る。
Therefore, in the production of rigid urethane foam, which is a typical foam insulation material, various improvements have been made to polyols and organic polyisocyanates used as main raw materials and foam stabilizers, catalysts, and foaming agents used as auxiliary raw materials. It has been done. Basically, in order to reduce the thermal conductivity of the rigid urethane foam, it is important to improve the gas thermal conductivity of the gas component in the gas bubbles. In particular, trichlorofluoromethane (hereinafter referred to as R-11) as a blowing agent ) Has been considered to be an effective means to fill the foam cells with R-11 gas. However, on the other hand, carbon dioxide gas obtained by the reaction between organic polyisocyanate and water can be used as a part of the blowing agent in order to reduce the amount of fluorocarbon used from the viewpoint of fluorocarbon pollution. However, in such a configuration, since the carbon dioxide gas remains in the cells of the foamed heat insulating material, the heat insulating performance of the foamed heat insulating material is low.

このような課題解決のアプローチとして例えば、特開
昭57−49628号公報で示されるように吸着剤で不純ガス
成分を除く方法が提案されている。すなわち、ゼオライ
ト等から成る吸着剤を原料中にあらかじめ混合し、発泡
時に発生した炭酸ガスを吸着剤にて吸着除去し、結果的
にフロンガスで気泡内を満たすことにより断熱性を向上
させることが特徴となっている。
As an approach for solving such a problem, for example, a method of removing an impurity gas component with an adsorbent has been proposed as disclosed in JP-A-57-49628. That is, the adsorbent composed of zeolite or the like is preliminarily mixed into the raw material, and the carbon dioxide gas generated at the time of foaming is adsorbed and removed by the adsorbent. It has become.

発明が解決しようとする課題 上記特開昭57−49628号公報における気泡内ガスのフ
ロンガス純化のメカニズムを考察するならば、まず、ゼ
オライト等から成る炭酸ガス吸着剤は、炭酸ガスを吸着
する以上に水分を選択優先的に吸着するため、主たる炭
酸ガス発生因子である水分とイソシアネートとの反応に
おいては、原料混合時に即座に水分が吸着剤に吸着され
てしまい、炭酸ガスの生成そのものを起こさせない。す
なわち、あらかじめゼオライトを添加した有機ポリイソ
シアネートと、水添加したポリオール成分を瞬時に混合
して発泡に供しても、泡化開始の時点では、すでに水分
はゼオライトに吸着脱水され、フロン単独発泡と同じ形
態で発泡が行なわれる。さらには、泡化時の重合過程で
カルボジイミド反応が微量の炭酸ガスを発生させるが、
このようなガスは容易に吸着される結果、気泡内ガスの
純化が行なわれ、優れた断熱性能が得られる。
Problems to be Solved by the Invention When considering the mechanism of purifying CFCs in gas in bubbles in JP-A-57-49628, first, a carbon dioxide adsorbent made of zeolite or the like is more than adsorbing carbon dioxide. Since water is preferentially adsorbed, in the reaction between water, which is a main carbon dioxide gas generating factor, and isocyanate, the water is immediately adsorbed to the adsorbent when the raw materials are mixed, and the generation of carbon dioxide gas itself does not occur. That is, even if the organic polyisocyanate to which zeolite is added in advance and the polyol component added with water are instantaneously mixed and subjected to foaming, at the time of foaming start, moisture is already adsorbed and dehydrated on zeolite, which is the same as freon alone foaming. Foaming takes place in the form. Furthermore, the carbodiimide reaction generates a small amount of carbon dioxide in the polymerization process during foaming,
As a result of such gas being easily adsorbed, the gas in the bubble is purified, and excellent heat insulating performance is obtained.

よって、特開昭57−49628号公報は脱水により主たるC
O2発生の原因を取り除き、かつ、カルボジイミド反応に
よって微量に発生するCO2を除く点で気泡内ガスをフロ
ンガスに純化でき、断熱性能向上が図れるものである。
しかしながら炭酸ガスを発泡ガスとして利用する点にお
いては、炭酸ガスの発生量がカルボジイミド反応におけ
る微量なものに限定されるため、結果的にフロン使用量
の低減が困難となる問題があった。故に発泡ガスとして
の炭酸ガス利用を図る点と、気泡内ガスのフロン純化と
いう課題、すなわち、フロン問題解決のためのフロン量
削減と、高断熱化の両立に関しては、特開昭57−49628
号公報では実現困難であり、この技術確立が大きな課題
である。
Therefore, JP-A-57-49628 discloses that the main C
The gas in the bubbles can be purified into Freon gas by removing the cause of O 2 generation and removing a small amount of CO 2 generated by the carbodiimide reaction, thereby improving the heat insulation performance.
However, in using carbon dioxide as a foaming gas, the amount of carbon dioxide generated is limited to a very small amount in the carbodiimide reaction, and as a result, there has been a problem that it is difficult to reduce the amount of fluorocarbon used. Therefore, the point of utilizing carbon dioxide gas as a foaming gas and the problem of purifying the chlorofluorocarbon in the gas within the gas bubbles, that is, reducing the amount of chlorofluorocarbon to solve the chlorofluorocarbon problem and achieving high heat insulation are both disclosed in Japanese Patent Application Laid-Open No. 57-49628.
However, the establishment of this technology is a major issue.

課題を解決するための手段 本発明は、上記課題を解決するために、シリコーンに
より表面処理した疎水化ゼオライトから成る吸着剤を添
加混合したイソシアネート成分と、ポリエーテル,整泡
剤,触媒,水,フロン発泡剤を混合したプレミックス成
分とを混合し、発泡断熱材を得るものである。
Means for Solving the Problems In order to solve the above problems, the present invention provides an isocyanate component obtained by adding and adsorbing an adsorbent composed of hydrophobized zeolite surface-treated with silicone, a polyether, a foam stabilizer, a catalyst, water, A premix component mixed with a CFC blowing agent is mixed to obtain a foamed heat insulating material.

作用 上記構成によって、シリコーンにより表面処理した疎
水化ゼオライトは、水に対し不活性であり、脱水吸着は
なく水と有機ポリイソシアネートとの反応を阻害するこ
とはない。この結果、発泡時においては、有機ポリイソ
シアネートと水との反応によって得られる炭酸ガスを利
用することができフロン発泡剤の使用量は削減可能であ
る。そして、泡化後、疎水化ゼオライトにより炭酸ガス
が吸着除去され、気泡内ガスのフロンガスへの純化が行
なわれる。このような作用により、フロン使用量の削減
と熱伝導率改善の両立が達成され、環境問題と省エネル
ギーの従来相反していた技術課題に対して解決できるの
である。
Action With the above configuration, the hydrophobized zeolite surface-treated with silicone is inert to water, has no dehydration adsorption, and does not inhibit the reaction between water and the organic polyisocyanate. As a result, at the time of foaming, carbon dioxide gas obtained by the reaction between the organic polyisocyanate and water can be used, and the amount of the chlorofluorocarbon foaming agent can be reduced. After foaming, carbon dioxide gas is adsorbed and removed by the hydrophobic zeolite, and the gas in the bubbles is purified into Freon gas. By such an effect, it is possible to achieve both a reduction in the amount of chlorofluorocarbons and an improvement in the thermal conductivity, and it is possible to solve the environmental problems and the energy-saving conventional technical problems.

実 施 例 以下、実施例を挙げて本発明の発泡断熱材を説明す
る。
EXAMPLES Hereinafter, the foamed heat insulating material of the present invention will be described with reference to examples.

表1に一実施例の原料処方を示した。 Table 1 shows the raw material formulation of one example.

ポリエーテルAは、武田薬品工業(株)製GR−46から
なる芳香族アミン系ポリエーテルで水酸基価460mgKOH/
g、整泡剤Aは信越化学(株)製F−335、触媒Aは花王
(株)製カオライザーNo.1、発泡剤は純水とフロン−11
であり、各原料は所定の配合部数で混合し、プレミック
ス成分として構成する。
Polyether A is an aromatic amine polyether composed of GR-46 manufactured by Takeda Pharmaceutical Co., Ltd. and has a hydroxyl value of 460 mg KOH /
g, Foam stabilizer A: F-335 manufactured by Shin-Etsu Chemical Co., Ltd. Catalyst A: Kaolyzer No. 1 manufactured by Kao Corporation, foaming agents: pure water and CFC-11
The raw materials are mixed in a predetermined blending number to constitute a premix component.

一方、イソシアネート成分は、アミン当量135のクル
ードMDIから成る有機ポリイソシアネートAと、疎水化
ゼオライトから構成している。疎水化ゼオライトは、あ
らかじめ東ソー(株)製合成ゼオライト5A(粉末タイ
プ)100重量部に信越化学(株)製シリコーンKF−99を
3重量部を加え、100℃で加熱しながら撹拌混合し、上
記ゼオライト表面にシリコーン皮膜を形成した試製品を
用いた。
On the other hand, the isocyanate component is composed of an organic polyisocyanate A composed of crude MDI having an amine equivalent of 135 and a hydrophobized zeolite. The hydrophobized zeolite is prepared by adding 3 parts by weight of silicone KF-99 manufactured by Shin-Etsu Chemical Co., Ltd. to 100 parts by weight of synthetic zeolite 5A (powder type) manufactured by Tosoh Corporation, and stirring and mixing while heating at 100 ° C. A trial product having a silicone film formed on the zeolite surface was used.

このようにして調合したプレミックス成分とイソシア
ネート成分を所定の配合部数混合し、発泡断熱材を得
た。このときの反応性及び発泡断熱材の密度,熱伝導率
及び気泡ガス組成を表1に示した。
The premix component thus prepared and the isocyanate component were mixed in a predetermined number of parts to obtain a foamed heat insulating material. Table 1 shows the reactivity, the density of the foamed heat insulating material, the thermal conductivity, and the bubble gas composition at this time.

なお、同時に比較例として疎水化ゼオライトを添加し
ない場合、及び従来のゼオライト東ソー(株)製合成ゼ
オライト5Aを添加した場合についても同様に表1に示し
た(比較例A,B)。
In addition, at the same time, the case where no hydrophobic zeolite was added and the case where a conventional zeolite 5A manufactured by Zeolite Tosoh Corp. was added were also shown in Table 1 as Comparative Examples (Comparative Examples A and B).

このように本発明の発泡断熱材は、気泡中の炭酸ガス
はほとんどなくフロンガスで満たされ優れた断熱性能を
示すと共に、フロン使用量を削減できることが判った。
これは、疎水化ゼオライトが水との吸着反応に不活性で
あるため有機ポリイソシアネートと水との反応を阻害さ
せることがなく、発生した炭酸ガスを発泡ガスとして利
用した後、気泡内に含まれる炭酸ガスを吸着したことを
示している。疎水化ゼオライトの分子状態については不
明であるが、シリコーン樹脂の皮膜がゼオライト粉末表
面に形成され、吸着ガスへのバリヤー層となっている結
果、少なくとも水とイソシアネートが反応に要する時間
(約10秒間)は、水に対して不活性であると同時に、炭
酸ガスの吸着については、吸着速度は遅いものの実用上
問題のない特性を有するのである。この結果、水とイソ
シアネートの反応により発生した炭酸ガスが発泡ガスと
して有効に利用でき、フロン使用量が少なくても所定密
度まで低減可能であり、かつ、経時的に気泡中の炭酸ガ
スを疎水化ゼオライトが吸着するため最終的には、炭酸
ガスは除かれ、フロンガスに純化される結果、気体熱伝
導率が改善され、発泡断熱材の熱伝導率も優れたものと
なるのである。
As described above, it was found that the foamed heat insulating material of the present invention showed almost no carbon dioxide gas in the air bubbles, was filled with Freon gas, exhibited excellent heat insulating performance, and could reduce the amount of Freon used.
This is because the hydrophobized zeolite is inactive in the adsorption reaction with water and does not hinder the reaction between the organic polyisocyanate and water, and is contained in the bubbles after using the generated carbon dioxide gas as a foaming gas. This indicates that carbon dioxide was adsorbed. Although the molecular state of the hydrophobized zeolite is unknown, a silicone resin film is formed on the surface of the zeolite powder and serves as a barrier layer to the adsorbed gas. As a result, at least the time required for the reaction between water and isocyanate (about 10 seconds) ) Is inert to water and has a characteristic of practically no problem in adsorbing carbon dioxide gas, although the adsorption speed is low. As a result, carbon dioxide gas generated by the reaction between water and isocyanate can be effectively used as a foaming gas, and can be reduced to a predetermined density even with a small amount of chlorofluorocarbon. Since the zeolite is adsorbed, the carbon dioxide gas is finally removed and the gas is purified into a fluorocarbon gas. As a result, the thermal conductivity of the gas is improved, and the thermal conductivity of the foam insulating material is also improved.

このように本発明の発泡断熱材は、オゾン層破壊等の
環境問題の主原因とされているフロン−11の使用量削減
が可能で、かつ優れた断熱性能により省エネルギーに寄
与することが、両立して実現でき、提供できるのであ
る。
As described above, the foamed heat insulating material of the present invention can reduce the amount of use of Freon-11, which is a main cause of environmental problems such as ozone layer destruction, and contribute to energy saving through excellent heat insulating performance. It can be realized and provided.

なお、比較例において、疎水化ゼオライトを添加しな
い場合、気泡ガスとして炭酸ガスが多量に存在するため
熱伝導率は、悪く、又、ゼオライトを添加した場合、水
を瞬間的に吸着除去する結果、炭酸ガスの発生がなく、
密度は高く、同体積に発泡させるにはフロン使用量は増
加すると予測でき、フロン使用量削減には結びつかな
い。ただし、気泡中はフロンガスで純化されるため熱伝
導率は優れたものとなる。
In the comparative example, when the hydrophobic zeolite was not added, the thermal conductivity was poor because a large amount of carbon dioxide gas was present as the bubble gas, and when zeolite was added, as a result of instantaneously adsorbing and removing water, There is no generation of carbon dioxide,
The density is high, and it can be predicted that the amount of CFC used will increase if foaming to the same volume. However, since the bubbles are purified by Freon gas, the thermal conductivity becomes excellent.

発明の効果 以上のように本発明は、ポリエーテル,整泡剤,触
媒,水,フロン発泡剤からなるプレミックス成分と、疎
水化ゼオライトと有機ポリイソシアネートからなるイソ
シアネート成分とを混合撹拌し、発泡断熱材として生成
しているため、水と有機ポリイソシアネートとの反応に
よって発生する炭酸ガスを発泡ガスとして有効に利用し
てフロン発泡剤の使用量削減を行なうと共に、疎水化ゼ
オライトにより気泡内に発生残留した炭酸ガスを経時的
に吸着除去が可能である。この結果、気泡中の気体熱伝
導率が低減し、発泡断熱材の熱伝導率が改善され、優れ
た断熱性能を有する発泡断熱材が提供できる。すなわ
ち、フロン公害問題の解決に寄与できると共に省エネル
ギーに寄与することができるのである。
Effect of the Invention As described above, the present invention is to mix and stir a premix component comprising a polyether, a foam stabilizer, a catalyst, water, and a fluorocarbon blowing agent, and an isocyanate component comprising a hydrophobized zeolite and an organic polyisocyanate. Since it is generated as a heat insulating material, the carbon dioxide gas generated by the reaction between water and the organic polyisocyanate is effectively used as a foaming gas to reduce the amount of CFC blowing agent used, and is generated in bubbles by hydrophobic zeolite. The remaining carbon dioxide can be removed by adsorption over time. As a result, the thermal conductivity of the gas in the bubbles is reduced, the thermal conductivity of the foamed heat insulating material is improved, and a foamed heat insulating material having excellent heat insulating performance can be provided. That is, it can contribute to solving the problem of chlorofluorocarbon pollution as well as energy saving.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポリエーテル,製泡剤,触媒,水,フロン
発泡剤からなるプレミックス成分と、シリコーンにより
表面処理した疎水化ゼオライトと、有機ポリイソシアネ
ートからなるイソシアネート成分とを混合撹拌し、発泡
生成した発泡断熱材。
1. A premix component comprising a polyether, a foaming agent, a catalyst, water and a CFC blowing agent, a hydrophobized zeolite surface-treated with silicone, and an isocyanate component comprising an organic polyisocyanate are mixed and stirred to form a foam. Generated foam insulation.
JP6974289A 1989-03-22 1989-03-22 Foam insulation Expired - Fee Related JP2718985B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP6974289A JP2718985B2 (en) 1989-03-22 1989-03-22 Foam insulation
DE69027972T DE69027972T2 (en) 1989-03-22 1990-03-20 EXTENDED THERMAL INSULATING MATERIAL
EP90904679A EP0424539B1 (en) 1989-03-22 1990-03-20 Expanded heat-insulating material
AU52650/90A AU614691B2 (en) 1989-03-22 1990-03-20 Expanded heat-insulating material
US07/602,248 US5109032A (en) 1989-03-22 1990-03-20 Foamed heat insulation material
KR1019900702499A KR940002885B1 (en) 1989-03-22 1990-03-20 Expanded heat-insulating material
PCT/JP1990/000376 WO1990011320A1 (en) 1989-03-22 1990-03-20 Expanded heat-insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6974289A JP2718985B2 (en) 1989-03-22 1989-03-22 Foam insulation

Publications (2)

Publication Number Publication Date
JPH02248437A JPH02248437A (en) 1990-10-04
JP2718985B2 true JP2718985B2 (en) 1998-02-25

Family

ID=13411562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6974289A Expired - Fee Related JP2718985B2 (en) 1989-03-22 1989-03-22 Foam insulation

Country Status (1)

Country Link
JP (1) JP2718985B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2719001B2 (en) * 1989-07-28 1998-02-25 松下冷機株式会社 Foam insulation
KR0184681B1 (en) * 1995-01-24 1999-05-15 구보타 다다시 Thermal insulating foamed material having carbon dioxide absorbent and method for manufacturing the same

Also Published As

Publication number Publication date
JPH02248437A (en) 1990-10-04

Similar Documents

Publication Publication Date Title
US5034424A (en) Rigid foam and process for producing the same
JPH111536A (en) Hard polyurethane foam with open cell, its production and production of vacuum insulating panel using the same
EP0618253B1 (en) Polyurethane foam of low thermal conductivity and method of preparation
JP2718985B2 (en) Foam insulation
US5109032A (en) Foamed heat insulation material
JP2718999B2 (en) Foam insulation
JP2719001B2 (en) Foam insulation
JP2809716B2 (en) Foam insulation
JP2776582B2 (en) Foam insulation
JPH03137138A (en) Foamed heat insulating material
JPH03244621A (en) Foamed heat insulation material
JPH03121143A (en) Foamed thermal insulant
JP2000109593A (en) Heat insulating wall and its manufacture
JP3641080B2 (en) Manufacturing method of foam insulation
JPH09132658A (en) Carbon dioxide gas adsorbent, foamed heat-insulating material, and heat-insulating box
JPH03137137A (en) Foamed heat insulating material
JP3860263B2 (en) Foam heat insulating material, foam heat insulating material manufacturing method, and heat insulating box
JPH11290649A (en) Carbon dioxide gas adsorbing agent, foamed heat insulation material and heat insulated box
JP3942700B2 (en) Manufacturing method of foam insulation
JPH03244645A (en) Foamed thermal insulation material
JPH0873555A (en) Heat-insulation material and heat-insulation box
JPH04224834A (en) Foamed insulation material
JPH08200937A (en) Carbon dioxide adsorbent, foaming heat insulating material, manufacture of foaming heat insulating material and heat insulating box body
JPH08196865A (en) Gaseous carbon dioxide adsorbent, foamed heat insulator and heat insulating box
JPH0362815A (en) Foamed insulation material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees