JPH02246259A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH02246259A
JPH02246259A JP1068072A JP6807289A JPH02246259A JP H02246259 A JPH02246259 A JP H02246259A JP 1068072 A JP1068072 A JP 1068072A JP 6807289 A JP6807289 A JP 6807289A JP H02246259 A JPH02246259 A JP H02246259A
Authority
JP
Japan
Prior art keywords
wafer
semiconductor
wiring
semiconductor wafer
type well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1068072A
Other languages
Japanese (ja)
Inventor
Kazunori Imaoka
今岡 和典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1068072A priority Critical patent/JPH02246259A/en
Publication of JPH02246259A publication Critical patent/JPH02246259A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To constitute a highly reliable IC in a three-dimensional pattern by sticking one main surface of a first semiconductor wafer on which either of a semiconductor element or a wiring is formed to a second semiconductor wafer. CONSTITUTION:An n-type well 2n and a p-type well 2p are provided on a first wafer 11. A p-channel MOS element 3p is formed on the n-type well 2n on the surface side of the first wafer 11. An n-channel MOS element 3n is formed on the p-type well 2p. Well contacts 4n and 4p for the n-type well 2n and the p-type well 2p are guided out of the surface of the first wafer 11 through grooves 14 which are communicated to the surface from a wirings 13 that are formed at the rear surface of the first wafer 11. The first wafer 11 and a second wafer 12 are bonded through an insulating film 15 comprising an SiO2 film. Thus, the device is constituted in a three-dimensional pattern, while a high integration density can be achieved, the wiring length is shortened, high speed operation can be performed and reliability is improved.

Description

【発明の詳細な説明】 〔概 要〕 2つのウェハーを貼り合わせた構造の半導体装置とその
製造方法に関し、 信幀性の高いICを立体的に構成することを目的とし、 対向する両主面に少なくとも半導体素子、または配線の
いずれかを設けた第1半導体ウェハーの一主面を第2半
導体ウェハーに貼り合わせた構造を具備したことを特徴
とする。
[Detailed Description of the Invention] [Summary] The present invention relates to a semiconductor device having a structure in which two wafers are bonded together and a method for manufacturing the same, with the purpose of three-dimensionally configuring a highly reliable IC. The semiconductor device is characterized by having a structure in which one main surface of a first semiconductor wafer provided with at least one of semiconductor elements or wiring is bonded to a second semiconductor wafer.

且つ、製造方法は、第1半導体ウェハーの一主面に少な
くとも半導体素子、または配線のいずれかを形成した後
、該一主面を第2半導体ウェハーに接着し、次いで、前
記第1半導体ウェハーの他の主面に少なくとも半導体素
子、または配線のいずれかを形成する工程が含まれてな
ることを特徴とする。
In addition, the manufacturing method includes forming at least one of a semiconductor element or wiring on one main surface of a first semiconductor wafer, bonding the one main surface to a second semiconductor wafer, and then bonding the first semiconductor wafer to a second semiconductor wafer. It is characterized in that it includes a step of forming at least either a semiconductor element or wiring on the other main surface.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置およびその製造方法のうち、2つの
ウェハーを貼り合わせた構造の半導体装置とその製造方
法に関する。
The present invention relates to a semiconductor device having a structure in which two wafers are bonded together, and a method for manufacturing the same, among semiconductor devices and methods for manufacturing the same.

近年、半導体装置は益々高集積化して、例えば、レーザ
メルト法によるSol構造などの立体的(三次元的)な
構造が開発されているが、それらの基板品質が必ずしも
充分でなく、結晶品質の良い基板を用いた立体構造の半
導体装置が望まれている。
In recent years, semiconductor devices have become increasingly highly integrated, and three-dimensional (three-dimensional) structures, such as the Sol structure, have been developed using the laser melting method. A semiconductor device with a three-dimensional structure using a substrate is desired.

〔従来の技術と発明が解決しようとする課題〕従来のよ
り、半導体装置においてはパターンを微細化して高集積
化を図っており、それが最も有効な方法であった。しか
し、パターンの微細化だけでは高集積化に限度がある0
例えば、CMO3素子からなるI C(CMO3−I 
C)においては基板電位をフローティングしないために
ウェル領域にもコンタクトを採る必要があり、それには
それだけの広い面積が必要になる。第7図はその従来の
問題点の例を説明する図で、シリコン基板1にnウェル
2nを設けてpチャネルMO3素子3pを形成し、且つ
、pウェル2pを設けてnチャネル間O8素子3nを形
成しているが、いずれのMO3素子もウェルコンタク)
4n、 4pが必要になってそれだけ広い面積を要し、
高集積化が害される。
[Prior Art and Problems to be Solved by the Invention] Conventionally, in semiconductor devices, patterns have been miniaturized to achieve high integration, and this has been the most effective method. However, there is a limit to high integration through pattern miniaturization alone.
For example, an IC (CMO3-I
In C), in order to prevent the substrate potential from floating, it is necessary to make a contact also in the well region, which requires a correspondingly large area. FIG. 7 is a diagram illustrating an example of the conventional problem. In the silicon substrate 1, an n-well 2n is provided to form a p-channel MO3 element 3p, and a p-well 2p is provided to form an O8 element 3n between the n-channels. However, both MO3 elements are well contact)
4n and 4p are required, which requires a larger area.
High integration is impaired.

一方、上記のように、レーザメルト法によって立体的に
SOI構造を積み上げる方法が知られているが、レーザ
メルト法によって溶解して単結晶化しても充分に結晶品
質の良い基板が作製できず、信頼性の高いICが得られ
ないという欠点がある。
On the other hand, as mentioned above, a method of stacking up SOI structures three-dimensionally using the laser melting method is known, but even if it is melted and made into a single crystal using the laser melting method, a substrate with sufficiently good crystal quality cannot be produced, resulting in poor reliability. The disadvantage is that a high IC cannot be obtained.

本発明はこれらの問題点を解消させて、信頼性の高いI
Cを立体的に構成させることを目的とした半導体装置と
その製造方法を提案するものである。
The present invention solves these problems and provides highly reliable I/O.
This paper proposes a semiconductor device and a method of manufacturing the same for the purpose of three-dimensionally configuring C.

〔課題を解決するための手段〕[Means to solve the problem]

その課題は、第1図に示すように、対向する両生面に少
なくとも半導体素子、または配線のいずれかを設けた第
1半導体ウェハー11の一主面を第2半導体ウェハー1
2に貼り合わせた構造を具備した半導体装置によって解
決される。
The problem is, as shown in FIG. 1, that one principal surface of a first semiconductor wafer 11, which has at least one of semiconductor elements or wiring on its opposing bidirectional surfaces, is replaced by a second semiconductor wafer 11,
The problem is solved by a semiconductor device having a structure in which two parts are bonded together.

また、その製造方法は、第1半導体ウェハーの一主面に
少なくとも半導体素子、または配線のいずれかを形成し
た後、該一主面を第2半導体ウェハーに接着し、次いで
、前記第1半導体ウェハーの他の主面に少なくとも半導
体素子、または配線のいずれかを形成する工程が含まれ
ることを特徴とする。
Further, the manufacturing method includes forming at least one of a semiconductor element or a wiring on one main surface of a first semiconductor wafer, and then bonding the one main surface to a second semiconductor wafer, and then bonding the first semiconductor wafer to a second semiconductor wafer. The method is characterized in that it includes a step of forming at least either a semiconductor element or a wiring on the other main surface.

〔作 用〕[For production]

本発明は、2つの半導体ウェハー(以下、ウェハと略称
する)を貼り合わせて、一方のウェハー表裏両面に半導
体素子や配線を設け、例えば、両面の接続には連通した
溝を利用する。
In the present invention, two semiconductor wafers (hereinafter abbreviated as wafers) are bonded together, semiconductor elements and wiring are provided on both the front and back sides of one wafer, and, for example, communicating grooves are used to connect both sides.

そうすれば、結晶品質の良いウェハーを使用するために
、半導体素子は高品質化され、且つ、ウェハー両面に半
導体素子や配線を形成するために高集積化でき、しかも
、配線が短縮できるから高速動作にも役立つ。
By doing so, the quality of semiconductor elements will be improved by using wafers with good crystal quality, and high integration will be possible because semiconductor elements and wiring are formed on both sides of the wafer.Moreover, the wiring can be shortened, so high speeds will be achieved. It also helps with movement.

〔実 施 例〕〔Example〕

以下に図面を参照して実施例によって詳細に説明する。 Examples will be described in detail below with reference to the drawings.

第1図は本発明にかかる実施例(1)の断面図を示して
おり、11は第1ウエハー、12は第2ウエハーで、第
1ウエハー11にnウェル2nとpウェル2pを設け、
第1ウエハー11の表面側のnウェル2nにpチャネル
MO3素子3pを形成し、且つ、pウェル2pにnチャ
ネルMO3素子3nを形成して、これらnウェル2nと
pウェル2pのそれぞれのウェルコンタクト4n、 4
pを第1ウエハー11の裏面に形成した配線13(導出
配線)より表面に連通ずる溝14を介して第1ウエハー
11の表面に導出した構造である。なお、裏面および溝
内の導電配線層は導電性多結晶シリコン膜によって形成
している。
FIG. 1 shows a cross-sectional view of Example (1) according to the present invention, where 11 is a first wafer, 12 is a second wafer, the first wafer 11 is provided with an n well 2n and a p well 2p,
A p-channel MO3 element 3p is formed in the n-well 2n on the front side of the first wafer 11, and an n-channel MO3 element 3n is formed in the p-well 2p, and well contacts are established between the n-well 2n and the p-well 2p. 4n, 4
This is a structure in which p is led out to the front surface of the first wafer 11 from a wiring 13 (lead wiring) formed on the back surface of the first wafer 11 via a groove 14 communicating with the front surface. Note that the conductive wiring layer on the back surface and in the groove is formed of a conductive polycrystalline silicon film.

また、第1ウエハー11と第2ウエハー12とはSi0
よ (酸化シリコン)膜からなる絶縁膜15を介して接
着している。このように、ウェルコンタクト4n+ 4
pを裏面に設け、絶縁膜の中を通して表出させるために
、それだけ表面の素子専有面積が減少して、高集積化が
可能となるものである。
Further, the first wafer 11 and the second wafer 12 are Si0
They are bonded via an insulating film 15 made of a (silicon oxide) film. In this way, well contact 4n+ 4
Since p is provided on the back surface and exposed through the insulating film, the area occupied by the device on the front surface is reduced accordingly, making it possible to achieve high integration.

次に、第2図(a)〜げ)は本発明にかかる実施例(1
)の形成方法の工程順断面図を示しており、本工程は第
1ウエハー裏面からウェルコンタクト4れを導出するま
での形成方法の工程順図である。
Next, FIGS. 2(a) to 2) show examples (1) according to the present invention.
), and this step is a step-by-step sectional view of the forming method until the well contact 4 is led out from the back surface of the first wafer.

順次に説明すると、 第2図(a);第1ウエハー11を熱酸化してStow
膜16(絶縁膜)を形成し、ウェハー裏面のSi0g膜
を窓あけした後、その裏面に導電性多結晶シリコン膜を
被着し、パターンニングして導電性多結晶シリコン膜か
らなる配線13を形成する。
To explain sequentially, FIG. 2(a); The first wafer 11 is thermally oxidized and Stow
After forming a film 16 (insulating film) and opening a window in the Si0g film on the back side of the wafer, a conductive polycrystalline silicon film is deposited on the backside and patterned to form wiring 13 made of the conductive polycrystalline silicon film. Form.

第2図し);次いで、そのウェハー裏面の配線13上を
含む全面にSing膜15を被着して、平坦化する。
(FIG. 2); Next, a Sing film 15 is deposited on the entire surface of the wafer including the wiring 13 on the back surface thereof, and the wafer is planarized.

その時、必要ならば研磨、化学エツチングなどをおこな
って平坦化する。
At that time, if necessary, polishing, chemical etching, etc. are performed to flatten the surface.

第2図(C);次いで、第1ウエハー11のSiO!膜
15を被覆した裏面と第2ウエハー12の平坦な面とを
接着する。接着法は例えば、1100℃、30〜60分
の熱処理を加える。そうすると、SiO□膜に付着して
いるH基やOH基が離脱して、0基が強固に結合して接
着する。なお、第2ウエハー12の接着面は特に酸化処
理してSiO□膜を作成しなくても、通常、ウェハー面
には僅かの層からなるSing分子膜が形成されており
、それが接着に寄与する。
FIG. 2(C); Next, SiO! of the first wafer 11! The back surface covered with the film 15 and the flat surface of the second wafer 12 are bonded. For example, the bonding method includes heat treatment at 1100° C. for 30 to 60 minutes. Then, the H groups and OH groups adhering to the SiO□ film are separated, and the 0 groups are firmly bonded and adhered. Note that even if the adhesion surface of the second wafer 12 is not specially oxidized to create a SiO□ film, a Sing molecule film consisting of a small layer is usually formed on the wafer surface, which contributes to adhesion. do.

尚、接着面の凹凸度(T T V ; Total T
h1cknessVariation)が2pm以下で
あることが望ましくて、そうすれば接着力が強固になる
。また、この接着法としては上記熱処理法の他に静電圧
着法によっても接着することが可能である。
Incidentally, the degree of unevenness of the adhesive surface (T T V ; Total T
h1cknessVariation) is desirably 2 pm or less, so that the adhesive strength becomes strong. Further, as the bonding method, in addition to the heat treatment method described above, it is also possible to bond by an electrostatic pressure bonding method.

第2図(d):次いで、第1ウエハー11の表面を研磨
して3μmあるいはそれ以下の厚さにする。
FIG. 2(d): Next, the surface of the first wafer 11 is polished to a thickness of 3 μm or less.

第2図(e);次いで、公知のトレンチ形成法を利用し
て、第1ウエハーの所定位置に溝14(トレンチ)を形
成する。
FIG. 2(e); Next, a groove 14 (trench) is formed at a predetermined position on the first wafer using a known trench forming method.

第2図(f);次いで、熱酸化して第1ウエハー11の
溝内部表面および表面にSing膜17膜形7し、次に
溝内に導電性多結晶シリコン膜を埋没させて、ウェルコ
ンタクト4nを導出する。
FIG. 2(f): Next, a Sing film 17 is formed on the inner surface and surface of the groove of the first wafer 11 by thermal oxidation, and then a conductive polycrystalline silicon film is buried in the groove to form a well contact. Derive 4n.

しかる後、公知の製法によって第1ウエハー11にnウ
ェル2nとpウェル2pを形成し、その表面にpチャネ
ルMO3素子3pとnチャネルMO3素子3nを形成し
て、第1図のように完成する。なお、上記はウェルコン
タクト4nのみを図示して説明したが、他方のウェルコ
ンタクト4pもウェルコンタク)4nと同時に形成する
Thereafter, an n-well 2n and a p-well 2p are formed on the first wafer 11 by a known manufacturing method, and a p-channel MO3 element 3p and an n-channel MO3 element 3n are formed on the surface thereof, completing the process as shown in FIG. . Although only the well contact 4n has been illustrated and explained above, the other well contact 4p is also formed at the same time as the well contact 4n.

次に、第3図は本発明にかかる実施例(II)の断面図
を示しており、31は第1ウエハー、32は第2ウエハ
ーで、第1ウエハー31の裏面にnチャネルMO3素子
5nを形成し、表面にnチャネルMO3素子6nを形成
して、裏面のnチャネルMO3素子5nのソースコンタ
クト4Sとドレインコンタクト4dとを第1ウエハー3
1の裏面に形成した配線33より表面に連通ずる溝34
を介して第1ウエハー31の表面に導出した構造である
Next, FIG. 3 shows a cross-sectional view of Example (II) according to the present invention, where 31 is a first wafer, 32 is a second wafer, and an n-channel MO3 element 5n is provided on the back surface of the first wafer 31. The n-channel MO3 element 6n is formed on the front surface, and the source contact 4S and drain contact 4d of the n-channel MO3 element 5n on the back surface are connected to the first wafer 3.
A groove 34 that communicates with the surface from the wiring 33 formed on the back surface of 1.
This is a structure that is led out to the surface of the first wafer 31 via.

且つ、第1図と同じく、第1ウエハー31と第2ウエハ
ー32とはSing膜35を介して接着しており、この
ように構成すれば、素子面積が約172に減少して集積
度が向上する。
In addition, as in FIG. 1, the first wafer 31 and the second wafer 32 are bonded to each other via the Sing film 35, and with this configuration, the element area is reduced to about 172 and the degree of integration is improved. do.

次に、第4図(a)〜(ロ)は本発明にかかる実施例(
II)の形成方法の工程順断面図を示しており、本工程
は第1ウエハー裏面からソースコンタクト4sを導出す
るまでの形成方法を主にした工程順図である。順次に説
明すると、 第4図(a);本図は第1ウエハー31の両面に5iO
1膜36を形成し、ウェハー裏面に公知の製法によって
nチャネルMO3素子5nを形成し、そのMO3素子5
nのソース、ドレインから導出する導電性多結晶シリコ
ン膜からなる配線33を形成した図である。
Next, FIGS. 4(a) to 4(b) show examples (
This is a step-by-step sectional view of the forming method II), and this step is a step-by-step drawing mainly showing the forming method up to leading out the source contact 4s from the back surface of the first wafer. To explain sequentially, FIG. 4(a); this figure shows 5iO on both sides of the first wafer 31.
1 film 36 is formed, and an n-channel MO3 element 5n is formed on the back surface of the wafer by a known manufacturing method.
FIG. 3 is a diagram showing the formation of wiring 33 made of a conductive polycrystalline silicon film led out from the source and drain of n.

第4図(b) :次いで、そのウェハー裏面の配線33
上を含む全面にSiO!膜35を被着して、平坦化する
FIG. 4(b): Next, the wiring 33 on the back side of the wafer
SiO on the entire surface including the top! A film 35 is deposited and planarized.

第4図(C);次いで、第1ウエハー31のSing膜
35を平坦化した裏面と第2ウエハー32の平坦面とを
接着し、更に、第1ウエハー31の表面を研磨して厚さ
3μm程度にする。接着法は上記した方法と同様である
FIG. 4(C); Next, the back surface of the first wafer 31 on which the Sing film 35 has been planarized is bonded to the flat surface of the second wafer 32, and the surface of the first wafer 31 is further polished to a thickness of 3 μm. to a certain degree. The adhesion method is similar to the method described above.

第4図(ロ);次いで、第1ウエハー31に溝34を形
成し、熱酸化して溝内部表面および表面にStow膜3
7膜化7した後、溝内に導電性多結晶シリコン膜を埋没
させて、ソースコンタクト4Sを表出させる。
FIG. 4(B): Next, a groove 34 is formed in the first wafer 31, and the Stow film 3 is formed on the inner surface and surface of the groove by thermal oxidation.
After forming 7 films, a conductive polycrystalline silicon film is buried in the trench to expose the source contact 4S.

その後は、公知の製法によって第1ウニA−31の表面
にnチャネルMO3素子6nを形成して、第1図のよう
に完成する。なお、上記はソースコンタクト4Sのみを
図示して説明したが、他のドレインコンタクト4dも同
時秤形成するものである。
After that, an n-channel MO3 element 6n is formed on the surface of the first sea urchin A-31 by a known manufacturing method, and the device is completed as shown in FIG. Note that although only the source contact 4S has been illustrated and explained above, the other drain contacts 4d are also formed at the same time.

次に、第5図は本発明にかかる実施例(1)の断面図を
示しており、51は第1ウニA+、52は第2ウエハー
で、第1ウエハー51に素子分離帯58を介して2つの
npn型バイポーラ素子3b’、3b”を並列し、且つ
、これらバイポーラ素子のそれぞれのコレクタコンタク
ト4c  + 4c”を第1ウエノ1−′51の裏面に
形成した配線53より表面に連通ずる溝54を介して第
1ウエハー11の表面に導出した構造である。
Next, FIG. 5 shows a sectional view of the embodiment (1) according to the present invention, in which 51 is a first wafer A+, 52 is a second wafer, and the first wafer 51 is connected to the first wafer 51 through an element isolation band 58. A groove in which two npn type bipolar elements 3b', 3b'' are arranged in parallel and the respective collector contacts 4c + 4c'' of these bipolar elements are communicated with the surface from the wiring 53 formed on the back surface of the first Ueno 1-'51. This is a structure that is led out to the surface of the first wafer 11 via 54.

このように、コレクタコンタクト4c  、 4Crt
を裏面から絶縁膜の中を通して表出させるために、素子
面積が減少して高集積化することができる。
In this way, collector contacts 4c, 4Crt
Since the elements are exposed through the insulating film from the back surface, the element area is reduced and higher integration can be achieved.

次に、第6図(a)〜(C)は本発明にかかる実施例C
DI)の形成方法の工程順断面図を示しており、本工程
はバイポーラ素子特有の形成工程を主にした工程順図で
ある。概要を説明すると、第6図(a);本図は第1ウ
エハー51の裏面に配線53を形成し、その上にSiO
□膜55を被着して平坦化し、第1図ウェハー51と第
2ウエハー52を接着し、更に、第1ウエハー51の表
面を研磨して厚さ1〜3μm程度にした工程途中図であ
る。即ち、本図は第2図(a)〜(d)の工程を完了し
た図を図示している。
Next, FIGS. 6(a) to (C) show Example C according to the present invention.
DI), which is a step-by-step cross-sectional view of a method for forming DI), and this step is a step-by-step diagram mainly showing forming steps specific to bipolar elements. To explain the outline, FIG. 6(a); in this figure, wiring 53 is formed on the back surface of the first wafer 51, and SiO
□This is an intermediate view of the process in which the film 55 is deposited and flattened, the wafer 51 in FIG. . That is, this figure shows the completed process of FIGS. 2(a) to 2(d).

第6図O));次いで、第1ウエハー51の表面に不純
物拡散して第1ウエハーのシリコン全面をn十型埋没層
59にした後、その第1ウエハーの埋没層59上にn型
エピタキシャル成長層60を成長する。
FIG. 6 O)); Next, impurities are diffused into the surface of the first wafer 51 to make the entire silicon surface of the first wafer an n-type buried layer 59, and then n-type epitaxial growth is performed on the buried layer 59 of the first wafer. Grow layer 60.

第6図(C);次いで、素子分離帯58を形成し、溝5
4を形成し、溝内に導電性多結晶シリコン膜を埋めてコ
レクタコンタクト4C’14C”を第1ウエハー51の
表面に導出する。
FIG. 6(C); Next, an element isolation band 58 is formed, and the groove 5
4 is formed, a conductive polycrystalline silicon film is buried in the groove, and a collector contact 4C'14C'' is led out to the surface of the first wafer 51.

その後、公知の製法によって第1ウエハー51の表面に
バイポーラ素子3b ’ 、 3b”を形成して、第5
図のように完成する。
Thereafter, bipolar elements 3b' and 3b'' are formed on the surface of the first wafer 51 by a known manufacturing method, and the fifth
Complete as shown in the diagram.

これらの実施例はいずれも2つの半導体ウェハーを貼り
合わせて、第1ウェハー表裏両面に半導体素子や配線を
設けた構造であり、且つ、その製造方法は、第1ウエハ
ーの裏面に半導体素子、配線を形成した後、その裏面を
第2ウエハーに接着し、次いで、第1ウェハー表面に半
導体素子、配線を形成する方法である。
All of these embodiments have a structure in which two semiconductor wafers are bonded together and semiconductor elements and wiring are provided on both the front and back surfaces of the first wafer. After forming a wafer, the back surface thereof is bonded to a second wafer, and then semiconductor elements and wiring are formed on the front surface of the first wafer.

〔発明の効果〕〔Effect of the invention〕

以上の実施例の説明から明らかなように、本発明にかか
る半導体装置および製造方法によれば、結晶品質の良い
ウェハー上に半導体素子、配線を設けることになるため
に、半導体装置の品質が向上し、且つ、ウェハー両面に
半導体素子や配線を形成するために高集積化され、更に
、配線を短縮できるために、これらの効果が相乗して高
速動作など半導体装置の性能向上にも効果のあるもので
ある。
As is clear from the description of the embodiments above, according to the semiconductor device and manufacturing method of the present invention, semiconductor elements and wiring are provided on a wafer with good crystal quality, so the quality of the semiconductor device is improved. In addition, since semiconductor elements and wiring are formed on both sides of the wafer, it is highly integrated, and the wiring can be shortened, so these effects combine to improve the performance of semiconductor devices such as high-speed operation. It is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる実施例(I)の断面図、第2図
(a)〜(f)は実施例(I)の形成方法の工程順断面
図、 第3図は本発明にかかる実施例(II)の断面図、第4
図(a)〜(d)は実施例(II)の形成方法の工程順
断面図、 第5図は本発明にかかる実施例(T[)の断面図、第6
図(a)〜榊は実施例(III)の形成方法の工程順断
面図、 第7図は従来の問題点を示す図である。 図において、 11、31.51は第1ウエハー 12、32.52は第2ウエハー 13、33.53は配線(導出配線)、14、34.5
4は溝、 15、35.55はSiO□膜(接着する絶縁膜)、3
pはPチャネルMO3素子、 3n、 5n、 6nはnチャネルMO3素子、4n+
 4pはウェルコンタクト、 4sはソースコンタクト、 4dはドレインコンタクト、 3b’、3b”はバイポーラ素子、 4c’+4c”はコレクタコンタクト を示している。
Fig. 1 is a cross-sectional view of Example (I) according to the present invention, Fig. 2 (a) to (f) are cross-sectional views in order of steps of the forming method of Example (I), and Fig. 3 is a cross-sectional view of Example (I) according to the present invention. Cross-sectional view of Example (II), No. 4
Figures (a) to (d) are step-by-step cross-sectional views of the forming method of Example (II); Figure 5 is a cross-sectional view of Example (T[) according to the present invention;
Figures (a) to Sakaki are step-by-step cross-sectional views of the forming method of Example (III), and Figure 7 is a diagram showing the problems of the conventional method. In the figure, 11, 31.51 are the first wafer 12, 32.52 are the second wafer 13, 33.53 are wiring (lead wiring), 14, 34.5
4 is the groove, 15, 35.55 is the SiO□ film (insulating film to be bonded), 3
p is P channel MO3 element, 3n, 5n, 6n are n channel MO3 element, 4n+
4p is a well contact, 4s is a source contact, 4d is a drain contact, 3b' and 3b'' are bipolar elements, and 4c'+4c'' is a collector contact.

Claims (4)

【特許請求の範囲】[Claims] (1)対向する両主面に少なくとも半導体素子、または
配線のいずれかを設けた第1半導体ウェハーの一主面を
第2半導体ウェハーに貼り合わせた構造を具備したこと
を特徴とする半導体装置。
(1) A semiconductor device characterized by having a structure in which one main surface of a first semiconductor wafer, which has at least either a semiconductor element or wiring provided on both opposing main surfaces, is bonded to a second semiconductor wafer.
(2)前記第1半導体ウェハーの一主面に設けた配線を
、両主面に連通する溝を介して前記第1半導体ウェハー
の表面に導出した構造を具備したことを特徴とする請求
項(1)記載の半導体装置。
(2) A structure characterized in that the wiring provided on one main surface of the first semiconductor wafer is led out to the surface of the first semiconductor wafer via a groove communicating with both main surfaces. 1) The semiconductor device described above.
(3)ウェル層からの導出配線、または、埋没層からの
導出配線を前記第1半導体ウェハーの一主面に設けて、
両主面に連通する溝を介して前記第1半導体ウェハーの
他の主面に導出する構造を具備したことを特徴とする請
求項(2)記載の半導体装置。
(3) providing a lead-out wiring from the well layer or a lead-out wiring from the buried layer on one main surface of the first semiconductor wafer;
3. The semiconductor device according to claim 2, further comprising a structure for leading out to the other main surface of the first semiconductor wafer via a groove communicating with both main surfaces.
(4)第1半導体ウェハーの一主面に少なくとも半導体
素子、または配線のいずれかを形成した後、該一主面を
第2半導体ウェハーに接着し、次いで、前記第1半導体
ウェハーの他の主面に少なくとも半導体素子、または配
線のいずれかを形成する工程が含まれてなることを特徴
とする半導体装置の製造方法。
(4) After forming at least one of semiconductor elements or wiring on one main surface of the first semiconductor wafer, the one main surface is bonded to a second semiconductor wafer, and then the other main surface of the first semiconductor wafer is bonded to a second semiconductor wafer. 1. A method of manufacturing a semiconductor device, comprising the step of forming at least a semiconductor element or a wiring on a surface.
JP1068072A 1989-03-20 1989-03-20 Semiconductor device and manufacture thereof Pending JPH02246259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1068072A JPH02246259A (en) 1989-03-20 1989-03-20 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1068072A JPH02246259A (en) 1989-03-20 1989-03-20 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02246259A true JPH02246259A (en) 1990-10-02

Family

ID=13363203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1068072A Pending JPH02246259A (en) 1989-03-20 1989-03-20 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02246259A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5581101A (en) * 1995-01-03 1996-12-03 International Business Machines Corporation FET and/or bipolar devices formed in thin vertical silicon on insulator (SOI) structures
AU771642B2 (en) * 1999-08-21 2004-04-01 Lg Electronics Inc. Plasma polymerizing apparatus having an electrode with a lot of uniform edges

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5581101A (en) * 1995-01-03 1996-12-03 International Business Machines Corporation FET and/or bipolar devices formed in thin vertical silicon on insulator (SOI) structures
US5723370A (en) * 1995-01-03 1998-03-03 International Business Machines Corporation FET and/or bipolar devices formed in thin vertical silicon on insulator (SOI) structures
AU771642B2 (en) * 1999-08-21 2004-04-01 Lg Electronics Inc. Plasma polymerizing apparatus having an electrode with a lot of uniform edges

Similar Documents

Publication Publication Date Title
US5238865A (en) Process for producing laminated semiconductor substrate
JPWO2005036638A1 (en) Semiconductor substrate, semiconductor device, and method for manufacturing semiconductor substrate
JPH04106932A (en) Manufacture of bipolar transistor
JP3006425B2 (en) Semiconductor device and manufacturing method thereof
JPH0846031A (en) Manufacture of laminated silicon substrate
JPH1032321A (en) Soi substrate and its manufacture
JPH02246259A (en) Semiconductor device and manufacture thereof
KR19980069868A (en) Multi-thickness silicon wafers on insulators that highly integrate mixed signal integrated circuit devices
JP3276146B2 (en) Semiconductor device and manufacturing method thereof
JPH0613593A (en) Semiconductor substrate
JP2770808B2 (en) Semiconductor substrate and method of manufacturing the same
JPS624338A (en) Manufacture of semiconductor device
JPH02219252A (en) Manufacture of semiconductor device
JPH03232239A (en) Manufacture of semiconductor device
JPS61182242A (en) Manufacture of semiconductor device
JPS6276646A (en) Manufacture of semiconductor device
JPH03180070A (en) Semiconductor device and manufacture thereof
JP2597750B2 (en) Method for manufacturing semiconductor device
JPH0555534A (en) Production of laminated semiconductor device
JP3136561B2 (en) Method for manufacturing semiconductor device
JP2003046071A (en) Production method for semiconductor device
JPH084126B2 (en) Method for manufacturing semiconductor device
JPS63107161A (en) Manufacture of semiconductor element
JPH0194640A (en) Semiconductor device and manufacture thereof
JPH0222839A (en) Manufacture of dielectric-separating substrate