JPH0224605A - Manufacture of optical fiber coupling element - Google Patents

Manufacture of optical fiber coupling element

Info

Publication number
JPH0224605A
JPH0224605A JP17573488A JP17573488A JPH0224605A JP H0224605 A JPH0224605 A JP H0224605A JP 17573488 A JP17573488 A JP 17573488A JP 17573488 A JP17573488 A JP 17573488A JP H0224605 A JPH0224605 A JP H0224605A
Authority
JP
Japan
Prior art keywords
optical fiber
polarization
stress
maintaining optical
cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17573488A
Other languages
Japanese (ja)
Inventor
Shigeru Tanaka
茂 田中
Hideyori Sasaoka
英資 笹岡
Hiroshi Suganuma
寛 菅沼
Hiroshi Yokota
弘 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP17573488A priority Critical patent/JPH0224605A/en
Publication of JPH0224605A publication Critical patent/JPH0224605A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2843Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals the couplers having polarisation maintaining or holding properties

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To remove the deformation of the geometric shape in the section of optical fibers accompanying fusion drawing by removing a part of the clad of a polarization holding optical fiber and decreasing the interval between the cores of two optical fibers. CONSTITUTION:A part of a circular clad 4 or 5 is removed from an optical fiber which has strain inducing parts 8 and 9 or 10 and 11 arranged at symmetrical positions about a core 6 or 7 to form the polarization holding optical fibers 2 or 3. The central parts of the optical fibers 2 and 3 are welded to each other to form a fusion drawn part 12, thus obtaining a coupling element 1. Then linear polarized light 17 which enters the optical fiber 2 is propagated along a main axis 13 of double refraction and split at the drawn part 12 even to an optical fiber 3, so that linear polarized light beams 18 and 19 are emitted. Even when the linear polarized light is entered into this optical fiber 3, the same result is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光通信や光ファイバセンサの分野で用いられ
る光ファイバ結合素子の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing an optical fiber coupling element used in the fields of optical communications and optical fiber sensors.

特に、安定な偏波保持が必要なコヒーレント光通信方式
の受信部での局所発信光信号の合波器や、光ファイバセ
ンサの構成部品として何月な光ファイバ結合素子の製造
方法に関するものである。
In particular, it relates to methods for manufacturing optical fiber coupling elements, which are used as multiplexers for locally transmitted optical signals in receiving sections of coherent optical communication systems that require stable polarization maintenance, and as components of optical fiber sensors. .

〔従来の技術〕[Conventional technology]

長距離大容量通信を目指した光コヒーレント通信方式や
各種の物理量を精密に計測する光ファイバセンサ方式の
開発実用化が進められている。これらのシステムでは偏
波保持光ファイバが使われる他、光回路部分では偏波状
態を保った結合素子が必要となる。
Optical coherent communication systems for long-distance, high-capacity communications and optical fiber sensor systems for precisely measuring various physical quantities are being developed and put into practical use. In addition to using polarization-maintaining optical fibers, these systems require coupling elements that maintain the polarization state in the optical circuits.

偏波状態を保った光結合素子として、2本の偏波保持光
ファイバを相互に融若し、双方のコアを相互に接近させ
ることにより相互作用を生じせしめ、光の分岐結合を達
成するものがある。この光ファイバ結合素子によれば、
一方の偏波保持光ファイバに入射した直線偏光が、光フ
ァイバ複屈折主軸に沿って伝搬し、融着延伸部で他方の
偏波保持光ファイバにも分割され、直線偏光として双方
の偏波保持光ファイバから出射する。
An optical coupling device that maintains the polarization state by fusing two polarization-maintaining optical fibers together and bringing their cores close to each other to cause interaction and achieve optical branching and coupling. There is. According to this optical fiber coupling element,
Linearly polarized light incident on one polarization-maintaining optical fiber propagates along the birefringence principal axis of the optical fiber, and is split into the other polarization-maintaining optical fiber at the fusion-stretching section, maintaining both polarizations as linearly polarized light. Emitted from optical fiber.

そして、かかる光ファイバ結合素子の製造方法としては
、2本の偏波保持光ファイバを複屈折主軸が融着延伸部
において相互に平行に揃うように配列した後、その一部
区間を加熱延伸して融着延伸部を形成する方法が従来か
ら知られている。
The method for manufacturing such an optical fiber coupling device involves arranging two polarization-maintaining optical fibers so that their principal axes of birefringence are aligned parallel to each other in the fusion-stretching section, and then heating and stretching a part of the fibers. Conventionally, a method of forming a fused and stretched portion is known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、良好な結合比を得るには直径が125μmの
偏波保持光ファイバを用いる場合、従来の製造方法では
融着延伸部形成工程において、その直径が通常30μm
程度となるまで細くして2つのコアを接近させることが
必要であった。
However, in order to obtain a good coupling ratio, when using a polarization-maintaining optical fiber with a diameter of 125 μm, in the conventional manufacturing method, the diameter is usually 30 μm in the process of forming the fused and stretched portion.
It was necessary to make the two cores closer together by making the cores thinner to a certain degree.

そのため、従来の製造方法による光ファイバ結合素子は
、融着延伸部の機械的強度が著しく弱かった。また、融
着延伸部の形成の際に、融着延伸を長時間続けるため、
偏波保持光ファイバ横断面内の幾何学形状の変形が進行
し、偏波保持特性が低下してしまうという問題があった
Therefore, the mechanical strength of the fused and stretched portion of the optical fiber coupling element manufactured by the conventional manufacturing method was extremely weak. In addition, when forming the fusion-stretched part, fusion-stretching is continued for a long time, so
There is a problem in that the geometrical shape within the cross section of the polarization maintaining optical fiber progresses and the polarization maintaining characteristics deteriorate.

本発明の課題は、このような問題点を解消することにあ
る。
An object of the present invention is to solve these problems.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明の製造方法は、円形
クラッドの偏波保持光ファイバからその横断面における
複屈折主軸の1つに平行な弦でクラッドの一部を除去す
る第1の工程と、前記クラッドの一部が除去された偏波
保持光ファイバを2本用意し、この2本の偏波保持光フ
ァイバをそれぞれの横断面における弦の部分が相互に密
着するように並列配置する第2の工程と、並列配置され
た2本の偏波保持光ファイバを加熱延伸することにより
融着延伸部を形成する第3の工程とを含むものである。
In order to solve the above problems, the manufacturing method of the present invention includes a first step of removing a part of the cladding from a polarization-maintaining optical fiber with a circular cladding in a chord parallel to one of the principal axes of birefringence in its cross section. Then, prepare two polarization-maintaining optical fibers from which a portion of the cladding has been removed, and arrange these two polarization-maintaining optical fibers in parallel so that the string portions of each cross section are in close contact with each other. The method includes a second step and a third step of forming a fused and stretched portion by heating and stretching two polarization-maintaining optical fibers arranged in parallel.

〔作用〕[Effect]

第1の工程において偏波保持光ファイバのクラッドの一
部が除去されるので、第2の工程において2木偏波保持
光ファイバを並列配置したときに、2本の偏波保持光フ
ァイバのコア同士の間隔が近接している。したがって、
第3の工程における融着延伸部の形成では、延伸量が僅
かでも、必要な結合比が達成される。したがって、融着
延伸に伴う偏波保持光ファイバの横断面内の幾何学形状
の変形はほとんど無く、また、融着延伸部は十分に太い
Since a part of the cladding of the polarization-maintaining optical fiber is removed in the first step, when the two-tree polarization-maintaining optical fibers are arranged in parallel in the second step, the cores of the two polarization-maintaining optical fibers are are closely spaced. therefore,
In the formation of the fused stretch portion in the third step, the required bonding ratio is achieved even with a small amount of stretch. Therefore, there is almost no deformation of the geometrical shape in the cross section of the polarization-maintaining optical fiber due to the fusion-stretching, and the fusion-stretching portion is sufficiently thick.

〔実施例〕〔Example〕

第1図(A)(B)は本発明の製造方法の一実施例を示
す工程図である。第1図(A)は、融着工程前の偏波保
持光ファイバ2または3を示す斜視図である。この偏波
保持光ファイバ2または3は、コア6または7を中心に
対称位置に配置された2つの応力付与部8.9または1
0.11を有する応力付与型偏波保持光ファイバから円
形クラッド4または5の一部を除去することにより形成
される。除去される部分は、2つの応力付与部8.9ま
たは10.11を残すように2つの応力付与部8.9ま
たは10.11の中心を結ぶ線に平行な弦24で仕切ら
れた弓形の部分25である。このときのクラッドの除去
は、機械的研磨、または、化学的エツチングにより行わ
れる。
FIGS. 1A and 1B are process diagrams showing an embodiment of the manufacturing method of the present invention. FIG. 1(A) is a perspective view showing the polarization maintaining optical fiber 2 or 3 before the fusion process. This polarization-maintaining optical fiber 2 or 3 has two stress-applying parts 8.9 or 1 arranged at symmetrical positions around the core 6 or 7.
0.11 by removing part of the circular cladding 4 or 5 from a stressed polarization maintaining optical fiber. The part to be removed is an arcuate section separated by a chord 24 parallel to the line joining the centers of the two stress-applying parts 8.9 or 10.11 so as to leave two stress-applying parts 8.9 or 10.11. This is part 25. At this time, the cladding is removed by mechanical polishing or chemical etching.

つぎに、このようにして作製された偏波保持光ファイバ
2.3を相互に融着延伸し、光ファイバ結合素子とする
工程を説明する。第1図(B)は、本実施例の製造方法
により製造された光ファイバ結合素子の主要部を示す斜
視図である。この光ファイバ結合素子1は、同図(A)
に示した応力付与型偏波保持光ファイバ2.3の中央部
を相互に融着して融着延伸部12を形成した構造となっ
ている。なお、図示省略した両端部では、偏波保持光フ
ァイバ2および3が互いに離隔している。
Next, a process of fusion-stretching the polarization-maintaining optical fibers 2.3 produced in this manner to each other to form an optical fiber coupling element will be described. FIG. 1(B) is a perspective view showing the main parts of the optical fiber coupling element manufactured by the manufacturing method of this example. This optical fiber coupling element 1 is shown in FIG.
It has a structure in which the stress-applied polarization-maintaining optical fibers 2.3 shown in FIG. Note that the polarization-maintaining optical fibers 2 and 3 are separated from each other at both ends (not shown).

偏波保持光ファイバ2および3は、それぞれ応力付与部
8.9および10.11の配置で定まる互いに直角な複
屈折主軸13.14および15.16を有する。2本の
偏波保持光ファイバ2.3は、相互に弦の部分で合わせ
ることにより、複屈折主軸13と15が、また複屈折主
軸14と16がそれぞれ平行に揃う。したがって、本実
施例によれば、従来のように顕微鏡などを用いて複屈折
主軸の平行度を調整する工程が不要であり、複屈折主軸
合わせが非常に容易となる。しかも融着延伸工程におい
て複屈折主軸の平行性がほとんどずれないという利点も
ある。第2図は融着延伸部12の横断面形状を示すもの
であり、融着延伸によりコア6と7が、また応力付与部
8.9と10.11がそれぞれ相互に接近している。
Polarization-maintaining optical fibers 2 and 3 have principal birefringence axes 13.14 and 15.16 that are perpendicular to each other and determined by the arrangement of stress-applying parts 8.9 and 10.11, respectively. By aligning the two polarization-maintaining optical fibers 2.3 with each other at their strings, the principal axes of birefringence 13 and 15 and the principal axes of birefringence 14 and 16 are aligned parallel to each other. Therefore, according to this embodiment, there is no need for the conventional step of adjusting the parallelism of the birefringence principal axes using a microscope or the like, and the alignment of the birefringence principal axes becomes very easy. Moreover, there is an advantage that the parallelism of the principal axes of birefringence hardly deviates during the fusion-stretching process. FIG. 2 shows the cross-sectional shape of the fusion-stretched portion 12, in which the cores 6 and 7 and the stress-applying portions 8.9 and 10.11 are brought closer to each other by the fusion-stretching.

−被保持光ファイバ2に入射した直線偏光17は、複屈
折主軸13に沿って伝搬し、融着延伸部12で他方の偏
波保持光ファイバ3にも分割され、直線偏光18.1つ
としてそれぞれ出射される。
- The linearly polarized light 17 incident on the optical fiber 2 to be held propagates along the principal birefringent axis 13, and is split into the other polarization maintaining optical fiber 3 at the fusion-stretching section 12, forming one linearly polarized light 18. Each is emitted.

この作用は、偏波保持光ファイバ3に直線偏光を入射し
た場合も同様である。
This effect is the same when linearly polarized light is incident on the polarization-maintaining optical fiber 3.

なお、本実施例では、融着前の偏波保持光ファイバとし
て、2つの応力付与部を有し一方の複屈折主軸となる応
力付与部の中心を結ぶ線に平行な弦においてクラッドの
一部を除去したものを用いたが、これに限定されるもの
ではない。
In this example, the polarization-maintaining optical fiber before fusion has two stress-applying parts, one of which has a part of the cladding in a chord parallel to a line connecting the centers of the stress-applying parts, which is the principal axis of birefringence. was used, but the present invention is not limited to this.

たとえば、第3図に示すように、上記の複屈折主軸に垂
直に交わるもう一つの複屈折主軸に平行な弦で、2つの
応力付与部の一方の応力付与部22を含むクラッド部2
6を除去した構造の偏波保持光ファイバを用いることも
できる。この場合の融着延伸部では第4図に示すように
、合計して2つの応力付与部20.21が対向し、明白
は応力複屈折主軸を形成するので良好な消光比の結合が
実現される。
For example, as shown in FIG. 3, a cladding portion 2 that includes one stress applying portion 22 of the two stress applying portions is a chord parallel to another principal axis of birefringence that intersects perpendicularly to the principal axis of birefringence.
It is also possible to use a polarization-maintaining optical fiber having a structure in which 6 is removed. In this case, as shown in FIG. 4, in the fused and stretched part, a total of two stress-applying parts 20 and 21 face each other, clearly forming a stress birefringence principal axis, so that a combination with a good extinction ratio is achieved. Ru.

第5図は、さらに他の実施例に用いる偏波保持光ファイ
バの横断面図である。この偏波保持光ファイバ30は、
コア31の周囲を楕円状の応力付与部32で囲んだ円形
クラッドの応力付与型偏波保持光ファイバからクラッド
33の一部を除去したものであり、応力付与部32の楕
円長軸に平行な弦でクラッド33の一部を除去している
。この偏波保持光ファイバ30を用いた光ファイバ結合
素子の融着延伸部の横断面形状を第6図に示す。
FIG. 5 is a cross-sectional view of a polarization-maintaining optical fiber used in yet another embodiment. This polarization maintaining optical fiber 30 is
This is a stress-applied polarization-maintaining optical fiber with a circular cladding in which a core 31 is surrounded by an elliptical stress-applying part 32, with a part of the cladding 33 removed. A part of the cladding 33 is removed by the string. FIG. 6 shows a cross-sectional shape of a fused and stretched portion of an optical fiber coupling element using this polarization-maintaining optical fiber 30.

ここで、第3図に示す偏波保持光ファイバを用いた場合
の製造方法の一層具体的な例を説明する。
A more specific example of the manufacturing method using the polarization maintaining optical fiber shown in FIG. 3 will now be described.

弓形部26を除去する前の偏波保持光ファイバの構造寸
法は、コア径7.5μm1クラツド型125μm1コア
/クラッド比屈折率差0.36%、応力付与部直径29
μm1応力付与部中心とコア中心間距#35μmであり
、応力付与部2o、21には、8203を添加した石英
を用いている。
The structural dimensions of the polarization-maintaining optical fiber before removing the arcuate portion 26 are: core diameter 7.5 μm, clad type 125 μm, core/clad ratio refractive index difference 0.36%, stress applying portion diameter 29
The distance between the center of the stress applying part in μm1 and the center of the core is #35 μm, and the stress applying parts 2o and 21 are made of quartz doped with 8203.

この−被保持光ファイバの複屈折率は、測定の結果4X
10−’であった。そして、この偏波保持光ファイバか
ら弓形部26を研磨により除去した。
The birefringence of this optical fiber to be held is 4X as a result of measurement.
It was 10-'. Then, the arcuate portion 26 was removed from this polarization maintaining optical fiber by polishing.

研磨量は、応力付与部22が丁度削除される値とした。The amount of polishing was set to a value at which the stress applying portion 22 was just removed.

具体的には外周縁から中心に向かって約42μmのとこ
ろまで研磨した。
Specifically, it was polished to about 42 μm from the outer edge toward the center.

つぎに、このようにして得られた偏波保持光ファイバを
2本用意し、弦の部分が相互に密着するように並べ、部
分的に加熱しながら延伸を行い融着延伸部を形成した。
Next, two polarization-maintaining optical fibers obtained in this manner were prepared, arranged so that the string portions were in close contact with each other, and stretched while partially heating to form a fused and stretched portion.

ここでは、偏波保持光ファイバ2の一方の端部からモニ
タ光を入射し、偏波保持光ファイバ2.3の反対側端部
で出射光強度をモニタしながら延伸を行い、両方の出射
光強度が等しくなった時点で延伸を停止することにより
、50%分岐結合素子を作製した。
Here, the monitor light is input from one end of the polarization-maintaining optical fiber 2, and the emitted light intensity is monitored and stretched at the opposite end of the polarization-maintaining optical fiber 2.3. By stopping the stretching when the strengths became equal, a 50% branched coupling element was produced.

このようにして作製した光ファイバ結合素子の特性を従
来方法による結合素子と比較した結果を示す。従来素子
としては、研磨処理がなされていないこと以外は全て同
一条件の偏波保持光ファイバを2本並べ、本具体例と同
様の方法で融着延伸部を形成したものを用いた。いずれ
も、5個づつ作製し、その平均値で比較した。
The results of comparing the characteristics of the optical fiber coupling device produced in this manner with those of a coupling device produced by a conventional method are shown. The conventional element used was one in which two polarization-maintaining optical fibers were lined up under the same conditions except that they were not polished, and a fused and stretched portion was formed in the same manner as in this example. In each case, five pieces were produced and the average values were compared.

本具体例の融着延伸部の直径は平均68μmであり、そ
の引張破断強度は350gであった。これに対し、従来
素子では、延伸量が本具体例よりも大きく融着延伸部の
直径は平均35μmとなり、その引張破断強度は160
gであった。この機械強度の改善は、実際に光ファイバ
結合素子を使用するときに振動外力や温度変化による線
膨脹歪みが印加されても融着延伸部で破断する虞が減少
することを意味し、信頼性向上の点で極めて有効である
The diameter of the fused and stretched portion in this example was 68 μm on average, and the tensile strength at break was 350 g. On the other hand, in the conventional element, the amount of stretching is larger than that of this specific example, and the diameter of the fused and stretched portion is 35 μm on average, and the tensile strength at break is 160 μm.
It was g. This improvement in mechanical strength means that when an optical fiber coupling element is actually used, the risk of breakage at the fusion-stretched part is reduced even if linear expansion strain due to vibration external force or temperature change is applied, which increases reliability. It is extremely effective in terms of improvement.

また、従来素子の過剰損失は平均1.2dB、消光比は
〒均21dBであるのに対し、本具体例の光ファイバ結
合素子の過剰損失は平均0.7dB、消光比は平均29
dBと優れた結果が得られた。この結果は、本具体例の
方が延伸量が少ないので融着延伸部断面の幾何学的変形
が十分に抑えられていることに起因するものと考えられ
る。ちなみに、従来素子について、融着延伸部の断面を
観察したところ、第7図に示すように応力付与部41〜
44の断面が長く引き伸びるような変形が生じ、また、
軸ずれも認められた。
Furthermore, while the conventional element has an average excess loss of 1.2 dB and an extinction ratio of 21 dB, the optical fiber coupling element of this example has an average excess loss of 0.7 dB and an average extinction ratio of 29 dB.
Excellent results of dB were obtained. This result is considered to be due to the fact that the geometric deformation of the cross section of the fused and stretched portion is sufficiently suppressed because the amount of stretching is smaller in this specific example. By the way, when we observed the cross section of the fused and stretched part of the conventional element, we found that the stress applying part 41 to
A deformation occurs in which the cross section of 44 becomes elongated, and
Axial misalignment was also observed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の光ファイバ結合素子の製
造方法によれば、偏波保持光ファイバのクラッドの一部
を融着延伸前に予め除去するので、融着延伸の際の延伸
量を抑えることができる。したがって、融着延伸に伴う
偏波保持光ファイバの横断面内の幾何学形状の変形はほ
とんど無い。そのため、本発明により製造された光ファ
イバ結合素子は、偏波保持特性が十分に保持され優れた
光伝搬特性を有するものとなる。また、融着延伸部を従
来素子に比べて十分に太くすることができるので、本発
明により製造された光ファイバ結合素子は、優れた機械
的強度を有し、振動外力や温度変化による線膨脹歪みに
よる破断が非常に少ないものとなる。さらに、偏波保持
光ファイバの切り欠き部を合わせるだけで、2本の偏波
保持光ファイバの複屈折主軸の平行性を得ることができ
、製造工程の簡素化を図ることができる。
As explained above, according to the method for manufacturing an optical fiber coupling element of the present invention, a part of the cladding of the polarization-maintaining optical fiber is removed before fusion-stretching, so that the amount of stretching during fusion-stretching can be reduced. It can be suppressed. Therefore, there is almost no deformation of the geometrical shape in the cross section of the polarization maintaining optical fiber due to fusion drawing. Therefore, the optical fiber coupling device manufactured according to the present invention sufficiently maintains polarization maintaining characteristics and has excellent optical propagation characteristics. In addition, since the fused and stretched portion can be made sufficiently thicker than conventional elements, the optical fiber coupling element manufactured according to the present invention has excellent mechanical strength and is resistant to linear expansion due to vibrational external force or temperature change. Breakage due to strain is extremely reduced. Furthermore, by simply aligning the notches of the polarization-maintaining optical fibers, the parallelism of the principal axes of birefringence of the two polarization-maintaining optical fibers can be achieved, thereby simplifying the manufacturing process.

延伸部を示す横断面図である。FIG. 3 is a cross-sectional view showing the extending portion.

1・・・光ファイバ結合素子、2.3・・・偏波保持光
ファイバ、4.5・・・クラ・ソド、6.7・・・コア
、8〜11・・・応力付与部、12・・・融着延伸部、
13〜16・・・複屈折主軸。
DESCRIPTION OF SYMBOLS 1... Optical fiber coupling element, 2.3... Polarization maintaining optical fiber, 4.5... Clasode, 6.7... Core, 8-11... Stress applying part, 12・・・Fusion stretching part,
13-16... Birefringence principal axis.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の製造方法を示す斜視図、
第2図は、その融着延伸部を示す横断面図、第3図は、
他の実施例に用いる偏波保持光ファイバの横断面図、第
4図は、第3図の偏波保持光ファイバを用いた場合の融
着延伸部を示す横断面図、第5図は、さらに他の実施例
に用いる偏波保持光ファイバの横断面図、第6図は、第
5図の偏波保持光ファイバを用いた場合の融着延伸部を
示す横断面図、第7図は、従来素子における融着特許出
願人  住友電気工業株式会社 代理人弁理士   長谷用  芳  横向      
   塩   1)  辰   也実施例(前半) 第1図(1) 実施例の融着延伸部 第2図 他の実施例に用いる光ファイノく 第3図 他の実施例の融着延伸部 第4図
FIG. 1 is a perspective view showing a manufacturing method according to an embodiment of the present invention;
FIG. 2 is a cross-sectional view showing the fused and stretched portion, and FIG.
FIG. 4 is a cross-sectional view of a polarization-maintaining optical fiber used in another example, and FIG. Further, FIG. 6 is a cross-sectional view of a polarization-maintaining optical fiber used in another embodiment, and FIG. , Patent applicant for fusion in conventional devices Yokoyuki Hase, Patent attorney representing Sumitomo Electric Industries, Ltd.
Salt 1) Tatsuya Example (first half) Figure 1 (1) Fusion and stretching part of the example Figure 2 Optical fins used in other examples Figure 3 Fusion and stretching part of other examples Figure 4

Claims (1)

【特許請求の範囲】 1、円形クラッドの偏波保持光ファイバからその横断面
における複屈折主軸の1つに平行な弦でクラッドの一部
を除去する第1の工程と、前記クラッドの一部が除去さ
れた偏波保持光ファイバを2本用意し、この2本の偏波
保持光ファイバをそれぞれの横断面における弦の部分が
相互に密着するように並列配置する第2の工程と、並列
配置された2本の偏波保持光ファイバを加熱延伸するこ
とにより融着延伸部を形成する第3の工程と を含む光ファイバ結合素子の製造方法。 2、第1の工程におけるクラッドの一部除去を研磨によ
って行う請求項1記載の光ファイバ結合素子の製造方法
。 3、第1の工程におけるクラッドの一部除去を化学的エ
ッチングにより行う請求項1記載の光ファイバ結合素子
の製造方法。 4、円形クラッドの偏波保持光ファイバが、コアを中心
に対称位置に配置された2つの応力付与部を有する応力
付与型偏波保持光ファイバであって、第1の工程で除去
するクラッドの形状が一方の応力付与部を含む弓形状で
ある請求項1記載の光ファイバ結合素子の製造方法。 5、円形クラッドの偏波保持光ファイバが、コアを中心
に対称位置に配置された2つの応力付与部を有する応力
付与型偏波保持光ファイバであって、第1の工程におけ
るクラッドの一部除去は、2つの応力付与部を残すよう
に2つの応力付与部の中心を結ぶ線に平行な弦で行う請
求項1記載の光ファイバ結合素子の製造方法。 6、円形クラッドの偏波保持光ファイバが、コアの周囲
を楕円状の応力付与部で囲んだ応力付与型偏波保持光フ
ァイバであって、第1の工程におけるクラッドの一部除
去は、楕円応力付与部の長軸に平行な弦で行う請求項1
記載の光ファイバ結合素子の製造方法。
[Claims] 1. A first step of removing a part of the cladding from a polarization-maintaining optical fiber with a circular cladding in a chord parallel to one of the principal axes of birefringence in its cross section; and a part of the cladding. A second step is to prepare two polarization-maintaining optical fibers from which the A method for manufacturing an optical fiber coupling element, comprising: a third step of forming a fused and stretched portion by heating and stretching two arranged polarization-maintaining optical fibers. 2. The method for manufacturing an optical fiber coupling element according to claim 1, wherein a portion of the cladding in the first step is removed by polishing. 3. The method for manufacturing an optical fiber coupling device according to claim 1, wherein the removal of a portion of the cladding in the first step is performed by chemical etching. 4. The polarization-maintaining optical fiber with a circular cladding is a stress-applying type polarization-maintaining optical fiber having two stress-applying parts arranged symmetrically about the core, and the cladding is removed in the first step. 2. The method of manufacturing an optical fiber coupling element according to claim 1, wherein the shape is a bow shape including one stress applying part. 5. The polarization-maintaining optical fiber with a circular cladding is a stress-applying type polarization-maintaining optical fiber having two stress-applying parts arranged symmetrically about the core, and the part of the cladding in the first step 2. The method of manufacturing an optical fiber coupling element according to claim 1, wherein the removal is performed in a chord parallel to a line connecting the centers of the two stress applying parts so as to leave two stress applying parts. 6. The polarization-maintaining optical fiber with a circular cladding is a stress-applying type polarization-maintaining optical fiber in which the core is surrounded by an elliptical stress-applying part, and the part of the cladding in the first step is removed in the elliptical shape. Claim 1: A string parallel to the long axis of the stress-applying part.
A method of manufacturing the optical fiber coupling element described above.
JP17573488A 1988-07-14 1988-07-14 Manufacture of optical fiber coupling element Pending JPH0224605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17573488A JPH0224605A (en) 1988-07-14 1988-07-14 Manufacture of optical fiber coupling element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17573488A JPH0224605A (en) 1988-07-14 1988-07-14 Manufacture of optical fiber coupling element

Publications (1)

Publication Number Publication Date
JPH0224605A true JPH0224605A (en) 1990-01-26

Family

ID=16001309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17573488A Pending JPH0224605A (en) 1988-07-14 1988-07-14 Manufacture of optical fiber coupling element

Country Status (1)

Country Link
JP (1) JPH0224605A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7203397B2 (en) 2002-08-12 2007-04-10 Fujikura Ltd. Polarization maintaining optical fiber coupler and method of manufacturing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7203397B2 (en) 2002-08-12 2007-04-10 Fujikura Ltd. Polarization maintaining optical fiber coupler and method of manufacturing same

Similar Documents

Publication Publication Date Title
EP0246737B1 (en) Directional coupler
JP5307558B2 (en) Multi-core photonic bandgap fiber with inter-core coupling
US5129019A (en) Method of manufacturing a fused-fiber optical coupler
US6836599B2 (en) All-fiber Mach-Zehnder interferometer and method of making the same
JPH0224607A (en) Manufacture of optical multiplexer/demultiplexer
CN111061011A (en) Improved single-mode fiber and multi-core fiber coupler and preparation method thereof
EP0821252B1 (en) Optical-fiber coupler and manufacturing process therefor
KR100786617B1 (en) Method of manufacturing polarization-maintaining optical fiber coupler
EP0148863A1 (en) Polarization-insensitive, evanescent-wave, fused coupler with minimal environmental sensitivity.
JPH0224605A (en) Manufacture of optical fiber coupling element
Jaccard et al. A new technique for low cost all-fiber device fabrication
JPH0224606A (en) Optical fiber coupling element
JP2828276B2 (en) Manufacturing method of polarization maintaining optical fiber coupler
JPH02168208A (en) Optical fiber coupler and its production
JP2001051150A (en) Manufacture of polarization retaining optical fiber coupler
US20220179152A1 (en) Polarization controller and method of manufacture
JPH02201404A (en) Constant polarization optical fiber coupler and constant polarization optical fiber
JPS60242406A (en) Single polarization optical fiber
JPH04107511A (en) Production of polarization maintaining optical fiber coupler
JPS60113214A (en) Fiber type optical switch
JP4015017B2 (en) Polarized beam splitter
JPH01321411A (en) Production of fiber type optical coupler
JPH02166409A (en) Optical fiber coupler and production thereof
JPH02123308A (en) Production of optical fiber coupler
JPH0534533A (en) Production of optical fiber branching and coupling element