JPH01134405A - Manufacture of optical fiber coupler - Google Patents

Manufacture of optical fiber coupler

Info

Publication number
JPH01134405A
JPH01134405A JP29359187A JP29359187A JPH01134405A JP H01134405 A JPH01134405 A JP H01134405A JP 29359187 A JP29359187 A JP 29359187A JP 29359187 A JP29359187 A JP 29359187A JP H01134405 A JPH01134405 A JP H01134405A
Authority
JP
Japan
Prior art keywords
optical fiber
fiber coupler
optical
glass
fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29359187A
Other languages
Japanese (ja)
Inventor
Yoshiaki Takeuchi
善明 竹内
Juichi Noda
野田 寿一
Itaru Yokohama
横浜 至
Hiroaki Hanabusa
花房 広明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP29359187A priority Critical patent/JPH01134405A/en
Publication of JPH01134405A publication Critical patent/JPH01134405A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2835Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals formed or shaped by thermal treatment, e.g. couplers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To improve the consistency in coefficient of linear expansion with an optical fiber greatly and to minimize variation in characteristics with temperature by using a glass fusing means such as a CO2 laser and a gas burner and soldering optical fibers to a glass-made reinforcing jig by fusion. CONSTITUTION:The optical fiber coupler is constituted by connecting a couple of single-mode optical fiber cores 1 to a glass substrate 4 by fusion, and the cores 1a, clads 1b, and fusion part 5 of the core conductors 1 are shown. When the optical fiber coupler is manufactured, the clads are removed, two front and rear parts are fused and connected by the CO2 laser across the optical coupling parts of the core conductors 1, and then lower ends of the core conductors 1 are fused and connected on the substrate 4 of low-fusion-point quartz glass of 5mmX30mmX0.5mm size similarly. Consequently, the optical fiber coupler is manufactured which has superior temperature transmission characteristics, mechanical characteristics, and reliability of optical transmission.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光通信システムに用いられる光ファイバカッ
プラの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing an optical fiber coupler used in an optical communication system.

(従来の技術) 近年、光信号伝送技術の進歩により、多くの種類の光通
信シスチムが提案され、また実用化が図られている。こ
れを背景として、一つの伝送路を伝搬する1種類以上の
光信号を複数の伝送路に分岐する、あるいは、複数の伝
送路より伝搬してきた1種類以上の光信号を1つの伝送
路内に重畳することが要望されている。このような働き
をするのが光カップラであるが、その中でも光ファイバ
カップラは、他の部品よりも低損失で光の伝送路である
光ファイバとの接続性に優れている。
(Prior Art) In recent years, with advances in optical signal transmission technology, many types of optical communication systems have been proposed and put into practical use. With this background, one or more types of optical signals propagating on one transmission line can be branched into multiple transmission lines, or one or more types of optical signals propagated through multiple transmission lines can be split into one transmission line. It is requested that they be superimposed. Optical couplers perform this function, and among them, optical fiber couplers have lower loss than other components and are superior in connectivity with optical fibers, which are light transmission paths.

第2図(A)は、光ファイバカップラの基本構造を示し
たもので、これは被覆を除去した複数の光フアイバ心線
1を融着・延伸し、細径化した光結合部2で光信号の合
・分波が行なわれるようになっている。しかし、図面か
ら分るように光ファイバカップラの結合部2は、通常細
径化しているために応力が集中し易く、機械的強度が劣
り、更に小さな応力によって合・分波特性の変化や光伝
送損失の増加が生じ易い。
Figure 2 (A) shows the basic structure of an optical fiber coupler, in which a plurality of coated optical fibers 1 are fused and stretched, and an optical coupling part 2 with a reduced diameter is used to emit light. Signals are combined and demultiplexed. However, as can be seen from the drawings, the coupling part 2 of an optical fiber coupler is usually small in diameter, so stress tends to concentrate there, resulting in poor mechanical strength, and even small stress can cause changes in the multiplexing and demultiplexing characteristics. Increase in optical transmission loss is likely to occur.

このため、従来では、第2図(B)、(C)に示すよう
にエポキシ系接着剤3を用いて各光フアイバ心線1の光
結合部2の両側を補強用のガラス基板4に接着している
For this reason, conventionally, as shown in FIGS. 2(B) and 2(C), an epoxy adhesive 3 is used to bond both sides of the optical coupling portion 2 of each optical fiber core 1 to a reinforcing glass substrate 4. are doing.

(発明が解決しようとする問題点) しかし、上述の方法で光ファイバカップラを製造した場
合、高分子材料であるエポキシ系接着剤3が光フアイバ
材料である石英ガラスに比べて線膨張率が2桁以上大き
いため、光ファイバカップラの特性がエポキシ系接着剤
3の特性によって制限を受ける欠点がある。このため、
温度・湿度の変化や外部からの振動によって、光ラアイ
バカップラに光結合比の変化及び光伝送損失の増加が生
じ易くなると共に、外部応力に弱い、振動で接着面が剥
離し易い等、機械的特性も不十分なものとなっている。
(Problem to be Solved by the Invention) However, when an optical fiber coupler is manufactured by the method described above, the linear expansion coefficient of the epoxy adhesive 3 which is a polymeric material is 2 compared to that of quartz glass which is an optical fiber material. Since it is more than an order of magnitude larger, there is a drawback that the characteristics of the optical fiber coupler are limited by the characteristics of the epoxy adhesive 3. For this reason,
Due to changes in temperature and humidity and external vibrations, optical fiber couplers tend to change the optical coupling ratio and increase optical transmission loss. The physical characteristics are also insufficient.

本発明は、かかる事情に鑑みてなされたものであり、そ
の目的は、光伝送の温度特性、機械的特性及び信頼性に
優れた光ファイバカップラの製造方法を提供することに
ある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for manufacturing an optical fiber coupler having excellent optical transmission temperature characteristics, mechanical characteristics, and reliability.

(問題点を解決するための手段) 上記目的を達成するため、本発明は、光結合部を有する
複数の光ファイバをガラス製の補強治具に固着して成る
光ファイバカップラの製造方法において、前記光ファイ
バと補強治具の少なくとも一部をガラス溶融手段を用い
て融着させる点に特徴がある。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a method for manufacturing an optical fiber coupler in which a plurality of optical fibers having optical coupling portions are fixed to a reinforcing jig made of glass. The present invention is characterized in that the optical fiber and at least a portion of the reinforcing jig are fused using glass melting means.

(作用) この構成により、各光ファイバは、レーザ、ガスバーナ
などのガラス溶融手段でガラス基板やガラス円筒内に融
着され、エポキシ系接着剤のような異質材料が排除され
て種々の特性が向上する。
(Function) With this configuration, each optical fiber is fused to the glass substrate or glass cylinder using glass melting means such as a laser or gas burner, and foreign materials such as epoxy adhesives are eliminated, improving various properties. do.

(実施例) 第1図(A)には、本発明が適用された3dB’(光分
岐比)光ファイバカップラの第1実施例が示されている
。この光ファイバカップラは、一対のシングルモード光
ファイバ心線(以下心線という)1をガラス基板4に融
着して構成され、各心線1のコアを1g、クラッドをl
b、各融着部を5で示しである。
(Embodiment) FIG. 1A shows a first embodiment of a 3 dB' (optical branching ratio) optical fiber coupler to which the present invention is applied. This optical fiber coupler is constructed by fusing a pair of single-mode optical fiber cores (hereinafter referred to as core fibers) 1 to a glass substrate 4, and the core of each core fiber 1 is 1 g, and the cladding is 1 g.
b, each fused portion is indicated by 5;

光ファイバカップラの製作に当たっては、まず被覆を除
去した心線1の光結合部(第2図(B)参照)を挟んで
前後2箇所をCO2レーザで融着し、次いで5 am 
X 30關X 0.5mmの大きさの低融点石英ガラス
基板4上に各心線1の下端を同様に融着した。
In manufacturing the optical fiber coupler, first, the optical coupling part (see Fig. 2 (B)) of the core wire 1 from which the coating was removed is sandwiched, and the front and rear parts are fused using a CO2 laser, and then 5 am
The lower end of each core wire 1 was similarly fused onto a low melting point quartz glass substrate 4 measuring 30 x 0.5 mm.

この光ファイバカップラを従来の方法でUV(紫外線)
硬化型接着剤を用いて同様に補強した同等の3dBシン
グルモード光フアイバカツプラについて、ヒートサイク
ル試験を行なった。試験温度範囲は一60〜150℃、
1サイクル6時間で、−60℃及び150℃での放置時
間は各1時間、降温及び昇温速度は110℃/時間(一
定)とした。第1図(B)に20サイクル後の光結合比
の温度特性を示す。従来の方法で補強した場合は、−6
0〜160℃の温度範囲で光結合比は最大3%の変動が
みられるのに対して、本実施例による補強を施した場合
には、同様な一60〜160℃の温度範囲で光結合比の
変動は0.2%以下であった。
This optical fiber coupler is exposed to UV (ultraviolet light) using the conventional method.
A heat cycle test was conducted on an equivalent 3 dB single mode optical fiber coupler similarly reinforced using a curable adhesive. The test temperature range is -60~150℃,
One cycle was 6 hours, the standing time at -60°C and 150°C was 1 hour each, and the temperature decreasing and temperature increasing rates were 110°C/hour (constant). FIG. 1(B) shows the temperature characteristics of the optical coupling ratio after 20 cycles. If reinforced using the conventional method, -6
While the optical coupling ratio fluctuates by a maximum of 3% in the temperature range of 0 to 160°C, when the reinforcement according to this example is applied, the optical coupling ratio changes in the same temperature range of -60 to 160°C. The variation in ratio was less than 0.2%.

第3図には、本発明の第2実施例として、6本のマルチ
モード光ファイバより成る6X6光フアイバスターカツ
プラの補強部所面図が示されており、補強治具として外
径1n+、内径0.7+am、長さ40+mの硬質ガラ
ス円筒4aを用いている。光フアイバスターカップラの
製作に当たっては、各光ファイバの被覆を除去してこれ
らの心線1をガラス円筒4aに通し、ガスバーナ(プロ
パンガス)でガラス円筒4aの両端を溶融させることに
より、光結合部(第2図(B)参照)の両側を各々−括
して融着固定した。
FIG. 3 shows a plan view of the reinforcing portion of a 6×6 optical fiber coupler made up of six multimode optical fibers as a second embodiment of the present invention. A hard glass cylinder 4a with an inner diameter of 0.7+am and a length of 40+m is used. When manufacturing an optical fiber buster coupler, the coating of each optical fiber is removed, the core wires 1 are passed through a glass cylinder 4a, and both ends of the glass cylinder 4a are melted with a gas burner (propane gas) to form an optical coupling part. (See FIG. 2(B)) were tied together on both sides and fused and fixed.

この光フアイバスターカップラと従来の方法によりUV
硬化型接着剤を用いて同様に補強した同等の6X6マル
チモード光フアイバスターカツプラについて、振動試験
を行なった。振動周波数2000Hz、振幅的±1鰭、
振動方向長さに対して垂直にて、1時間加振後の光結合
比の変化を測定した。各々10個のカップラについて試
験した結果、従来の方法で補強した場合の光結合比は最
大1%の変動がみられるのに対して、この実施例による
補強を施した場合には光結合比の変動は0.1%以下で
あった。
This optical fiber coupler and conventional method
Vibration testing was performed on an equivalent 6x6 multimode fiber optic coupler similarly reinforced using a curable adhesive. Vibration frequency 2000Hz, amplitude ±1 fin,
Changes in the optical coupling ratio after 1 hour of vibration were measured perpendicular to the length in the vibration direction. As a result of testing 10 couplers each, it was found that the optical coupling ratio varied by up to 1% when reinforced using the conventional method, whereas when reinforced using this example, the optical coupling ratio changed. The variation was less than 0.1%.

第4図には、本発明の第3実施例として、2本のシング
ルモード光ファイバより成る波長0.8μm、  1.
3μmの合・分波光ファイバカップラが示されており、
補強治具には、5+nX3cl+mXO,5+u+で低
融点の多成分ガラス基板4bを用いている。
FIG. 4 shows a third embodiment of the present invention, in which a wavelength of 0.8 μm is formed by two single mode optical fibers, 1.
A 3 μm combining/demultiplexing optical fiber coupler is shown.
A multi-component glass substrate 4b with a low melting point of 5+nX3cl+mXO, 5+u+ is used as the reinforcing jig.

製作に当たっては、光ファイバカップラの光結合部の両
側に出た各々2本の心線1をアーク放電によりltI所
ずつ融着固定し、次いで各心線1の下端をアーク放電に
より多成分ガラ大基板4b上に融着した。
In manufacturing, the two core wires 1 on both sides of the optical coupling part of the optical fiber coupler are fused and fixed at each point by arc discharge, and then the lower end of each core wire 1 is made into a multi-component glass by arc discharge. It was fused onto the substrate 4b.

この光ファイバカップラと従来の方法でUV硬化型接着
剤を用いて同様に補強した同等の0.8μm、  L、
Sμmの合・分波シングルモード光ファイバカップラに
ついて、引っ張り試験により引っ張り強度を求めた。各
々10個のカップラについて試験した結果、従来の方法
で補強した場合の引っ張り強度がすべて100g以下で
あるのに対し、本実施例による補強を施した場合の引っ
張り強度はすべて500g以上であった。
This optical fiber coupler and an equivalent 0.8 μm, L
The tensile strength of the S μm combining/demultiplexing single mode optical fiber coupler was determined by a tensile test. As a result of testing 10 couplers each, the tensile strength when reinforced by the conventional method was all 100 g or less, whereas the tensile strength when reinforced according to the present example was all 500 g or more.

尚、上述の各実施例は、本発明の単なる例示に過ぎず、
本発明の技術的範囲を何ら限定するものではない。
It should be noted that each of the above-mentioned embodiments is merely an illustration of the present invention.
This is not intended to limit the technical scope of the present invention in any way.

(発明の効果) 以上詳述したように、本発明における光ファイバカップ
ラの製造方法では、C02レーザやガスバーナ等のガラ
ス溶融手段を用いて、複数の光ファイバをガラス製の補
強治具に融着させるので、従来のエポキシ系接着剤が不
要となり、光ファイバとの線膨張率の整合性が格段に向
上して温度変化に対する特性の変化を極小に抑えること
が可能となる。
(Effects of the Invention) As detailed above, in the method for manufacturing an optical fiber coupler according to the present invention, a plurality of optical fibers are fused to a glass reinforcing jig using a glass melting means such as a C02 laser or a gas burner. This eliminates the need for conventional epoxy adhesives, significantly improves the matching of the coefficient of linear expansion with the optical fiber, and makes it possible to minimize changes in characteristics due to temperature changes.

また、各部材の接続強度が向上するため、外力に対する
特性の安定性、機械的特性が向上すると共に、温度・湿
度の変化に対しても信頼性が向上するので、被覆材料な
どの工夫により使用温度の拡大など大幅な耐環境性の向
上が期待できる。
In addition, since the connection strength of each component is improved, the stability of properties against external forces and mechanical properties are improved, and reliability is also improved against changes in temperature and humidity. Significant improvements in environmental resistance such as temperature expansion can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は、本発明の製造方法で融着された光ファ
イバカップラの第1実施例を示す断面図、第1図(B)
は温度と光結合比の関係図、第2図(A)、(B)、(
C)は従来品を示したもので、第2図(A)は補強前の
光ファイバカップラの斜視図、第2図CB)は補強後の
同側面図、第2図(C)は補強部分の断面図、第3図及
び第4図は各々第2、第3実施例の断面図である。 1・・・光フアイバ心線、2・・・光結合部、4・・・
ガラス基板、4a・・・ガラス円筒、4b・・・多成分
ガラス基板、5・・・融着部。 特許出願人  日本電信電話株式会社
FIG. 1(A) is a sectional view showing a first embodiment of an optical fiber coupler fused by the manufacturing method of the present invention, FIG. 1(B)
is a diagram of the relationship between temperature and optical coupling ratio, Figure 2 (A), (B), (
C) shows the conventional product, Figure 2 (A) is a perspective view of the optical fiber coupler before reinforcement, Figure 2 CB) is a side view of the same after reinforcement, and Figure 2 (C) is the reinforced part. 3 and 4 are cross-sectional views of the second and third embodiments, respectively. DESCRIPTION OF SYMBOLS 1... Optical fiber core wire, 2... Optical coupling part, 4...
Glass substrate, 4a... Glass cylinder, 4b... Multi-component glass substrate, 5... Fusion part. Patent applicant Nippon Telegraph and Telephone Corporation

Claims (4)

【特許請求の範囲】[Claims] (1)光結合部を有する複数の光ファイバをガラス製の
補強治具に固着して成る光ファイバカップラの製造方法
において、 前記光ファイバと補強治具の少なくとも一部をガラス溶
融手段を用いて融着させること、 を特徴とする光ファイバカップラの製造方法。
(1) A method for manufacturing an optical fiber coupler in which a plurality of optical fibers having optical coupling portions are fixed to a reinforcing jig made of glass, wherein at least a part of the optical fibers and the reinforcing jig are melted using glass melting means. A method for manufacturing an optical fiber coupler, characterized by: fusing it.
(2)前記補強治具がガラス基板で、ガラス溶融手段が
CO_2レーザである特許請求の範囲第(1)項に記載
の光ファイバカップラの製造方法。
(2) The method for manufacturing an optical fiber coupler according to claim (1), wherein the reinforcing jig is a glass substrate, and the glass melting means is a CO_2 laser.
(3)前記補強治具が光ファイバを覆うガラス円筒で、
ガラス溶融手段がガスバーナである特許請求の範囲第(
1)項に記載の光ファイバカップラの製造方法。
(3) The reinforcing jig is a glass cylinder that covers the optical fiber,
Claim No. 1, wherein the glass melting means is a gas burner (
1) A method for manufacturing an optical fiber coupler according to item 1).
(4)前記補強治具が多成分ガラス基板で、ガラス溶融
手段がアーク放電である特許請求の範囲第(1)項に記
載の光ファイバカップラの製造方法。
(4) The method for manufacturing an optical fiber coupler according to claim (1), wherein the reinforcing jig is a multi-component glass substrate, and the glass melting means is arc discharge.
JP29359187A 1987-11-20 1987-11-20 Manufacture of optical fiber coupler Pending JPH01134405A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29359187A JPH01134405A (en) 1987-11-20 1987-11-20 Manufacture of optical fiber coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29359187A JPH01134405A (en) 1987-11-20 1987-11-20 Manufacture of optical fiber coupler

Publications (1)

Publication Number Publication Date
JPH01134405A true JPH01134405A (en) 1989-05-26

Family

ID=17796702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29359187A Pending JPH01134405A (en) 1987-11-20 1987-11-20 Manufacture of optical fiber coupler

Country Status (1)

Country Link
JP (1) JPH01134405A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208883A (en) * 1991-08-01 1993-05-04 Sumitomo Electric Industries, Ltd. Method of reinforcing optical fiber coupler
EP0678486A2 (en) * 1994-04-18 1995-10-25 Gould Electronics Inc. Method of securing optical fiber components, devices and fibers to the same or to mounting fixtures

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208883A (en) * 1991-08-01 1993-05-04 Sumitomo Electric Industries, Ltd. Method of reinforcing optical fiber coupler
EP0678486A2 (en) * 1994-04-18 1995-10-25 Gould Electronics Inc. Method of securing optical fiber components, devices and fibers to the same or to mounting fixtures
EP0678486A3 (en) * 1994-04-18 1996-02-21 Gould Electronics Inc Method of securing optical fiber components, devices and fibers to the same or to mounting fixtures.

Similar Documents

Publication Publication Date Title
CA1311381C (en) Connector employing mode field modification
CA2074860C (en) Method of reinforcing optical fiber coupler
KR100274273B1 (en) Optical fiber coupler and its manufacturing method
JPH03100603A (en) Method of manufacturing fused optical fiber coupler
JPH06509427A (en) optical coupler housing
JPH01134405A (en) Manufacture of optical fiber coupler
JP2002040290A (en) Fiber array part and its manufacturing method
US7653269B1 (en) Quasi PM fused coupler devices and methods for forming the same
JPH10206685A (en) Structure of optical waveguide module
JPS6343111A (en) Optical fiber branching device
JPH01227108A (en) Optical branching circuit
JP2596138B2 (en) Reinforcing method for fusion spliced optical fiber coupler
JPH02259704A (en) Wide wavelength optical fiber coupler
JP4015017B2 (en) Polarized beam splitter
US6839490B2 (en) Method of making sequential coupler arrangements and resulting devices
JP2003014971A (en) Optical fiber splice
JPH07104140A (en) Optical fiber coupler
JP2007121478A (en) Polarization maintaining optical fiber coupler and manufacturing method thereof
JP3588392B2 (en) Optical component comprising optical fiber and optical waveguide
JPH0283504A (en) Optical fiber coupler
JPH0193707A (en) Optical fiber coupler
JPS62249114A (en) Constant polarization fiber coupler and its manufacture
US20020051608A1 (en) Micro-optic adhesive assembly and method therefor
JPH02166409A (en) Optical fiber coupler and production thereof
JPH0763945A (en) Optical fiber coupler