JPH02245637A - Sludge densitometer - Google Patents

Sludge densitometer

Info

Publication number
JPH02245637A
JPH02245637A JP6537389A JP6537389A JPH02245637A JP H02245637 A JPH02245637 A JP H02245637A JP 6537389 A JP6537389 A JP 6537389A JP 6537389 A JP6537389 A JP 6537389A JP H02245637 A JPH02245637 A JP H02245637A
Authority
JP
Japan
Prior art keywords
light
optical fiber
sludge
lens
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6537389A
Other languages
Japanese (ja)
Inventor
Shotaro Urushibara
漆原 正太郎
Akira Kumada
熊田 章
Seiichi Kamata
鎌田 誠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP6537389A priority Critical patent/JPH02245637A/en
Publication of JPH02245637A publication Critical patent/JPH02245637A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To achieve a measurement at a high accuracy up to a high density by converging light from a projecting surface to a focal position of a lens in water to be inspected through the lens. CONSTITUTION:An inspection window 2 is provided on the front of a detector case 1 and an optical fiber 3 for projection and optical fibers 4N and 4F for reception are made coaxial at the tip thereof while the tip faces thereof are made flush. One end of an optical fiber 3R for reference is set jointly at the rear end of the optical fiber 3. A convex lens 6 is arranged at the tip faces of the optical fibers 3, 4N and 4F. Light emitting element 7 is disposed on rear end faces of the optical fibers 3 and 3R while photodetectors 8N and 8F are on rear end faces of the optical fibers 4N and 4F respectively as opposed to each other. Then, light leaving the light emitting element 7 passes through the optical fiber 3, the convex lens 6 and the window 2 to be projected so that it is converged to a focus of the convex lens 6 in water W to be inspected while a part thereof is made to enter the optical fiber 3R. When a suspension (x) exists in the water to be inspected at this position, a scattered light is generated and a part thereof is incident into the optical fibers 4N and 4F via the lens 6.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は、下水処理、廃水処理等の際、汚水の汚泥濃度
を測定する汚泥濃度計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a sludge concentration meter for measuring the sludge concentration of sewage during sewage treatment, wastewater treatment, etc.

80発明の概要 本発明は、散乱光比較式、特に近い方の受光面での検出
出力の2乗と遠い方の受光面での検出出力との比をと番
汚泥濃度計において、 投光・受光部に投光用を中心軸とする同軸状の光ファイ
バーを使用し、その検出前としての先端面の前にレンズ
を設けることにより、 実質的に投光部と受光部を近付けて高濃度までの広い範
囲で汚泥6度を高精度に測定できるようにしたものであ
る。
80 Summary of the Invention The present invention uses a scattered light comparison method, in particular, a sludge concentration meter that calculates the ratio between the square of the detection output on the nearer light-receiving surface and the detection output on the farther light-receiving surface. By using a coaxial optical fiber with the light emitting part as the central axis in the light receiving part and installing a lens in front of the tip surface before detection, the light emitting part and the light receiving part can be brought closer together to achieve high concentration. This allows for highly accurate measurement of sludge 6 degrees over a wide range of temperatures.

C8従来の技術 下水処理場では、次のような処理が行われる。C8 conventional technology The following treatments are carried out at sewage treatment plants:

(1)汚水中の浮遊物を沈澱、除去する。(1) Sedimentation and removal of suspended matter in wastewater.

(2)汚水中の溶解性有機物を微生物により酸化させた
り、同化させたりする。
(2) Microorganisms oxidize or assimilate dissolved organic matter in wastewater.

従って、汚水処理時には、処理量に見合っただけの汚泥
が生成されたり、汚れの分解者である微生物の集合体、
いわゆる活性汚泥が使用されることになり、各処理工程
中で汚泥の濃度を把握することが必要となる。
Therefore, during sewage treatment, sludge is generated in proportion to the amount of sludge treated, and agglomerations of microorganisms that decompose dirt,
So-called activated sludge will be used, and it is necessary to understand the concentration of sludge during each treatment process.

また、近年は、処理費用の低減、悪臭環境の対策等を目
的として各下水処理場の汚泥を汚泥処理センターで一括
処理する方向に進みつつある。この場合にも、送泥固形
物量の把握、水と汚泥の判別による弁の切り換え等の目
的で汚泥の濃度計測が必要となる。
In addition, in recent years, there has been a trend toward collective treatment of sludge from each sewage treatment plant at a sludge treatment center for the purpose of reducing treatment costs and preventing a foul-smelling environment. In this case as well, it is necessary to measure the concentration of sludge for purposes such as grasping the amount of solids to be fed and switching valves to distinguish between water and sludge.

現在使用されている汚泥濃度計には、超音波式と光式が
ある。超音波式は、一対の超音波送信子、受信子の間を
流れる汚水中の汚泥による超音波の減衰率から汚泥濃度
を測定するものであり、10敗%の高′a度まで測定で
きる反面、超音波は空気による減衰が大きいので、気泡
を含む汚水の測定は困短、あるいは不可能である。
There are two types of sludge concentration meters currently in use: ultrasonic type and optical type. The ultrasonic method measures sludge concentration from the attenuation rate of ultrasonic waves due to sludge in wastewater flowing between a pair of ultrasonic transmitters and receivers, and can measure up to a high degree of 10%. Since ultrasonic waves are highly attenuated by air, it is difficult or impossible to measure wastewater containing bubbles.

このような場合は、一種のサンプリング方式である加圧
消泡式を用いる。これは、一定mのサンプルを加圧タン
クに取り込み、ダイヤフラムあるいはピストンで加圧し
た後で計測するものであって、気泡による誤差を生じる
ことなく測定できる。
In such cases, a pressure defoaming method, which is a type of sampling method, is used. This is a method in which a sample of a certain length is taken into a pressurized tank and measured after being pressurized by a diaphragm or piston, and can be measured without causing errors due to air bubbles.

但し、間欠測定となる。However, this is an intermittent measurement.

しかし、加圧消泡を必要とする測定対象は気泡の混入の
多い濃縮汚水などであり、渦縮タンクから引き抜く度に
濃度に大きな変化を生じるため、間欠測定では不適切で
ある。また、沈澱し易い汚泥の場合には、加圧消泡が完
了する萌に汚泥が沈降し始めるので、正確な測定ができ
ないことがある。
However, the measurement target that requires pressurized defoaming is concentrated wastewater that contains many air bubbles, and since the concentration changes significantly each time it is withdrawn from the vortex condensation tank, intermittent measurement is inappropriate. In addition, in the case of sludge that tends to settle, accurate measurement may not be possible because the sludge begins to settle at the point where pressure defoaming is completed.

D1発明が解決しようとする課題 一方、光式の汚泥:a度計は、透過光式、散乱光比較式
等がある。その長所は比較的微細気泡の影響を受けにく
いことであり、短所は高濃度の測定が困雉なことである
D1 Problems to be Solved by the Invention On the other hand, optical sludge: a degree meters include transmitted light type, scattered light comparison type, etc. Its advantage is that it is relatively unaffected by fine bubbles, and its disadvantage is that it is difficult to measure high concentrations.

まず、透過光式の場合であるが、その測定原理にはラン
ベルト−ベールの法則を応用している。
First, in the case of the transmitted light method, the Lambert-Beer law is applied to its measurement principle.

いま、第4図に示すように液槽4!に浮遊物42を含む
検水43を入れ、光源44から強度!。の光束を入射さ
せると、検水中の浮遊物粒子による吸収、散乱が生じて
透過光は強度!に減少する。
Now, as shown in Figure 4, liquid tank 4! A test water 43 containing floating matter 42 is put in the water, and the intensity is measured from the light source 44! . When a luminous flux of decreases to

この透過光強度Iは次式のように表される。This transmitted light intensity I is expressed by the following equation.

1−1oaxp(−Kl−a−s)   ・・−cx)
但し、K、は定数、Qは液槽の幅、Sは汚泥濃度である
1-1oaxp(-Kl-a-s)...-cx)
However, K is a constant, Q is the width of the liquid tank, and S is the sludge concentration.

従って、(1)式の対数を取り、変形すると、となり、
汚泥濃度Sが求まる。
Therefore, if we take the logarithm of equation (1) and transform it, we get
The sludge concentration S is determined.

ところで、(1)式の透過光強度!と濃度Sの関係を図
示すると第5図に示すようになり、汚泥の濃度Sが高く
なるにしたがって透過強度!は指散開数的に減少する。
By the way, the transmitted light intensity in equation (1)! The relationship between S and concentration S is illustrated in Figure 5, and as the concentration S of sludge increases, the permeation intensity! decreases exponentially.

このため、高濃度側では十分な光量が得られず、測定系
を構成した場合、受光素子の暗電流、増幅器のドリフト
、オフセット変化あるいはノイズの中に信号が埋もれて
しまい、計測不能となる。この測定原理での測定範囲の
上限は、液槽の幅にもよるが、一般的に5000xy/
12程度と言われている。また、着色溶解性成分が、や
はりランベルト−ベールの法則によって透過光を減少さ
せるので、染色排水処理等の汚泥では誤差が太き(なる
といった問題点がある。
For this reason, a sufficient amount of light cannot be obtained on the high concentration side, and when a measurement system is configured, the signal is buried in the dark current of the light receiving element, amplifier drift, offset change, or noise, making measurement impossible. The upper limit of the measurement range using this measurement principle depends on the width of the liquid tank, but is generally 5000xy/
It is said to be around 12. Furthermore, since colored soluble components reduce transmitted light according to Beer-Lambert's law, there is a problem that the error becomes large in sludge from dyeing wastewater treatment.

なお、第4図において、45は透過光を検出する受光素
子、46は増幅・出力部である。
In FIG. 4, 45 is a light receiving element that detects transmitted light, and 46 is an amplification/output section.

次に、散乱光を利用する場合であるが、前述の透過光と
違って、散乱光強度の程度に関する特性が単調減少(あ
るいは増加)関数となっていないため、一対の投・受光
器では広い濃度範囲を計測することはできず、遠近2点
で散乱光を受光してその比較を行う散乱光比較式が一般
に探用される。
Next, when using scattered light, unlike the transmitted light described above, the characteristics related to the degree of scattered light intensity are not monotonically decreasing (or increasing) functions, so a pair of emitter and receiver can be used over a wide range. Since it is not possible to measure the concentration range, a scattered light comparison method is generally sought in which scattered light is received at two points, near and far, and compared.

その測定原理は以下の通りである。The measurement principle is as follows.

即ち、第6図に示すように一つの光源61と、この先j
!;[61からの距離が異なる二つの受光素子62N、
62Pをl¥ L テjj ’)、各受光素子62 N
That is, as shown in FIG.
! ; [Two light receiving elements 62N at different distances from 61,
62P, each light receiving element 62N
.

62Pにi;に増幅1Q3N、63Fが接続され、その
出力が演算・出力部64に付与される。
Amplifiers 1Q3N and 63F are connected to 62P and i;, and their outputs are given to the calculation/output section 64.

いま、光源61から検出窓65を通して汚泥粒子66を
含む検水67中に光を入射さU゛ろと、汚泥粒子66に
より散乱が生じ、受光素子62N。
Now, when light is incident from the light source 61 through the detection window 65 into the test water 67 containing sludge particles 66, scattering occurs by the sludge particles 66, and the light is scattered by the light receiving element 62N.

62Fにはそれぞれ(3)式、(4)式に示される強度
の散乱光が受光される。
Scattered light having intensities shown by equations (3) and (4) are received by 62F, respectively.

III!α*5eexp(−βm−5)  ・”(3)
! −・−α ・ S  −axp(−β −・ ・ 
S )   ・・・ (4)ここで、IN:光源から近
い方の位置における散乱光強度 I2:光源から遠い方の位置における 散乱光強度 α:光源強度に関する定数 βN、βF:光源と受光素子の間の距離及び汚泥の色に
関する定数 S:汚泥濃度 従って、(3)式を(4)式で除算し対数を取ると、 =(βr−β調)S      ・・・(5)となり、
濃度に比例した出力が得られる。但し、実際の測定系で
は!rの値は全濃度範囲にわたりて相対的に小さい値と
なるのを考慮し、回路上で近い方の出力より相対的増幅
率を大きくするため、(5)式に定数項が残る。このた
め、一般的には原点を通らない一次式となり、後段の増
幅器で零補正が必要となる。
III! α*5eexp(-βm-5) ・”(3)
! −・−α・S −axp(−β −・・
(4) where, IN: Scattered light intensity at a position near the light source I2: Scattered light intensity at a position far from the light source α: Constants related to light source intensity βN, βF: Between the light source and the light receiving element Constant S related to the distance between and the color of sludge: sludge concentration Therefore, when formula (3) is divided by formula (4) and the logarithm is taken, = (βr - β tone) S ... (5),
Output proportional to concentration can be obtained. However, in the actual measurement system! Considering that the value of r is a relatively small value over the entire concentration range, a constant term remains in equation (5) in order to make the relative amplification factor larger than the output nearer on the circuit. For this reason, it generally becomes a linear equation that does not pass through the origin, and requires zero correction in a subsequent amplifier.

ところで、(3)式、(4)式を図示すると、第7図の
xlQのようになる。各式及び図からも分かるように濃
度Sが大きな領域になると、これらは指散開数的に減少
していくので、透過光式で述べたように意味ある信号と
して取り出仕なくなり、高濃度の測定ができなくなる。
By the way, when equations (3) and (4) are illustrated, they become xlQ in FIG. 7. As can be seen from each formula and figure, when the concentration S becomes large, these values decrease exponentially, so as mentioned in the transmitted light formula, they are no longer extracted as meaningful signals, making it difficult to measure high concentrations. become unable to do so.

一般的には500019/(l程度が限界と言われてい
る。
Generally, it is said that the limit is about 500019/(l).

このため、高濃度を測定するためには、各受光素子を更
に光源側に近付け、第7図に点線で示す特性を持たせる
か、あるいは遠い方の受光素子のみを光源に近付けて、
I’mは実線の特性、!?は点線の特性としなければな
らない。
Therefore, in order to measure high concentrations, each light-receiving element must be moved closer to the light source so that it has the characteristics shown by the dotted line in Figure 7, or only the farthest light-receiving element must be brought closer to the light source.
I'm the solid line characteristic,! ? shall be the characteristic of the dotted line.

ところが、前者の場合は、(3)、(4)式の0次近似
を取ると、両者とも濃度Sに対する原点を通る一次式と
なる。この各々の単一の特性は散乱光式濁度計の原理そ
のもので、使い方次第では2〜3000 my/(lま
で′測定できる。つまり、これらの散乱光特性は、低濃
度側では濃度に対し略直線的に変化することを示してい
る。このことは、(5)式の左辺の演算は となり、定数となってしまう。従って、この領域でも汚
泥濃度に対し全く追従しないことになる。
However, in the former case, when the zero-order approximations of equations (3) and (4) are taken, both become linear equations that pass through the origin for the density S. Each of these single characteristics is the principle of a scattered light turbidity meter, and depending on how it is used, it can measure up to 2 to 3000 my/(l).In other words, these scattered light characteristics vary with respect to the concentration on the low concentration side. This indicates that the value changes approximately linearly.This means that the calculation on the left side of equation (5) becomes a constant, which means that it does not follow the sludge concentration at all even in this region.

一方、後者でも上述のことが言える。加えて、関数的に
も略近いパラメータとなっているので、f s/ I 
Fが一定値となり、やはり低濃度の測定ができない。
On the other hand, the same can be said for the latter case. In addition, since the parameters are almost functionally similar, f s/I
F becomes a constant value, and low concentration measurements cannot be made.

このように散乱光比較式でも低濃度から高濃度まで連続
的に測定できる計器は作り得ない。また、九式一般につ
いて言えることであるが、光束が散乱体に到達するまで
、及びその後受光素子に到達するまでに着色溶液による
吸収があり、散乱光比較式においてもその先路艮が相段
されず、誤差となる。更に、タングステン電球を光源と
して使用している関係で直流発光しかできないので、外
光の影響を受け、これも誤差となる。しかも、この発光
スペクトルは青から赤、更には赤外線までに及び、クロ
ロフィルの吸収帯と完全にオーバーラツプしているので
、発光面に藻が発生して誤差を生じることがある。
Even with the scattered light comparison method, it is impossible to create an instrument that can continuously measure from low to high concentrations. In addition, as can be said about the 9-type in general, there is absorption by the colored solution before the light flux reaches the scatterer and after that until it reaches the light-receiving element, and even in the scattered light comparison formula, the future effect is significant. This will result in an error. Furthermore, since a tungsten bulb is used as a light source, it can only emit DC light, so it is affected by external light, which also causes errors. Moreover, this emission spectrum ranges from blue to red and even infrared, and completely overlaps with the absorption band of chlorophyll, so algae may grow on the emission surface, causing errors.

以上のように、微細気泡が存在し、かつ濃度変動の大き
い測定対象は、超音波式、光式に限らず計測不能となり
がちである。
As described above, measurement targets that contain microbubbles and have large concentration fluctuations tend to be unmeasurable, regardless of whether the method is an ultrasonic method or an optical method.

萌述の問題を解決するため、本発明者等は特開昭53−
45588号に開示した新規演算方法を提案した。この
方法は、旧記のIn、IFを用い、011者を2乗して
後者で除する演算を行う。即ち、次式の演算を行う。
In order to solve the problem described by Moe, the inventors of the present invention
A new calculation method disclosed in No. 45588 was proposed. This method uses the old In and IF, and performs an operation of squaring 011 and dividing by the latter. That is, the following equation is calculated.

=α・5−exp((βF23m)・S)・・・(7) ここで、二つの受光素子の位置を適当なものとすると、
(βr−2β阿)−〇となり、結局(7)式は となる。従って、汚泥の色の影響を受けることなく濃度
の計測が可能となる。反面、αの項が残るので、光源強
度の変動は一次の影響を及ぼすが、これは実願昭55−
436号で開示したように簡単に補正することができる
。実願昭55−436号のものは、光源の駆動を交流で
行い、信号成分として交流散乱光のみを取り出すので、
外光の影響を受けない。また、この演算方法では、低濃
度領域で各散乱光強度が濃度に対しリニアに変化しても
、v1′n結果は =(R点を通る一次式)    ・・・(9)となり、
散乱光特性として第7図に点線で示す特性を採用するこ
とができる。
=α・5−exp((βF23m)・S)...(7) Here, if the positions of the two light receiving elements are set appropriately,
(βr−2β阿)−〇, and in the end, equation (7) becomes. Therefore, the concentration can be measured without being affected by the color of the sludge. On the other hand, since the term α remains, fluctuations in light source intensity have a first-order effect;
This can be easily corrected as disclosed in No. 436. In Utility Application No. 55-436, the light source is driven by alternating current, and only alternating current scattered light is extracted as a signal component, so
Not affected by external light. In addition, with this calculation method, even if the intensity of each scattered light changes linearly with the concentration in the low concentration region, the v1'n result is = (linear equation passing through point R) (9),
As the scattered light characteristics, the characteristics shown by the dotted line in FIG. 7 can be adopted.

従って、高濃度測定においても充分な信号レベルがあり
、一つの計器で広い濃度領域にわたって測定可能である
Therefore, there is a sufficient signal level even in high concentration measurements, and it is possible to measure over a wide concentration range with one instrument.

ところで、特IJFJ昭53−45588号で開示した
ものは、受光素子、発光素子を検出面にそのまま装着す
る構造となっているため、各素子間はその物理的大きさ
以下に縮めることができず、高濃度測定には限度かある
。その限界は20000〜30000n/(lである。
By the way, the device disclosed in Special IJFJ No. 53-45588 has a structure in which the light-receiving element and the light-emitting element are attached directly to the detection surface, so the space between each element cannot be reduced to less than its physical size. However, there are limits to high concentration measurements. Its limit is 20000-30000n/(l).

この検出面の寸法制限による限界を打破するために検出
面として光ファイバーを使用することが提案されており
、その構造例を第8図、第9図に示す。図中、81は検
出器本体で、光ファイバーを固定するためのガイドを兼
ねる。82は発光(投光)用光ファイバー、83N及び
83Fは受光用光ファイバー、84はスペーサである。
In order to overcome this limitation due to the size restriction of the detection surface, it has been proposed to use an optical fiber as the detection surface, and examples of its structure are shown in FIGS. 8 and 9. In the figure, 81 is a detector main body, which also serves as a guide for fixing the optical fiber. 82 is an optical fiber for light emission (light projection), 83N and 83F are optical fibers for light reception, and 84 is a spacer.

各光ファイバーは発光用光ファイバー82を中心軸とす
る同軸状とし、その先端面は同一平面としている。その
寸法は、例えば次のようにする。
Each of the optical fibers is coaxial with the light emitting optical fiber 82 as its central axis, and its tip surfaces are on the same plane. For example, the dimensions are as follows.

発光用光ファイバー82の直fMAは2umとし、近い
方の受光用光ファイバー83Nは可及的に光源部に近付
けた方がよいので、内径は発光用光ファイバー82のα
1と同じ<2RR1外径Bは2.9■としている。この
両者を初期決定値として遠い方の受光用光ファイバー8
3Fの位置の最適値を求めた。この受光用光ファイバー
83■?の外径りは4 、1 Im、内aCは3.5u
であった。投光面積、両受光面積は略等しくなるように
した。
The normal fMA of the light-emitting optical fiber 82 is 2 um, and it is better to place the closer light-receiving optical fiber 83N as close to the light source as possible, so the inner diameter is set to α of the light-emitting optical fiber 82.
Same as 1 <2RR1 The outer diameter B is 2.9 square meters. Using these two as initial values, the farthest light receiving optical fiber 8
The optimum value for the position of 3F was determined. This light receiving optical fiber 83■? The outer diameter is 4.1 Im, and the inner aC is 3.5u.
Met. The light emitting area and both light receiving areas were made to be approximately equal.

受光用光ファイバー83Fの位置がこれよりも内側にな
ると、第1O図の特性■のように高濃度で出力が飽和す
る傾向があり、逆に外側にすると、特性■のように高濃
度で出力が異常上昇する傾向があるため、上記位置で特
性■のように高濃度まで直線性を保つことができる。
If the light-receiving optical fiber 83F is positioned inside this range, the output tends to be saturated at high concentrations, as shown in the characteristic ■ in Figure 1O.On the other hand, if it is placed outside, the output tends to be saturated at high concentrations, as shown in the characteristic ■. Since there is a tendency for an abnormal increase, linearity can be maintained up to a high concentration at the above position as shown in characteristic (3).

式(8)の成立することが条件であるが、検出のための
先止が得られれば、光源と受光部(特に近い方の受光部
)の間を近付けることが高濃度測定に必要なことである
The condition is that Equation (8) holds true, but if a preemption for detection is obtained, it is necessary for high concentration measurement to bring the light source and the light receiving part (especially the nearby light receiving part) closer together. It is.

しかし、上記の光ファイバーを用いた検出面の形状、大
きさ(寸法A−D)は、使用しているバンドルファイバ
ーでの測定に要する投光m1受光mを得るために必要な
寸法である。従って、この形状のバンドルファイバー(
直径300μ厘程度)を使用した場合には、例えば濃縮
汚液で5〜6%までが測定の限界である。光源と近い方
の受光部の距離は、隣接する光ファイバーのコア径で決
まってしまう。
However, the shape and size (dimensions A-D) of the detection surface using the optical fiber described above are the dimensions necessary to obtain the light emitted m1 and the received light m required for measurement with the bundle fiber used. Therefore, this shape of bundle fiber (
When a diameter of about 300 μm is used, the measurement limit is, for example, 5 to 6% in concentrated sewage. The distance between the light source and the closer light receiving section is determined by the core diameter of the adjacent optical fiber.

本発明の目的は、高濃度まで高精度に測定できる汚泥濃
度計を提供することにある。
An object of the present invention is to provide a sludge concentration meter that can measure high concentrations with high accuracy.

96課題を解決するための手段 本発明は、光源から出て検水中の汚濁物質によって散乱
された光を、光源との距離か異なり、かつその距離によ
って定まる定数β9.β、が2β、=β、となるよう位
置の選定を行った二つの受光面で受け、近い方の受光面
での検出出力の2乗と遠い方の受光面での検出出力との
比をとって汚泥濃度を算出するようにしノ:;散乱光比
較式の汚泥濃度計において、先端面を投光面とする投光
用光ファイバーを中心軸とし、これに受光用光ファイバ
ーを前記投光面の周囲に二つの同心円状の受光面が形成
されるように配置して投光・受光部とし、この先端部の
前にレンズをその光学的作用により実質的に投光部と受
光部を近付けるよう配設したことを特徴とするものであ
る。
96 Means for Solving the Problems The present invention has a method for converting light emitted from a light source and scattered by contaminants in sample water to a constant β9. β is received by two light-receiving surfaces whose positions are selected so that 2β, = β, and the ratio of the square of the detection output on the nearer light-receiving surface to the detection output on the farther light-receiving surface is calculated. In a scattered light comparison type sludge densitometer, the light emitting optical fiber whose tip end is the light emitting surface is set as the central axis, and the light receiving optical fiber is attached to the light emitting surface. A light emitting/receiving section is arranged so that two concentric light receiving surfaces are formed around the periphery, and a lens is placed in front of this tip so that the light emitting section and the light receiving section are substantially brought closer together by its optical action. It is characterized by the fact that

F1作用 投光部から出た光はレンズを通って検水中のレンズ焦点
位置に集光するように検水中に投射される。検水中に懸
濁物があると、それによって散乱が生じ、散乱光の一部
がレンズを通って受光面に入り、光フアイバー内を進ん
で受光素子により検出される。この後、両受光信号を用
いて所定の演算が行われ、汚泥濃度が算出される。
The light emitted from the F1 action light projecting section passes through the lens and is projected into the sample water so as to be focused at the lens focal position within the sample sample. If there is a suspended object in the sample water, it causes scattering, and a portion of the scattered light passes through the lens and enters the light receiving surface, travels through the optical fiber, and is detected by the light receiving element. After this, a predetermined calculation is performed using both light reception signals, and the sludge concentration is calculated.

G、実施例 以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
G. Examples Hereinafter, the present invention will be explained in detail based on examples shown in the drawings.

第1図及び第2図は本発明の一実施例を示すもので、1
は検出器ケース、2はこのケースrの前面に設けた検出
窓(ガラス窓)、3は発光(投光)用光ファイバー、4
N及び4Fは受光用光ファイバー、5はスペーサである
。各光ファイバーは、少なくともその先端部を前述の第
8図、第9図の場合と同様に同軸状とし、先端面を同一
平面としている。また、投光用光ファイバー3の後端部
に参照用光ファイバー3Rの一端部を併設している。
FIGS. 1 and 2 show one embodiment of the present invention.
is a detector case, 2 is a detection window (glass window) provided on the front of this case r, 3 is an optical fiber for light emission (light projection), 4 is
N and 4F are optical fibers for receiving light, and 5 is a spacer. Each optical fiber has at least its distal end portion coaxially shaped as in the case of FIGS. 8 and 9 described above, and its distal end surface is on the same plane. Further, one end of a reference optical fiber 3R is provided at the rear end of the light projecting optical fiber 3.

6は各光ファイバーの先端面の前に配置した凸レンズで
、前記ガラス窓2の外側に焦点が位置する焦点距離fを
有する。即ち、厚さ仁のガラス窓2の外面から距離りの
位置が焦点となる。
Reference numeral 6 denotes a convex lens disposed in front of the tip end face of each optical fiber, and has a focal length f such that its focal point is located outside the glass window 2. That is, the focal point is at a distance from the outer surface of the glass window 2 with a thickness of about 100 mm.

7は萌記投光用光ファイバー3及び参照用光ファイバー
31の後端面に対向するよう配置した発光素子(例えば
赤外発光ダイオード)、8N及び8Fは前記受光用光フ
ァイバー4N及び4Fの後端面に対向するよう配置した
受光素子、8Rは前記参照用光ファイバー3Rの先端部
に対向するよう配置した受光素子、9N、9r’及び9
Rは前記受光素子8N、8F及び8Rに接続した前置増
幅器、IOは発光ダイオード駆動回路、11はこの駆動
回路10の自力電流値を制御するため、前記前置増幅器
9Rの出力を基準値と比較する比較器、!2は前記前置
増幅器9N及び9Fの出力を受けて所定の演算を行う演
算回路、13はこのtO1算回路I2の演算結果を汚泥
濃度として外部に送出する出力回路である。
Reference numeral 7 denotes a light emitting element (for example, an infrared light emitting diode) arranged to face the rear end surfaces of the Moeki light projecting optical fiber 3 and the reference optical fiber 31, and 8N and 8F oppose the rear end surfaces of the light receiving optical fibers 4N and 4F. 8R is a light receiving element arranged to face the tip of the reference optical fiber 3R, 9N, 9r' and 9 are arranged as shown in FIG.
R is a preamplifier connected to the light receiving elements 8N, 8F, and 8R, IO is a light emitting diode drive circuit, and 11 is a reference value for controlling the self-powered current value of this drive circuit 10, using the output of the preamplifier 9R. Comparator, to compare! 2 is an arithmetic circuit that receives the outputs of the preamplifiers 9N and 9F and performs a predetermined arithmetic operation, and 13 is an output circuit that sends the arithmetic result of the tO1 calculation circuit I2 to the outside as a sludge concentration.

なお、発光素子7を交流的に発光させる場合は、前記前
置増幅器9N。9Fに能動フィルター等を設け、光源発
光周波数成分のみを取り出した後、全波あるいは半波整
流して、太陽光、蛍光灯等による比較的低周波成分の外
光の影響を除去する。
Note that when the light emitting element 7 is caused to emit light in an alternating current manner, the preamplifier 9N is used. An active filter or the like is installed on the 9th floor to extract only the light source emission frequency component, and then performs full-wave or half-wave rectification to remove the influence of relatively low-frequency external light from sunlight, fluorescent lamps, etc.

次に、動作について述べる。発光ダイオード7から出た
光は、投光用光ファイバー3、凸レンズら及びガラス窓
2を通って検水W中に投射されるとともに、一部が参照
用光ファイバー31に入射する。この場合、検水中へは
凸レンズ6の作用でその焦点に集光するように投射され
る。この焦点位置は、ガラス窓2よりも僅かの距ahだ
け検水中に入った所にある。従って、この位置で検水中
に懸濁物Xがあれば散乱光が生じる。この散乱光の一部
がガラス窓2を通り、凸レンズ6を経て受光用光ファイ
バー4N、41?に入射する。
Next, the operation will be described. The light emitted from the light emitting diode 7 is projected into the sample water W through the light projecting optical fiber 3, the convex lens, etc., and the glass window 2, and a portion of the light is incident on the reference optical fiber 31. In this case, the light is projected into the sample water so as to be focused at its focal point by the action of the convex lens 6. This focal point position is located a little distance ah into the test water from the glass window 2. Therefore, if there is suspended matter X in the sample water at this position, scattered light will occur. A part of this scattered light passes through the glass window 2, passes through the convex lens 6, and passes through the light receiving optical fibers 4N, 41? incident on .

即ち、光ファイバーによる検出面の寸法は測定上必要な
大きさであっても、凸レンズ6を設けたことにより、実
質的に光源と受光部の間の距離が短給されたことになる
That is, even if the dimensions of the detection surface formed by the optical fiber are as large as necessary for measurement, the provision of the convex lens 6 substantially shortens the distance between the light source and the light receiving section.

散乱光は光ファイバー4N、4Fを通って受光素子8N
、8Fに達し、また発光の一部は光ファイバー311を
通って受光素子8Rに達する。そして、各受光素子で電
気信号に交換され、前置増幅器9N、9F及び9Rで増
幅される。増幅器9N。
The scattered light passes through optical fibers 4N and 4F to light receiving element 8N.
, 8F, and a part of the emitted light passes through the optical fiber 311 and reaches the light receiving element 8R. The signals are then exchanged into electrical signals by each light receiving element and amplified by preamplifiers 9N, 9F and 9R. Amplifier 9N.

9Fの出力は演算回路12に加わり、ここで所定の演算
が行われる。この結果が出力回路13から汚泥濃度とし
て出力される。
The output of 9F is applied to the arithmetic circuit 12, where a predetermined arithmetic operation is performed. This result is output from the output circuit 13 as the sludge concentration.

一方、増幅73911の出力は比較器11で基準値と比
較される。この比較結果により発光ダイオード駆動回路
IOの出力電流が制御される。
On the other hand, the output of the amplifier 73911 is compared with a reference value by the comparator 11. Based on this comparison result, the output current of the light emitting diode drive circuit IO is controlled.

なお、上記実施例では、凸レンズ6をガラス窓2の内側
に配置したが、第3図(a)、(b)。
In addition, in the above embodiment, the convex lens 6 was placed inside the glass window 2, but as shown in FIGS. 3(a) and 3(b).

(C)に示すようにレンズとガラス窓を兼用してもよい
。第3図(a)は平凸レンズ6Aを用い、その平面側が
検水と接するように配置した場合、第3図(b)は球レ
ンズ6Bを用いた場合、第3図(c)は屈折率分布形の
レンズ6Cを用いた場合である。
As shown in (C), the lens and the glass window may also be used. Figure 3(a) shows the case where a plano-convex lens 6A is used and its flat side is placed in contact with the sample water, Figure 3(b) shows the case where a spherical lens 6B is used, and Figure 3(c) shows the refractive index. This is a case where a distributed type lens 6C is used.

!−■1発明の効果 以上のように本発明によれば、発光面及び散乱光受光面
となる検出部の部分に光ファイバーを使用し、その先端
面の前にレンズを配置したので、実質的に受光位置を光
源部に近付けろことができ、信号レベルが増幅器等のド
リフトの影響を殆ど受けない範囲で検出信号を取り出す
ことができるようになり、高濃度までの広い範囲の汚泥
濃度を高精度に測定可能となる。また、検出面は今まで
の大きさでよいので、光ファイバーの加工は容易である
といった利点を有する。
! -■1 Effects of the invention As described above, according to the present invention, an optical fiber is used in the portion of the detection section that becomes the light emitting surface and the scattered light receiving surface, and the lens is placed in front of the tip surface of the optical fiber. The light receiving position can be moved closer to the light source, and the detection signal can be extracted in a range where the signal level is almost unaffected by the drift of the amplifier, etc., and the sludge concentration can be detected over a wide range of sludge concentrations with high precision. becomes measurable. Furthermore, since the detection surface can be of the same size as before, it has the advantage that processing of the optical fiber is easy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る汚泥濃度計の一実施例を示す構成
説明図、第2図は同実施例の検出部の構造を示す断面図
、第3図(a)〜(c)はそれぞれ検出部の変形例を示
す断面図、第4図は透過光式汚泥濃度計の基本構成を示
ず構成説明図、第5図は透過光式濃度計の汚泥濃度Sと
透過光強度■の関係を示す特性図、第6図は散乱光比較
式濃度計の基本構成を示す構成説明図、第7図は従来の
散乱光比較式濃度計の汚泥a度Sと散乱光強度IN、I
Pとの関係を示す特性図、第8図は光ファイバーを用い
た検出部の先端部分の構造例を示す断面図、第9図は同
底面図、第10図は検出部に光ファイバーを用いた散乱
光比較式濃度計の分析値と出力値(N″/F)との関係
を示す特性図である。 I・・・検出器ケース、2・・・検出窓(ガラス窓)、
3・・・投光用光ファイバー、3R・・・参照用光ファ
イバー、4 N、 4 F・・・受光用光ファイバー、
5・・・スペーサ、6・・・凸レンズ、7・・・発光素
子、8N。 8F、811・・・受光素子、9N、9F、9R・・・
前置増幅器、10・・・発光ダイオード駆動回路、11
・・・比較器、12・・・演算回路、13・・・出ツノ
回路、W・・・検水、X・・・懸濁物。 第2図 精比穀0戦V丈tωコ 第3図 オ央出地r)麦邪脅Ltホわ酎デ凹 第4図 5号フ乙V會tの本陛5(1明口 第5図 StIの乃jる4と力\す膚−にpIj口第10図 幻”itoのくタテ5亨ブiン13÷1止ブフ・イ1ン
二〇アMMりY(き二ブチくヲーノf¥2.sトニ1;
【)そ臼朴fL
Fig. 1 is a configuration explanatory diagram showing an embodiment of the sludge concentration meter according to the present invention, Fig. 2 is a sectional view showing the structure of the detection section of the same embodiment, and Figs. 3 (a) to (c) are respectively A cross-sectional view showing a modified example of the detection unit, Fig. 4 is a configuration explanatory diagram that does not show the basic configuration of the transmitted light type sludge densitometer, and Fig. 5 shows the relationship between the sludge concentration S and the transmitted light intensity ■ of the transmitted light type densitometer. FIG. 6 is a configuration explanatory diagram showing the basic configuration of a scattered light comparison type densitometer, and FIG. 7 shows sludge a degree S and scattered light intensity IN, I of a conventional scattered light comparison type densitometer.
A characteristic diagram showing the relationship with P, Fig. 8 is a cross-sectional view showing an example of the structure of the tip of the detection section using an optical fiber, Fig. 9 is a bottom view of the same, and Fig. 10 is a scattering diagram using an optical fiber for the detection section. It is a characteristic diagram showing the relationship between the analysis value and the output value (N″/F) of the optical comparison type densitometer. I...Detector case, 2...Detection window (glass window),
3... Optical fiber for light emission, 3R... Optical fiber for reference, 4 N, 4 F... Optical fiber for light reception,
5... Spacer, 6... Convex lens, 7... Light emitting element, 8N. 8F, 811... Light receiving element, 9N, 9F, 9R...
Preamplifier, 10... Light emitting diode drive circuit, 11
...Comparator, 12...Arithmetic circuit, 13...Output horn circuit, W...Water test, X...Suspended matter. Figure 2 Refined Grain 0 Battle V Length t ω Co Figure 3 Oo Outer Location r) Mugi Evil Threat Lt Howa Chu De Concave Figure 4 No. Figure StI's 4 and force \ skin - pIj mouth 10th figure phantom "ito's vertical 5 in 13 ÷ 1 stop bufu i 1 in 20a MM ri Y (kinibutiku Wonof¥2.s Toni1;
[)Sousuboku fL

Claims (1)

【特許請求の範囲】[Claims] (1)光源から出て検水中の汚濁物質によって散乱され
た光を、光源との距離が異なり、かつその距離によって
定まる定数β_N、β_Fが2β_N=β_Fとなるよ
う位置の選定を行った二つの受光面で受け、近い方の受
光面での検出出力の2乗と遠い方の受光面での検出出力
との比をとって汚泥濃度を算出するようにした散乱光比
較式の汚泥濃度計において、先端面を投光面とする投光
用光ファイバーを中心軸とし、これに受光用光ファイバ
ーを前記投光面の周囲に二つの同心円状の受光面が形成
されるように配置して投光・受光部とし、この先端面の
前にレンズをその光学的作用により実質的に投光部と受
光部を近付けるよう配設したことを特徴とする汚泥濃度
計。
(1) The light emitted from the light source and scattered by the contaminants in the sample water is divided into two light sources whose distances to the light source are different and whose positions are selected so that the constants β_N and β_F determined by the distances are 2β_N = β_F. In a scattered light comparison type sludge concentration meter, the sludge concentration is calculated by calculating the ratio of the square of the detected output on the nearer light-receiving surface and the detection output on the farthest light-receiving surface. A light-emitting optical fiber whose tip end surface is a light-emitting surface is used as a central axis, and light-receiving optical fibers are arranged around the light-emitting surface so that two concentric light-receiving surfaces are formed. 1. A sludge concentration meter comprising a light receiving section, and a lens is disposed in front of the tip surface so that the light emitting section and the light receiving section are substantially brought closer together by its optical action.
JP6537389A 1989-03-17 1989-03-17 Sludge densitometer Pending JPH02245637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6537389A JPH02245637A (en) 1989-03-17 1989-03-17 Sludge densitometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6537389A JPH02245637A (en) 1989-03-17 1989-03-17 Sludge densitometer

Publications (1)

Publication Number Publication Date
JPH02245637A true JPH02245637A (en) 1990-10-01

Family

ID=13285099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6537389A Pending JPH02245637A (en) 1989-03-17 1989-03-17 Sludge densitometer

Country Status (1)

Country Link
JP (1) JPH02245637A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257706A (en) * 2001-03-01 2002-09-11 Otsuka Denshi Co Ltd Probe for measuring light scattering

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002257706A (en) * 2001-03-01 2002-09-11 Otsuka Denshi Co Ltd Probe for measuring light scattering
JP4563600B2 (en) * 2001-03-01 2010-10-13 大塚電子株式会社 Light scattering measurement probe

Similar Documents

Publication Publication Date Title
US8576396B2 (en) Cell construction for light scatter detectors having self-focusing properties
US3873204A (en) Optical extinction photoanalysis apparatus for small particles
CN106323826B (en) Ultralow emission smoke monitoring device and monitoring method
JPS6432154A (en) Apparatus for measuring reflection factor of sample
CN104792737A (en) High-precision high-accuracy turbidity measurement device and method
US5416581A (en) Device and process for measuring solid concentrations in liquids
CN204495716U (en) A kind of turbidity meter of high precision high accuracy
CN100354620C (en) Method and apparatus for measuring light transmissivity
AU2002310007B2 (en) Optical turbidimeter with a lens tube
CN103645161A (en) Turbidity detecting device
CN107091820A (en) Laser scattering type water turbidity measuring instrument
AU2002310007A1 (en) Optical turbidimeter with a lens tube
WO2021097910A1 (en) Detection device and method for tiny particles in liquid
JPH02245637A (en) Sludge densitometer
CN112730180B (en) High-sensitivity dust particle counting sensor with double detectors
JPH01165936A (en) Detecting apparatus of concentration of suspended substance
CN106546562A (en) A kind of microbiological sensor and turbidity detection method based on Turbidity measurement
US20180180541A1 (en) Transmitted light intensity measurement unit
JPH0277636A (en) Particle measuring device
CN106290097B (en) Dust concentration measuring device and method
US20220373477A1 (en) Apparatus for detecting fine dust and microorganisms
CN210604381U (en) Bacteria turbidimeter
CN114729885A (en) Optical-based particulate matter sensing
CN206891964U (en) Laser scattering type water turbidity measuring instrument
CN206095938U (en) Double -light -path surface scattering high range turbidity instrument