JPH02244693A - Formation of superconductive thick film circuit - Google Patents

Formation of superconductive thick film circuit

Info

Publication number
JPH02244693A
JPH02244693A JP1069451A JP6945189A JPH02244693A JP H02244693 A JPH02244693 A JP H02244693A JP 1069451 A JP1069451 A JP 1069451A JP 6945189 A JP6945189 A JP 6945189A JP H02244693 A JPH02244693 A JP H02244693A
Authority
JP
Japan
Prior art keywords
thick film
film circuit
superconducting
substrate
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1069451A
Other languages
Japanese (ja)
Other versions
JP2646735B2 (en
Inventor
Toshiyuki Kamibayashi
上林 俊之
Osamu Yoneda
修 米田
Nobuhiro Yamamura
山村 宜弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1069451A priority Critical patent/JP2646735B2/en
Publication of JPH02244693A publication Critical patent/JPH02244693A/en
Application granted granted Critical
Publication of JP2646735B2 publication Critical patent/JP2646735B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To improve a film circuit of this design in adhesion so as to protect it against breakage and debonding by a method wherein raw material powder to be a superconductive material is mixed with specific material powder, which is kneaded into paste by adding a solvent to it, and a circuit is formed of the paste and then burned at a prescribed temperature. CONSTITUTION:Raw material powder to be a superconductive material is mixed powder of Ag or Ag2O, which is kneaded into paste by adding a solvent to it, and a superconductive thick film circuit 3 is formed of the paste on a board 1 on which a platinum electrode has been provided, which is burned at a temperature higher than the melting point of Ag to form an Ag layer 4 between the board 1 and the circuit 3. The adhesion of the circuit 3 to the board 1 can be improved by the layer 4, whereby the circuit pattern 3 is protected against separation and breakage, the reaction between components cotained in the board 1 and the thick film circuit pattern 3 is weakened, and the circuit pattern 3 is prevented from deteriorating in superconductive property due to sintering.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、超電導物質により基板上に密着性に優れた
厚膜回路を形成する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for forming a thick film circuit with excellent adhesion on a substrate using a superconducting material.

従来の技術 各種超電導物質の中で、例えば液体窒素の沸点以上の高
臨界温度を持つ超電導物質としては、現在までのところ
、イツトリウム系複合酸化物などの酸化物セラミックス
系超電導物質が知られている。
Conventional technology Among various superconducting materials, oxide ceramic-based superconducting materials such as yttrium-based composite oxides are currently known as superconducting materials that have a high critical temperature higher than the boiling point of liquid nitrogen. .

この酸化物セラミックス系超電導物質を用いてスクリー
ン印刷法等で回路パターンを形成した超電導プリント基
板の製造方法も従来より提案されている(特開昭63−
299192号公報など)。
A method for manufacturing a superconducting printed circuit board in which a circuit pattern is formed using this oxide ceramic superconducting material by screen printing or the like has also been proposed (Japanese Unexamined Patent Application Publication No. 1983-1999).
299192, etc.).

発明が解決しようとする課題 しかし、酸化物セラミックス系超電導物質は一般に機械
的強度が弱いという欠点があり、特に従来のスクリーン
印刷法によってこの酸化物セラミックス系超電導物質と
なる原料粉末を用いて基板上に厚膜回路パターンを形成
し、その俊焼成して超電導厚膜回路を形成した場合には
、緻密な超電導厚膜を形成することができないばかりで
なく、その厚膜と基板や電極との間の密着力が充分得ら
れず、その結果、圧縮カヤ振動等の外力が加わると超電
導厚膜に割れやひびが生じるという問題があった。特に
、酸化物セラミックス系超電導物質の厚膜回路を形成し
たプリント基板における外部回路との接点は、外部回路
側のコネクタの接点と圧接するため、接点付近の超電導
厚膜に圧縮力がかかり、またコネクタの着脱の際には振
動も起き易いため、超電導片膜に亀裂が入ったり、接点
の電極上に形成された超電導厚膜の部分が剥離を起す等
により断線を生じ易いという問題があった。
Problems to be Solved by the Invention However, oxide ceramic superconducting materials generally have a drawback of low mechanical strength. If a thick film circuit pattern is formed on the substrate and then baked to form a superconducting thick film circuit, not only will it be impossible to form a dense superconducting thick film, but also there will be problems between the thick film and the substrate or electrodes. As a result, there is a problem in that the superconducting thick film cracks or cracks when external forces such as compressive shell vibrations are applied. In particular, the contact point with the external circuit on a printed circuit board on which a thick film circuit made of oxide ceramic superconducting material is formed is in pressure contact with the contact point of the connector on the external circuit side, so compressive force is applied to the superconducting thick film near the contact point. Since vibration is likely to occur when connecting and disconnecting the connector, there was a problem in that the superconducting strip film could crack or the thick superconducting film formed on the contact electrode could peel off, resulting in wire breakage. .

この発明は上記問題点に鑑みなされたもので、基板面お
よび電極どの密着性に優れ、割れや剥離を生じるおそれ
の少ない超電導厚膜回路を形成する超電導厚膜回路の形
成り法を提供することを目的どしている。
This invention has been made in view of the above problems, and provides a method for forming a superconducting thick film circuit that has excellent adhesion to the substrate surface and electrodes, and is less likely to cause cracking or peeling. The purpose is

課題を解決するための手段 上記課題庖解決するための手段どしてこの発明の超電導
厚膜回路の形成方法は、超電導物質となる原料粉末にA
q粉末もしくはAQ 20粉末を混合し、これに溶媒を
加えてペースト状に混練し、得られた混練物を用いて基
板上に厚膜回路パターンを形成した後、Agの融点以上
の温度で焼成づ“ることを特徴としでいる。
Means for Solving the Problems The method for forming a superconducting thick film circuit of the present invention includes adding A to a raw material powder to be a superconducting material.
q powder or AQ 20 powder is mixed, a solvent is added to this and kneaded to form a paste, and the resulting kneaded product is used to form a thick film circuit pattern on a substrate, after which it is fired at a temperature above the melting point of Ag. It is characterized by

作   用 この発明の方法においては、先ず超電導物質となる原料
粉末に所定量のAiaもしくはA!:+ 20粉末を混
合した混合粉末の混練物を作製−するaづなわら、前記
混合粉末に溶媒を加えてd2練し、ペースト状の混練物
を作製J゛る。次いで、イの混練物を用いてスクリーン
印刷法等により基板−1に厚膜回路パターンを形成する
。ここぐ、一般に/リント基板における厚膜回路の形成
においては、基板上の所定の位貿に予め白金等の良導電
性金属からなる電極を形成しておくか、あるいはその電
極どなるべき導体ペーストを塗荀しておくのが通常であ
り、したがって、この場合には前記混練物からなる厚膜
回路パターンは電極上:にも形成されることになる。
Function: In the method of the present invention, first, a predetermined amount of Aia or A! is added to the raw material powder that becomes the superconducting material. : Preparation of a kneaded product of mixed powder obtained by mixing 20 powders A and d2, a solvent is added to the mixed powder and kneaded to prepare a paste-like kneaded product. Next, a thick film circuit pattern is formed on the substrate-1 by a screen printing method or the like using the kneaded material of (a). Generally, when forming a thick film circuit on a lint board, electrodes made of a highly conductive metal such as platinum are formed in advance at predetermined positions on the board, or a conductive paste is used to form the electrodes. It is usual to coat the kneaded material in advance, and therefore, in this case, the thick film circuit pattern made of the kneaded material is also formed on the electrode.

上記のようにして厚膜回路パターンを形成した後、Ag
の融点以上の温度で一焼成する。この焼成のための昇温
過程においては、先ず、その厚膜回路パターンを構成し
ているYli棟物生物中媒が分解もしくは揮にし、厚膜
回路パターンの層は、粒子間に空隙が存在するポーラス
なものどなる。ざらに、八gの融点以上の温度となれば
、厚膜回路パターン層内のAo  (混合粉末中の八〇
)が溶融1−る。
After forming the thick film circuit pattern as described above, Ag
Fire at a temperature above the melting point of. In the temperature raising process for firing, first, the Yli structure biological media that constitutes the thick film circuit pattern is decomposed or volatilized, and the layer of the thick film circuit pattern has voids between particles. Porous roared. Roughly speaking, if the temperature exceeds the melting point of 8g, Ao (80g in the mixed powder) in the thick film circuit pattern layer will melt.

ぞL−r、溶融したAgは粒子間の空隙を伝わって基板
もしくは電極との界面に向って流れ、その結果、厚膜回
路パターン層と基板表面もしくは電極表面どの界面に溶
融へ〇が集り、その部分に溶融Aglが形成されること
となる。なお、A(120粉末を用いる場合は、焼成の
ための昇温過程の200℃程度においてAQ 20が分
解して酸素を放出し、A(120粉末粒子は一旦Aq粉
末粒子となり、その後Agどして溶融することになる。
L-r, the molten Ag flows through the gaps between the particles toward the interface with the substrate or electrode, and as a result, the molten Ag gathers at the interface between the thick film circuit pattern layer and the substrate surface or the electrode surface. Molten Agl will be formed in that portion. In addition, when using A(120 powder), AQ 20 decomposes and releases oxygen at around 200°C during the heating process for firing, and the A(120 powder particles become Aq powder particles and then become Ag-like powder particles. It will melt.

一方、上記の焼成時には、超電導物質となる原料粉末が
焼結され、I3電導物質の焼結層からなるJ9膜が形成
される。したがって、焼成後の冷k]過程においで、前
記の溶融A(+が凝固覆れば、超電導物質の焼結層から
なる厚膜と基板もしくは電極表面との間に中間層として
1%が形成されることになる。
On the other hand, during the above firing, the raw material powder that becomes the superconducting material is sintered, and a J9 film consisting of a sintered layer of the I3 conductive material is formed. Therefore, in the cooling process after firing, if the molten A (+) solidifies, 1% of the intermediate layer will be formed between the thick film made of the sintered layer of the superconducting material and the substrate or electrode surface. will be done.

ここで、Ag層はもともと厚膜回路パターン層中に混在
していたへ〇粉末粒子が溶出して形成されたものである
から、そのA(1層は超電導物質の焼結層からなる厚膜
との境界部分では、厚喚中の空隙に入り込んだ状態とな
ってJ’5つ2したが・−で、Ag層と片膝とは機械的
に強固に結合・一体止していることになる。−・一方、
Ag層と基板もしくは電極の表面との境界部分では、溶
融したAgが基板もしく、は電極表面の微細な凹凸に流
入して凝固することにより、基板もしくは電極表面に対
1−るAQの機械的投錨効果が得られ、そのため、Ag
層は基板もしく電極の表面に対して強い密着力で結合す
ることになる。したがつて、超電導物質の焼結層からな
る厚情と基板もしくは電極どの間は、中間層どしてのA
g岡を介して機械的に強固に結合された状態どなる。
Here, since the Ag layer was formed by the elution of powder particles originally mixed in the thick film circuit pattern layer, the Ag layer (one layer is a thick film consisting of a sintered layer of superconducting material) At the boundary between the two, the Ag layer and one knee were mechanically firmly connected and fixed as one body, and the Ag layer entered the gap between the layers. It becomes.-・On the other hand,
At the boundary between the Ag layer and the surface of the substrate or electrode, molten Ag flows into the minute irregularities on the surface of the substrate or electrode and solidifies, causing the AQ mechanical contact with the surface of the substrate or electrode. A target anchoring effect is obtained, and therefore Ag
The layer will bond with strong adhesion to the surface of the substrate or electrode. Therefore, between the layer consisting of a sintered layer of superconducting material and the substrate or electrode, there is no intermediate layer A.
The state of being mechanically and firmly connected via the g-oka is loud.

また、特に電極上の部分にtjい(−は、電極自体が金
属であるため、溶融Δgの濡れ性が優れ、したがって、
AC3層は電極表面に対し一層より一層強い密着力で結
合されることになり、その結果、厚膜も中間層であるA
g層を介して基板に対しで強い密着力で結合されること
になる。
In addition, the part above the electrode is particularly tj (- means that the electrode itself is a metal, so the wettability of the melting Δg is excellent, and therefore,
The three AC layers are bonded to the electrode surface with even stronger adhesion, and as a result, the thick film also has the intermediate layer A.
It is bonded to the substrate through the G layer with strong adhesion.

以上のように、この発明の方法で・は、8!4電′4物
質となる原料粉末にAg粉末らしくはA!II 20粉
末を混合した混合粉末の混練物を用いて厚膜回路パター
ンを形成した後、A(lの融点以上の温度で焼成するこ
とによって、基板もしくは電極と超電導厚膜とが中間層
のAa層を介して高い密着力で結合される。したがって
、超電導厚膜に亀裂や割れが生じたり剥離したりするこ
とを有効に防止できる。また、基板面と超電導厚膜回路
との界面にAalWが形成されることにより、基板成分
と超電導物質との間の反応が減少し、焼結による超電導
特性の劣化を防ぐ効果も期待できる。
As described above, in the method of the present invention, the raw material powder that becomes the 8!4 electron'4 substance has A! After forming a thick film circuit pattern using a kneaded mixture of II 20 powder, the substrate or electrode and the superconducting thick film are bonded to the intermediate layer A They are bonded with high adhesion through the layers. Therefore, it is possible to effectively prevent cracks and cracks in the superconducting thick film from occurring or peeling off. In addition, AalW is bonded to the interface between the substrate surface and the superconducting thick film circuit. This formation reduces the reaction between the substrate components and the superconducting material, and can also be expected to have the effect of preventing deterioration of superconducting properties due to sintering.

発明の実施のための具体的な説明 酸化物セラミックス系超電導物質として、例えばYBa
 2 Cu 307−y  (イツトリウム−バリウム
−銅酸化物系超電′#動物質を用いて超電導厚膜回路を
形成する場合には、YBa 2 Cu 307−yとな
る原料粉末に、銀粉末(A!+ >あるいは酸化銀粉末
(A(120)を混入する。この銀粉末あるいは酸化銀
粉末の混入量は特に限定しないが、超電導物質となる原
料粉末の量に対して約5〜10重量%の範囲が望ましく
、7重量%程度が最適である。ここで、銀粉末が5重量
%未満では、中間層としてのへ〇層が均一の形成されな
いため、超電導厚膜に充分な密着力が得られず、一方、
101ffi%を超えると充分な密着力は得られるが、
厚膜内の超電導物質粒子相互間の接触がA(]により妨
げられて、超wL導物性を損なうおそれが生じる。
Specific explanation for carrying out the invention As the oxide ceramic superconducting material, for example, YBa
2 Cu 307-y (When forming a superconducting thick film circuit using a yttrium-barium-copper oxide superconducting material, silver powder (A !+>Alternatively, silver oxide powder (A(120)) is mixed.The amount of this silver powder or silver oxide powder mixed is not particularly limited, but it is about 5 to 10% by weight based on the amount of raw material powder that becomes the superconducting material. A desirable range is about 7% by weight.If the silver powder content is less than 5% by weight, the intermediate layer will not be formed uniformly, and sufficient adhesion will not be obtained for the superconducting thick film. On the other hand,
Sufficient adhesion can be obtained when it exceeds 101ffi%, but
Contact between superconducting material particles within the thick film is prevented by A(], and there is a possibility that super-wL conductivity may be impaired.

次に、銀粉末あるいは酸化銀粉末を混合した超電導物質
となる原料の粉末に溶媒を加えて混練し、厚膜回路形成
用のペーストを製造する。そして、得られたペーストを
用いてスクリーン印刷法等により、イツトリウム安定化
ジルコニア(YSZ)基板や、高純度アルミナ基板また
は酸化マグネシウム基板等のセラミックス系基板上に厚
膜回路パターンを印刷した後、この厚膜回路パターンを
形成した基板を焼成する。このときの焼結温度Tは、A
gの融点(常圧で962℃)以上に設定する。
Next, a solvent is added to the powder of the raw material that will become the superconducting material mixed with silver powder or silver oxide powder and kneaded to produce a paste for forming a thick film circuit. Then, a thick film circuit pattern is printed on a ceramic substrate such as a yttrium-stabilized zirconia (YSZ) substrate, a high-purity alumina substrate, or a magnesium oxide substrate using the obtained paste by a screen printing method or the like. The substrate on which the thick film circuit pattern is formed is fired. The sintering temperature T at this time is A
g melting point (962°C at normal pressure) or higher.

また焼結温度の上限は、使用する超電導物質の組成によ
って異るが、超電導層が形成される最高温度(YBa 
2 Qu 307−yの場合には1100”C)以下が
望ましい。
The upper limit of the sintering temperature varies depending on the composition of the superconducting material used, but the maximum temperature at which a superconducting layer is formed (YBa
In the case of 2 Qu 307-y, 1100''C) or less is desirable.

また、超電導物質となる原料粉末に酸化銀粉末を混合し
て使用した場合には、焼結工程において200℃前後に
加熱された際に分解し、酸素を放出して銀粉末となり、
その後A(lとして溶融することとなる。
In addition, when silver oxide powder is mixed with the raw material powder that becomes the superconducting material, it decomposes when heated to around 200°C in the sintering process, releases oxygen, and becomes silver powder.
After that, it will be melted as A(l).

そして、焼結後に027ニール(焼鈍〉を行うと、YS
Z基板上に超電導厚膜回路が形成される。
Then, when 027 anneal (annealing) is performed after sintering, YS
A superconducting thick film circuit is formed on the Z substrate.

焼結して形成された超電導厚膜回路は、YSZ基板上に
形成された状態の切片を作り顕微鏡下で観察すると、Y
SZ基板の表面に銀層が形成され、このtB層の上に超
電導物質の焼結体が形成されて超電導厚膜回路を構成し
ていることが判る(第3図の金属組織を示す電子顕微鏡
写真参照)。
When the superconducting thick film circuit formed by sintering is sectioned on a YSZ substrate and observed under a microscope, the Y
It can be seen that a silver layer is formed on the surface of the SZ substrate, and a sintered body of superconducting material is formed on this tB layer to constitute a superconducting thick film circuit (Fig. 3 shows an electron microscope showing the metal structure). (see photo).

このYSZ基板上に形成された超電導厚膜回路の銀層と
超電導物質の焼結体との境界部分は、第3図の写真から
も解るように、銀層はもともと厚膜回路パターン層内に
混在していた銀が溶出し、基板表面に凝集したものであ
るため、起電i#動物質焼結体表面の凹凸に入り込んで
焼結体との間を機械的に結合し、銀層と基板もしくは電
極表面との境界部分も同様に、溶融した銀が、基板表面
の微細な凹凸に流入して凝固することにより機械的投錨
効果が得られる。その結果、超電導厚膜回路は銀層を介
して基板上に密着性よく強固に形成される。
As can be seen from the photograph in Figure 3, the boundary between the silver layer of the superconducting thick film circuit formed on this YSZ substrate and the sintered body of superconducting material is where the silver layer was originally formed within the thick film circuit pattern layer. Since the mixed silver was eluted and aggregated on the substrate surface, it penetrated into the irregularities on the surface of the electrogenic i# animal sintered body and mechanically bonded with the sintered body, forming a bond between the silver layer and the sintered body. Similarly, at the interface with the substrate or electrode surface, molten silver flows into the fine irregularities on the substrate surface and solidifies, thereby producing a mechanical anchoring effect. As a result, the superconducting thick film circuit is firmly formed on the substrate with good adhesion via the silver layer.

なお、銀粉末を混合することによる超電導特性への影響
を調べるため、超電導物質となる原料粉末にAq粉末を
混合した場合と、銀粉末を混合しない場合とについて、
基板上に形成された超電導厚膜回路の温度と電導特性と
の比較を行なったところ、銀粉末を7重量%混合した場
合(第4図のグラフ参照)の臨界温度がTcユ87にで
、銀粉末を全く混入しなかった場合(第5図のグラフ参
照)の臨界温度がTc= 89 Kとなり、銀を添加し
ても超電導物質の臨界温度Tcはほとんど影響を受けな
い。
In order to investigate the effect of mixing silver powder on superconducting properties, we investigated cases in which Aq powder was mixed with the raw material powder that becomes the superconducting material and cases in which silver powder was not mixed.
A comparison of the temperature and conductivity properties of a superconducting thick film circuit formed on a substrate revealed that the critical temperature when 7% by weight of silver powder was mixed (see the graph in Figure 4) was Tc 87; The critical temperature when no silver powder is mixed (see the graph in FIG. 5) is Tc = 89 K, and the critical temperature Tc of the superconducting material is hardly affected by the addition of silver.

実施例 [実施例1] 第1図および第2図に示すように、イツトリウム安定化
ジルコニア(YSZ)基板1の回路端部となる位置に、
電極用の白金ペーストを予め塗布シタ後、超電導物質で
あるYBa 2 Cu 307−yとなる原料粉末に7
重量%の銀粉末を混合し、溶媒を加えて混練したペース
トを用いてスクリーン印劉法により、基板1上に厚膜回
路パターンを印刷し、この厚膜回路パターンが印刷され
た面を上に向け、かつ水平な状態で基板1の焼成を行な
った。
Example [Example 1] As shown in FIGS. 1 and 2, at the position of the circuit end of the yttrium stabilized zirconia (YSZ) substrate 1,
After pre-coating platinum paste for electrodes, 7%
A thick film circuit pattern is printed on the substrate 1 by the screen printing method using a paste prepared by mixing % by weight of silver powder, adding a solvent and kneading it, and then printing the thick film circuit pattern on the substrate 1 with the printed side of the thick film circuit pattern facing up. The substrate 1 was fired in a horizontal state.

焼結条件は1.焼結温度Tを銀の融点以上でかつH!I
雷導物質が超電導相を形成する最高温度以下の温度、す
なわち962℃≦T≦1ioo℃に設定して焼成し、そ
の後に02アニール(焼鈍)を行なった。
The sintering conditions are 1. The sintering temperature T is higher than the melting point of silver and H! I
Firing was performed at a temperature below the maximum temperature at which the lightning conductive material forms a superconducting phase, that is, 962° C.≦T≦1ioo° C., and then 02 annealing (annealing) was performed.

その結果、基板1上の白金ペーストが塗布された位置に
白金電極2が形成されるとともに、所定の位置に超電導
厚膜回路3が形成され、この超電導厚膜回路3は銀層4
を介して基板1に密着性よく形成され、また超電導厚膜
回路3は白金電極2上に重なった部分においても、同様
に銀層4を介して密着性よく形成され、圧縮や振動等の
外力によく耐えて割れや剥離を生じない超電導厚膜回路
3を形成することができた。
As a result, a platinum electrode 2 is formed at the position on the substrate 1 where the platinum paste is applied, and a superconducting thick film circuit 3 is formed at a predetermined position.
The superconducting thick film circuit 3 is formed with good adhesion to the substrate 1 through the silver layer 4, and the superconducting thick film circuit 3 is also formed with good adhesion through the silver layer 4 in the portion overlapping the platinum electrode 2, and is protected against external forces such as compression and vibration. It was possible to form a superconducting thick film circuit 3 that endures well and does not cause cracking or peeling.

[実施例21 第6図33よび第7図に示すように、YSZ基板11上
の回路端部となる位置に溝を設けて白金あるいは金等の
高融点でかつ良導電性の金属ブロックを嵌め込んで電極
12を形成Jる4M造となっており、この溝内には、溝
の内周面ど当接づる面にアルミニウム等の低融点の金属
のメツキ層13を形成した金属ブロックが嵌め込まれて
いる。
[Example 21] As shown in FIGS. 6, 33 and 7, a groove was provided at the position of the circuit end on the YSZ board 11, and a metal block made of platinum or gold with a high melting point and good conductivity was inserted into the groove. It has a 4M construction in which the electrode 12 is formed in the groove, and a metal block with a plating layer 13 of a low melting point metal such as aluminum formed on the surface that contacts the inner peripheral surface of the groove is fitted. It is.

そしてfB Ts 尋物質であるYBa 2 C1j 
307−yとなる原料粉末に7重量%の@粉末を混合し
、溶媒を加えて混練したペーストを用い、前記実施例1
と同様にスクリーン印刷法によって基板11上に厚膜回
路パターンを印刷し、焼結温度Tを銀の融点以上でかつ
超電導物質が、超電導相を形成づる最高温度以下の温度
、すなわち962℃≦T≦1100℃の範囲内に設定し
て焼成し、ぞの後に027ニールを行なった。
And fB Ts is a substance YBa 2 C1j
Example 1 was prepared by mixing 7% by weight of @ powder with the raw material powder of 307-y, adding a solvent, and kneading the paste.
Similarly, a thick film circuit pattern is printed on the substrate 11 by the screen printing method, and the sintering temperature T is set to be above the melting point of silver and below the maximum temperature at which the superconducting material forms a superconducting phase, that is, 962°C≦T. The temperature was set within the range of ≦1100° C. for firing, and then 027 anneal was performed.

その結果、基板1の溝に嵌め込まれた電極12は、アル
ミニウム等の低融点金属のメツキ層13が基板11の成
分と反応して溝内に強固に固定された。そして、所定の
位置に超電導厚膜回路14が111115を介して基板
11上に密着性よく形成され、また超電導厚膜回路14
と白金電極12とも同様に!1層15を介して密着性よ
く形成され、圧縮や振動等の外力によく耐えて割れや剥
離を生じない超電導厚膜回路14を形成することができ
た。
As a result, the electrode 12 fitted into the groove of the substrate 1 was firmly fixed in the groove by the plating layer 13 of a low melting point metal such as aluminum reacting with the components of the substrate 11. Then, the superconducting thick film circuit 14 is formed at a predetermined position on the substrate 11 through the 111115 with good adhesion, and the superconducting thick film circuit 14
And the same with platinum electrode 12! It was possible to form a superconducting thick film circuit 14 that was formed with good adhesion through one layer 15, could withstand external forces such as compression and vibration well, and did not cause cracking or peeling.

(実施例31 コネクタの差込み部を備えたプリント基板に適用した具
体例を示すもので、第8図に示すように、基板の右側端
部を幅狭に形成し、その部分の表面に複数の溝を形成す
るとともに、当接面にアルミニウムのメツキ層を形成し
た白金電極22を各溝内に嵌め込んでコネクタ差込み部
23としたYSZ基板21上には、超電導物質となる原
料粉末に7重量%の銀粉末を混入し、溶媒を加えて混練
した前記両実施例と同一組成のペーストを用いて厚腰回
路パターンを印刷し、同一の焼結条件で焼成し、コネク
タ差込み部23上の超電導厚膜回路24の端部側の一部
が各白金電極22上に重なるように形成されている。
(Example 31 This shows a specific example applied to a printed circuit board equipped with a connector insertion part. As shown in Fig. 8, the right end of the board is formed narrowly, and a plurality of On the YSZ substrate 21, which has grooves and a platinum electrode 22 with an aluminum plating layer formed on the contact surface, is fitted into each groove to form the connector insertion part 23. A thick circuit pattern was printed using a paste having the same composition as in both of the above embodiments, in which % of silver powder was mixed and mixed with a solvent, and the superconducting circuit pattern on the connector insertion part 23 was printed under the same sintering conditions. A portion of the end portion of the thick film circuit 24 is formed so as to overlap each platinum electrode 22 .

(して、コネクタ差込み部23には、リード線25のキ
ャップ状の」ネクタ26が外周を覆うように嵌合し、こ
のコネクタ26の各電極27がYSZ基板21側の各白
金電極22に圧接して電気的に接続されるようになって
いる。
(Then, the cap-shaped connector 26 of the lead wire 25 is fitted into the connector insertion part 23 so as to cover the outer periphery, and each electrode 27 of this connector 26 is pressed into contact with each platinum electrode 22 on the YSZ board 21 side. It is designed to be electrically connected.

さらに、YSZ基板21土には、搭載するIC等の電子
素子28の各端f28aの固定用の電極29が予め設け
られでおり、超電導厚膜回路24を形成した際に、超電
導厚膜回路24が銀層を介して各電極29に同時に配線
接続され、電子素子28の搭載時には、電子素子28の
各端子28aを、所定の電極29にハンダ付【プあるい
は圧着して容易に接続できるようになっている。
Further, electrodes 29 for fixing each end f28a of an electronic element 28 such as an IC to be mounted are provided in advance on the YSZ substrate 21, and when the superconducting thick film circuit 24 is formed, the superconducting thick film circuit 24 are wire-connected to each electrode 29 simultaneously through a silver layer, and when the electronic element 28 is mounted, each terminal 28a of the electronic element 28 can be easily connected to a predetermined electrode 29 by soldering or crimping. It has become.

したがって、上記のように形成された超電導厚膜回路2
4は、コネクタ差込み部23の白金電極22に対してf
II/1層を介して強固に密接して、基板上に超電導厚
膜回路が直接形成された場合と比べて接続部の耐久性が
大幅に向上する。その結果、コネクタ差込み部23に対
してコネクタ26の脱着操作を繰返し行なっても、コネ
クタ26の装着時の圧縮力や、脱着時の振動によって超
電導厚膜回路24が白金電極22から剥離せず、また割
れやひびが生じて断線することもない。
Therefore, the superconducting thick film circuit 2 formed as described above
4 is f with respect to the platinum electrode 22 of the connector insertion part 23.
The durability of the connection portion is greatly improved compared to the case where the superconducting thick film circuit is directly formed on the substrate due to the strong and close contact via the II/1 layer. As a result, even if the connector 26 is repeatedly attached and detached from the connector insertion part 23, the superconducting thick film circuit 24 will not be separated from the platinum electrode 22 due to the compressive force when the connector 26 is attached or the vibration when detached. Also, there is no risk of breakage due to breakage or cracks.

発明の詳細 な説明したようにこの発明の超電導厚膜回路の形成方法
は、超電導物質となる原料粉末にAg粉末もしくはAg
2O粉末を混合し、これに溶媒を加えてペースト状に混
練し、得られた混練物を用いて基板上に厚膜回路パター
ンを形成した後、AQの融点以上の温度で焼成して超電
導厚膜回路を形成するので、焼成時に基板と厚膜回路パ
ターンとの間にA(]層が形成され、このAg11によ
って基板と厚膜回路パターンとの間の密着性が向上し、
割れや剥離等等の発生が防止されるとともに、基板成分
と厚膜回路パターンとの間の反応が減少し、焼結による
起電導特性の劣化を防ぐことができる等の効果を有する
As described in detail, the method for forming a superconducting thick film circuit of the present invention uses Ag powder or Ag
2O powder is mixed, a solvent is added thereto, and the paste is kneaded. The resulting kneaded product is used to form a thick film circuit pattern on a substrate, and then fired at a temperature higher than the melting point of AQ to form a superconducting thick film. Since a film circuit is formed, an A() layer is formed between the substrate and the thick film circuit pattern during firing, and this Ag11 improves the adhesion between the substrate and the thick film circuit pattern.
This has the effect of preventing the occurrence of cracks, peeling, etc., reducing the reaction between the substrate components and the thick film circuit pattern, and preventing deterioration of electromotive conductive properties due to sintering.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第8図はこの発明の方法の実施例を示すも
ので、第1図はこの発明の方法で超電導厚膜回路を形成
した実施例1の基板の断面正面図、第2図は第1図の平
面図、第3図はこの発明の方法で形成した超電導厚膜回
路の金属組織を示す写真、第4図はこの発明の方法によ
り形成した超電導厚膜回路の温度と電気抵抗の関係を示
すグラフ、第5図は従来の方法で形成した超電1j厚膜
回路の温度と電気抵抗の関係を示すグラフ、第6図はこ
の発明の方法で超電導厚膜回路を形成した実施例2の基
板の断面正面図、第7図は第6図の平面図、第8図はこ
の発明の方法で超電導厚膜回路を形成した実施例3の基
板の斜視図である。 1.11.21・・・YSZ基板、 2,12.22・
・・白金電極、 3・・・超電導厚膜回路、 4・・・
銀層、 14.24・・・超電導厚膜回路、 15・・
・銀層、26・・・コネクタ、 27・・・電極、 2
8・・・電子素子、 29・・・電極。 第1図 第2図 第5図 第3図 X浅−一→(K)
1 to 8 show examples of the method of the present invention. FIG. 1 is a cross-sectional front view of a substrate of Example 1 in which a superconducting thick film circuit was formed by the method of the present invention, and FIG. FIG. 1 is a plan view, FIG. 3 is a photograph showing the metal structure of a superconducting thick film circuit formed by the method of the present invention, and FIG. 4 is a photograph showing the temperature and electrical resistance of the superconducting thick film circuit formed by the method of the present invention. FIG. 5 is a graph showing the relationship between temperature and electrical resistance of a superconducting 1j thick film circuit formed by the conventional method. FIG. 6 is an example in which a superconducting thick film circuit was formed by the method of the present invention. 7 is a plan view of FIG. 6, and FIG. 8 is a perspective view of a substrate of Example 3 in which a superconducting thick film circuit is formed by the method of the present invention. 1.11.21...YSZ board, 2,12.22.
...Platinum electrode, 3...Superconducting thick film circuit, 4...
Silver layer, 14.24... Superconducting thick film circuit, 15...
・Silver layer, 26... Connector, 27... Electrode, 2
8...Electronic element, 29...Electrode. Figure 1 Figure 2 Figure 5 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 超電導物質となる原料粉末にAg粉末もしくはAg_2
O粉末を混合し、これに溶媒を加えてペースト状に混練
し、得られた混練物を用いて基板上に厚膜回路パターン
を形成した後、Agの融点以上の温度で焼成することを
特徴とする超電導厚膜回路の形成方法。
Ag powder or Ag_2 is used as the raw material powder to become the superconducting material.
It is characterized by mixing O powder, adding a solvent to it, kneading it into a paste, forming a thick film circuit pattern on a substrate using the obtained kneaded product, and then firing it at a temperature above the melting point of Ag. A method for forming superconducting thick film circuits.
JP1069451A 1989-03-16 1989-03-16 Method of forming superconducting thick film circuit Expired - Lifetime JP2646735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1069451A JP2646735B2 (en) 1989-03-16 1989-03-16 Method of forming superconducting thick film circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1069451A JP2646735B2 (en) 1989-03-16 1989-03-16 Method of forming superconducting thick film circuit

Publications (2)

Publication Number Publication Date
JPH02244693A true JPH02244693A (en) 1990-09-28
JP2646735B2 JP2646735B2 (en) 1997-08-27

Family

ID=13403019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1069451A Expired - Lifetime JP2646735B2 (en) 1989-03-16 1989-03-16 Method of forming superconducting thick film circuit

Country Status (1)

Country Link
JP (1) JP2646735B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263486A (en) * 1991-02-19 1992-09-18 Matsushita Electric Ind Co Ltd Sintered conductor wiring board and manufacture thereof
JP2011244536A (en) * 2010-05-14 2011-12-01 Toyota Motor Corp Superconducting motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288407A (en) * 1988-09-24 1990-03-28 Mitsubishi Mining & Cement Co Ltd Ceramic superconducting paste and its production and ceramic superconducting distributing board and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288407A (en) * 1988-09-24 1990-03-28 Mitsubishi Mining & Cement Co Ltd Ceramic superconducting paste and its production and ceramic superconducting distributing board and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263486A (en) * 1991-02-19 1992-09-18 Matsushita Electric Ind Co Ltd Sintered conductor wiring board and manufacture thereof
JP2011244536A (en) * 2010-05-14 2011-12-01 Toyota Motor Corp Superconducting motor

Also Published As

Publication number Publication date
JP2646735B2 (en) 1997-08-27

Similar Documents

Publication Publication Date Title
Wang et al. Silver‐palladium thick‐film conductors
EP0153737B1 (en) Circuit substrate having high thermal conductivity
EP0463872B1 (en) Method of manufacturing circuit board and circuit board itself manufactured by said method
EP0574956A1 (en) Metallized circuit substrate comprising nitride type ceramics
KR970008549B1 (en) Silver-rich conductor compositions for high thermal cycled and aged adhesion
JPH0715101A (en) Oxide ceramic circuit board and its manufacture
US5763093A (en) Aluminum nitride body having graded metallurgy
JP3754748B2 (en) Conductor paste for filling through holes, ceramic circuit boards and package boards
JPH02244693A (en) Formation of superconductive thick film circuit
US4906405A (en) Conductor composition and method of manufacturing a multilayered ceramic body using the composition
JP3098288B2 (en) Conductor composition and ceramic substrate using the same
JP2665557B2 (en) Bonded structure of ceramic body and external terminals
JPH0246603A (en) Conductive paste
JP2000114724A (en) Multilayer wiring board
JPH0950904A (en) Electrically conductive paste and ntc thermistor using it
JPH0288407A (en) Ceramic superconducting paste and its production and ceramic superconducting distributing board and its production
JP2764087B2 (en) Ceramic superconductor paste and method of manufacturing ceramic superconductor wiring circuit board using the paste
JP2738600B2 (en) Circuit board
JP2742627B2 (en) Ceramic body having metallized metal layer
JP3450998B2 (en) Wiring board and its mounting structure
JPS58130590A (en) Ceramic circuit board and thick film hybrid ic using same board
JP3537667B2 (en) Wiring board
JPS63248785A (en) High heat conductivity circuit substrate
JP2000185967A (en) Composition for glass ceramic circuit board
JP2000022294A (en) Electronic component circuit board