JP2646735B2 - Method of forming superconducting thick film circuit - Google Patents

Method of forming superconducting thick film circuit

Info

Publication number
JP2646735B2
JP2646735B2 JP1069451A JP6945189A JP2646735B2 JP 2646735 B2 JP2646735 B2 JP 2646735B2 JP 1069451 A JP1069451 A JP 1069451A JP 6945189 A JP6945189 A JP 6945189A JP 2646735 B2 JP2646735 B2 JP 2646735B2
Authority
JP
Japan
Prior art keywords
thick film
superconducting
film circuit
powder
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1069451A
Other languages
Japanese (ja)
Other versions
JPH02244693A (en
Inventor
俊之 上林
修 米田
宜弘 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1069451A priority Critical patent/JP2646735B2/en
Publication of JPH02244693A publication Critical patent/JPH02244693A/en
Application granted granted Critical
Publication of JP2646735B2 publication Critical patent/JP2646735B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、超電導物質により基板上に密着性に優れ
た厚膜回路を形成する方法に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a thick film circuit having excellent adhesion on a substrate by using a superconducting material.

従来の技術 各種超電導物質の中で、例えば液体窒素の沸点以上の
高臨界温度を持つ超電導物質としては、現在までのとこ
ろ、イットリウム系複合酸化物などの酸化物セラミック
ス系超電導物質が知られている。
2. Description of the Related Art Among various superconducting materials, for example, as a superconducting material having a high critical temperature equal to or higher than the boiling point of liquid nitrogen, oxide ceramic superconducting materials such as yttrium-based composite oxides have been known so far. .

この酸化物セラミックス系超電導物質を用いてスクリ
ーン印刷法等で回路パターンを形成した超電導プリント
基板の製造方法も従来より提案されている(特開昭63−
299192号公報など)。
A method for manufacturing a superconducting printed circuit board in which a circuit pattern is formed by a screen printing method or the like using this oxide ceramic-based superconducting material has also been proposed (Japanese Patent Application Laid-Open No.
No. 299192).

発明が解決しようとする課題 しかし、酸化物セラミックス系超電導物質は一般に機
械的強度が弱いという欠点があり、特に従来のスクリー
ン印刷法によってこの酸化物セラミックス系超電導物質
となる原料粉末を用いて基板上に厚膜回路パターンを形
成し、その後焼成して超電導厚膜回路を形成した場合に
は、緻密な超電導厚膜を形成することができないばかり
でなく、その厚膜と基板や電極との間の密着力が充分得
られず、その結果、圧縮力や振動等の外力が加わると超
電導厚膜に割れやひびが生じるという問題があった。特
に、酸化物セラミックス系超電導物質の厚膜回路を形成
したプリント基板における外部回路との接点は、外部回
路側のコネクタの接点と圧接するため、接点付近の超電
導厚膜に圧縮力がかかり、またコネクタの着脱の際には
振動も起き易いため、超電導厚膜に亀裂が入ったり、接
点の電極上に形成された超電導厚膜の部分が剥離を起す
等により断線を生じ易いという問題があった。
Problems to be Solved by the Invention However, oxide ceramic-based superconducting materials generally have a drawback of low mechanical strength. In particular, a conventional screen printing method uses a raw material powder that becomes the oxide ceramic-based superconducting material on a substrate. When a superconducting thick film circuit is formed by forming a thick film circuit pattern and then firing, not only can a dense superconducting thick film be formed, but also the thickness between the thick film and the substrate or electrode There was a problem that a sufficient adhesion force could not be obtained, and as a result, when an external force such as a compressive force or vibration was applied, the superconducting thick film was cracked or cracked. In particular, since the contact with the external circuit on the printed circuit board on which the thick film circuit of the oxide ceramic superconducting material is formed is pressed against the contact of the connector on the external circuit side, a compressive force is applied to the superconducting thick film near the contact, and When the connector is attached or detached, vibration is apt to occur, so that there is a problem that the superconducting thick film is liable to be broken due to cracking, the superconducting thick film formed on the electrode of the contact being peeled off, etc. .

この発明は上記問題点に鑑みなされたもので、基板面
および電極との密着性に優れ、割れや剥離を生じるおそ
れの少ない超電導厚膜回路を形成する超電導厚膜回路の
形成方法を提供することを目的としている。
The present invention has been made in view of the above problems, and provides a method for forming a superconducting thick film circuit that forms a superconducting thick film circuit that has excellent adhesion to a substrate surface and an electrode and is less likely to cause cracking or peeling. It is an object.

課題を解決するための手段 上記課題を解決するための手段としてこの発明の超電
導厚膜回路の形成方法は、超電導物質となる原料粉末に
5〜10重量%のAg粉末もしくはAg粉末に換算して5〜10
重量%のAg2O粉末を混合し、これに溶媒を加えてペース
ト状に混練し、得られた混練物を用いて基板上に厚膜回
路パターンを形成した後、Agの融点以上の温度で焼成す
ることを特徴としている。
Means for Solving the Problems As a means for solving the above problems, a method for forming a superconducting thick film circuit according to the present invention comprises converting a raw material powder to be a superconducting substance into 5 to 10% by weight of Ag powder or Ag powder. 5-10
Wt% Ag 2 O powder is mixed, a solvent is added thereto, and the mixture is kneaded into a paste.A thick film circuit pattern is formed on a substrate using the obtained kneaded material, and then at a temperature equal to or higher than the melting point of Ag. It is characterized by firing.

作用 この発明の方法においては、先ず超電導物質となる原
料粉末に5〜10重量%のAg粉末もしくはAg粉末に換算し
て5〜10重量%のAg2O粉末を混合した混合粉末の混練物
を作製する。すなわち、前記混合粉末に溶媒を加えて混
練し、ペースト状の混練物を作製する。次いで、その混
練物を用いてスクリーン印刷法等により基板上に厚膜回
路パターンを形成する。ここで、一般にプリント基板に
おける厚膜回路の形成においては、基板上の所定の位置
に予め白金等の良導電性金属からなる電極を形成してお
くか、あるいはその電極となるべき導体ペーストを塗布
しておくのが通常であり、したがって、この場合には前
記混練物からなる厚膜回路パターンは電極上にも形成さ
れることになる。
In the method of the present invention, first, 5 to 10% by weight of Ag powder or a mixed powder of 5 to 10% by weight of Ag 2 O powder in terms of Ag powder is mixed with the raw material powder to be a superconducting material. Make it. That is, a solvent is added to the mixed powder and kneaded to prepare a kneaded material in a paste form. Next, a thick film circuit pattern is formed on the substrate by a screen printing method or the like using the kneaded material. Here, in general, when forming a thick film circuit on a printed circuit board, an electrode made of a good conductive metal such as platinum is previously formed at a predetermined position on the substrate, or a conductive paste to be the electrode is applied. Usually, the thick film circuit pattern made of the kneaded material is also formed on the electrodes.

上記のようにして厚膜回路パターンを形成した後、Ag
の融点以上の温度で焼成する。この焼成のための昇温過
程においては、先ず、その厚膜回路パターンを構成して
いる混練物中の溶媒が分解もしくは揮発し、厚膜回路パ
ターンの層は、粒子間に空隙が存在するポーラスなもの
となる。さらに、Agの融点以上の温度となれば、厚膜回
路パターン層内のAg(混合粉末中のAg)が溶融する。そ
して、溶融したAgは粒子間の空隙を伝わって基板もしく
は電極との界面に向って流れ、その結果、厚膜回路パタ
ーン層と基板表面もしくは電極表面との界面に溶融Agが
集り、その部分に溶融Ag層が形成されることとなる。な
お、Ag2O粉末を用いる場合は、焼成のための昇温過程の
200℃程度においてAg2Oが分解して酸素を放出し、Ag2O
粉末粒子は一旦Ag粉末粒子となり、その後Agとして溶融
することになる。
After forming a thick film circuit pattern as described above, Ag
Baking at a temperature equal to or higher than the melting point. In the heating process for firing, first, the solvent in the kneaded material constituting the thick-film circuit pattern is decomposed or volatilized, and the layer of the thick-film circuit pattern is a porous film in which voids exist between particles. It becomes something. Further, when the temperature becomes equal to or higher than the melting point of Ag, Ag in the thick-film circuit pattern layer (Ag in the mixed powder) is melted. Then, the molten Ag flows through the voids between the particles and flows toward the interface with the substrate or the electrode, and as a result, the molten Ag gathers at the interface between the thick film circuit pattern layer and the surface of the substrate or the electrode, and at that portion. A molten Ag layer will be formed. When using Ag 2 O powder, the temperature rise process for firing is
At about 200 ° C, Ag 2 O is decomposed to release oxygen, and Ag 2 O
The powder particles once become Ag powder particles and then melt as Ag.

一方、上記の焼成時には、超電導物質となる原料粉末
が焼結され、超電導物質の焼結層からなる厚膜が形成さ
れる。したがって、焼成後の冷却過程において、前記の
溶融Agが凝固すれば、超電導物質の焼結層からなる厚膜
と基板もしくは電極表面との間に中間層としてAg層が形
成されることになる。
On the other hand, at the time of the sintering, the raw material powder to be the superconducting material is sintered, and a thick film composed of a sintered layer of the superconducting material is formed. Therefore, if the above-mentioned molten Ag solidifies in the cooling process after firing, an Ag layer is formed as an intermediate layer between the thick film formed of the sintered layer of the superconducting material and the surface of the substrate or the electrode.

ここで、Ag層はもともと厚膜回路パターン層中に混在
していたAg粉末粒子が溶出して形成されたものであるか
ら、そのAg層は超電導物質の焼結層からなる厚膜との境
界部分では、厚膜中の空隙に入り込んだ状態となってお
り、したがって、Ag層と厚膜とは機械的に強固に結合・
一体化していることになる。一方、Ag層と基板もしくは
電極の表面との境界部分では、溶融したAgが基板もしく
は電極表面の微細な凹凸に流入して凝固することによ
り、基板もしくは電極表面に対するAgの機械的投錨効果
が得られ、そのため、Ag層は基板もしく電極の表面に対
して強い密着力で結合することになる。したがって、超
電導物質の焼結層からなる厚膜と基板もしくは電極との
間は、中間層としてのAg層を介して機械的に強固に結合
された状態となる。
Here, since the Ag layer is formed by elution of Ag powder particles originally mixed in the thick film circuit pattern layer, the Ag layer has a boundary with the thick film formed of the sintered layer of the superconducting material. In some parts, it is in a state where it has entered the voids in the thick film, so that the Ag layer and the thick film are mechanically and strongly bonded to each other.
It will be integrated. On the other hand, at the boundary between the Ag layer and the surface of the substrate or the electrode, the molten Ag flows into fine irregularities on the surface of the substrate or the electrode and solidifies, thereby obtaining the mechanical anchoring effect of Ag on the substrate or the electrode surface. Therefore, the Ag layer is bonded to the substrate or the surface of the electrode with strong adhesion. Therefore, the thick film formed of the sintered layer of the superconducting material and the substrate or the electrode are in a state of being mechanically and firmly connected via the Ag layer as the intermediate layer.

また、特に電極上の部分においては、電極自体が金属
であるため、溶融Agの濡れ性が優れ、したがって、Ag層
は電極表面に対してより一層強い密着力で結合されるこ
とになり、その結果、厚膜も中間層であるAg層を介して
基板に対して強い密着力で結合されることになる。特に
この発明では5〜10重量%のAg粉末もしくはAg粉末に換
算して5〜10重量%のAg2O粉末を超電導物質となる原料
粉末に混合することとしたから、中間層としてのAg層が
均一に形成され、超電導厚膜との充分な密着性が得ら
れ、また同時に超電導特性を良好に維持することができ
る。
In addition, particularly in the portion on the electrode, since the electrode itself is a metal, the wettability of the molten Ag is excellent, and therefore, the Ag layer is bonded to the electrode surface with a stronger adhesive force. As a result, the thick film is also bonded with a strong adhesive force to the substrate via the intermediate Ag layer. Particularly, in the present invention, 5 to 10% by weight of Ag powder or 5 to 10% by weight of Ag2O powder in terms of Ag powder is mixed with the raw material powder to be a superconducting substance. And a sufficient adhesion to the superconducting thick film can be obtained, and at the same time, the superconducting properties can be favorably maintained.

以上のように、この発明の方法では、超電導物質とな
る原料粉末にAg粉末もしくはAg2O粉末を混合した混合粉
末の混練物を用いて厚膜回路パターンを形成した後、Ag
の融点以上の温度で焼成することによって、基板もしく
は電極と超電導厚膜とが中間層のAg層を介して高い密着
力で結合される。したがって、超電導厚膜に亀裂や割れ
が生じたり剥離したりすることを有効に防止できる。ま
た、基板面と超電導厚膜回路との界面にAg層が形成され
ることにより、基板成分と超電導物質との間の反応が減
少し、焼結による超電導特性の劣化を防ぐ効果も期待で
きる。
As described above, in the method of the present invention, after forming a thick film circuit pattern using a kneaded mixture of Ag powder or Ag 2 O powder mixed with a raw material powder to be a superconducting material, Ag
By firing at a temperature equal to or higher than the melting point, the substrate or the electrode and the superconducting thick film are bonded to each other with a high adhesive force via the intermediate Ag layer. Accordingly, it is possible to effectively prevent the superconducting thick film from being cracked or cracked or peeled off. Further, by forming the Ag layer at the interface between the substrate surface and the superconducting thick film circuit, the reaction between the substrate component and the superconducting substance is reduced, and the effect of preventing deterioration of superconducting characteristics due to sintering can be expected.

発明の実施のための具体的な説明 酸化物セラミックス系超電導物質として、例えばYBa2
Cu3O7-y(イットリウム−バリウム−銅酸化物系超電導
物質)を用いて超電導厚膜回路を形成する場合には、YB
a2Cu3O7-yとなる原料粉末に、銀粉末(Ag)あるいは酸
化銀粉末(Ag2O)を混入する。この銀粉末あるいは酸化
銀粉末の混入量は、超電導物質となる原料粉末の量に対
して5〜10重量%の範囲であり、7重量%程度が最適で
ある。ここで、銀粉末が5重量%未満では、中間層とし
てのAg層が均一に形成されないため、超電導厚膜に充分
な密着性が得られず、一方、10重量%を超えると充分な
密着性は得られるが、厚膜内の超電導物質粒子相互間の
接触がAgにより妨げられて、超電導物性を損なうおそれ
が生じる。
Specific description for carrying out the invention As an oxide ceramic-based superconducting material, for example, YBa 2
When a superconducting thick film circuit is formed using Cu 3 O 7-y (a yttrium-barium-copper oxide superconducting material), YB
Silver powder (Ag) or silver oxide powder (Ag 2 O) is mixed into the raw material powder to be a 2 Cu 3 O 7-y . The mixing amount of the silver powder or the silver oxide powder is in the range of 5 to 10% by weight based on the amount of the raw material powder to be the superconducting substance, and is most preferably about 7% by weight. Here, if the silver powder is less than 5% by weight, the Ag layer as an intermediate layer is not formed uniformly, so that sufficient adhesion to the superconducting thick film cannot be obtained. However, the contact between the superconducting material particles in the thick film is hindered by Ag, and the superconducting properties may be impaired.

次に、銀粉末あるいは酸化銀粉末を混合した超電導物
質となる原料の粉末に溶媒を加えて混練し、厚膜回路形
成用のペーストを製造する。そして、得られたペースト
を用いてスクリーン印刷法等により、イットリウム安定
化ジルコニア(YSZ)基板や、高純度アルミナ基板また
は酸化マグネシウム基板等のセラミックス系基板上に厚
膜回路パターンを印刷した後、この厚膜回路パターンを
形成した基板を焼成する。このときの焼結温度Tは、Ag
の融点(常圧で962℃)以上に設定する。また焼結温度
の上限は、使用する超電導物質の組成によって異るが、
超電導層が形成される最高温度(YBa2Cu3O7-yの場合に
は1100℃)以下が望ましい。
Next, a solvent is added to a powder of a raw material to be a superconducting material in which silver powder or silver oxide powder is mixed and kneaded, thereby producing a paste for forming a thick film circuit. Then, a thick film circuit pattern is printed on a ceramic-based substrate such as an yttrium-stabilized zirconia (YSZ) substrate, a high-purity alumina substrate, or a magnesium oxide substrate by a screen printing method or the like using the obtained paste. The substrate on which the thick film circuit pattern is formed is fired. The sintering temperature T at this time is Ag
Is set to be higher than the melting point (962 ° C at normal pressure). The upper limit of the sintering temperature depends on the composition of the superconducting material used,
The temperature is preferably lower than the maximum temperature at which the superconducting layer is formed (1100 ° C. in the case of YBa 2 Cu 3 O 7-y ).

また、超電導物質となる原料粉末に酸化銀粉末を混合
して使用した場合には、焼結工程において200℃前後に
加熱された際に分解し、酸素を放出して銀粉末となり、
その後Agとして溶融することとなる。
In addition, when silver oxide powder is mixed with the raw material powder to be used as a superconducting material and used, the powder is decomposed when heated to about 200 ° C. in a sintering step, releasing oxygen to become a silver powder,
Thereafter, it is melted as Ag.

そして、焼結後にO2アニール(焼鈍)を行うと、YSZ
基板上に超電導厚膜回路が形成される。
And, when O 2 annealing (annealing) is performed after sintering, YSZ
A superconducting thick film circuit is formed on the substrate.

焼結して形成された超電導厚膜回路は、YSZ基板上に
形成された状態の切片を作り顕微鏡下で観察すると、YS
Z基板の表面に銀層が形成され、この銀層の上に超電導
物質の焼結体が形成されて超電導厚膜回路を構成してい
ることが判る(第3図の金属組織を示す電子顕微鏡写真
参照)。
When the superconducting thick film circuit formed by sintering is sectioned on a YSZ substrate and observed under a microscope, the YS
It can be seen that a silver layer is formed on the surface of the Z substrate, and a sintered body of a superconducting material is formed on the silver layer to form a superconducting thick film circuit (an electron microscope showing the metallographic structure shown in FIG. 3). See photo).

このYSZ基板上に形成された超電導厚膜回路の銀層と
超電導物質の焼結体との境界部分は、第3図の写真から
も解るように、銀層はもともと厚膜回路パターン層内に
混在していた銀が溶出し、基板表面に凝集したものであ
るため、超電導物質の焼結体表面の凹凸に入り込んで焼
結体との間を機械的に結合し、銀層と基板もしくは電極
表面との境界部分も同様に、溶融した銀が、基板表面の
微細な凹凸に流入して凝固することにより機械的投錨効
果が得られる。その結果、超電導厚膜回路は銀層を介し
て基板上に密着性よく強固に形成される。
The boundary between the silver layer of the superconducting thick film circuit formed on the YSZ substrate and the sintered body of the superconducting material is, as can be seen from the photograph of FIG. 3, the silver layer originally contained in the thick film circuit pattern layer. Since the mixed silver is eluted and agglomerated on the substrate surface, it enters the irregularities on the surface of the sintered body of the superconducting material and mechanically bonds between the sintered body and the silver layer and the substrate or electrode. Similarly, at the boundary with the surface, the molten silver flows into the fine irregularities on the substrate surface and solidifies, whereby a mechanical anchoring effect is obtained. As a result, the superconducting thick film circuit is firmly formed with good adhesion on the substrate via the silver layer.

なお、銀粉末を混合することによる超電導特性への影
響を調べるため、超電導物質となる原料粉末にAg粉末を
混合した場合と、銀粉末を混合しない場合とについて、
基板上に形成された超電導厚膜回路の温度と電導特性と
の比較を行なったところ、銀粉末を7重量%混合した場
合(第4図のグラフ参照)の臨界温度がTc87Kで、銀
粉末を全く混入しなかった場合(第5図のグラフ参照)
の臨界温度がTc89Kとなり、銀を添加しても超電導物
質の臨界温度Tcはほとんど影響を受けない。
In order to examine the effect on superconductivity by mixing silver powder, for the case where Ag powder was mixed with the raw material powder to be a superconducting material, and for the case where silver powder was not mixed,
A comparison between the temperature and the conductivity of the superconducting thick film circuit formed on the substrate showed that when the silver powder was mixed at 7% by weight (see the graph in FIG. 4), the critical temperature was Tc87K, and the silver powder was used. When not mixed at all (see graph in Fig. 5)
Becomes critical temperature Tc89K, and even if silver is added, the critical temperature Tc of the superconducting material is hardly affected.

実 施 例 [実施例1] 第1図および第2図に示すように、イットリウム安定
化ジルコニア(YSZ)基板1の回路端部となる位置に、
電極用の白金ペーストを予め塗布した後、超電導物質で
あるYBa2Cu3O7-yとなる原料粉末に7重量%の銀粉末を
混合し、溶媒を加えて混練したペーストを用いてスクリ
ーン印刷法により、基板1上に厚膜回路パターンを印刷
し、この厚膜回路パターンが印刷された面を上に向け、
かつ水平な状態で基板1の焼成を行なった。
EXAMPLES Example 1 As shown in FIG. 1 and FIG. 2, the yttrium-stabilized zirconia (YSZ) substrate 1
After applying a platinum paste for electrodes in advance, screen-printing using a paste obtained by mixing 7% by weight of silver powder with a raw material powder to be YBa 2 Cu 3 O 7-y which is a superconducting substance, adding a solvent and kneading the mixture. The thick film circuit pattern is printed on the substrate 1 by the method, and the surface on which the thick film circuit pattern is printed faces upward.
The substrate 1 was fired in a horizontal state.

焼結条件は、焼結温度Tを銀の融点以上でかつ超電導
物質が超電導相を形成する最高温度以下の温度、すなわ
ち962℃≦T≦1100℃に設定して焼成し、その後にO2
ニール(焼鈍)を行なった。
The sintering conditions, and fired by setting the sintering temperature T maximum temperature below the temperature and the superconductive material in the melting point of silver or form a superconducting phase, i.e., 962 ° C. ≦ T ≦ 1100 ° C., followed by O 2 anneal (Annealing).

その結果、基板1上の白金ペーストが塗布された位置
に白金電極2が形成されるとともに、所定の位置に超電
導厚膜回路3が形成され、この超電導厚膜回路3は銀層
4を介して基板1に密着性よく形成され、また超電導厚
膜回路3は白金電極2上に重なった部分においても、同
様に銀層4を介して密着性よく形成され、圧縮は振動等
の外力によく耐えて割れや剥離を生じない超電導厚膜回
路3を形成することができた。
As a result, a platinum electrode 2 is formed at a position on the substrate 1 where the platinum paste is applied, and a superconducting thick film circuit 3 is formed at a predetermined position. The superconducting thick film circuit 3 is also formed with good adhesion through the silver layer 4 in the portion overlapping the platinum electrode 2 in the same manner as the substrate 1 and the superconducting thick film circuit 3 is compressed, and the compression is well resistant to external force such as vibration. Thus, the superconducting thick film circuit 3 which did not cause cracking or peeling was able to be formed.

[実施例2] 第6図および第7図に示すように、YSZ基板11上の回
路端部となる位置に溝を設けて白金あるいは金等の高融
点でかつ良導電性の金属ブロックを嵌め込んで電極12を
形成する構造となっており、この溝内には、溝の内周面
と当接する面にアルミニウム等の低融点の金属のメッキ
層13を形成した金属ブロックが嵌め込まれている。
Embodiment 2 As shown in FIGS. 6 and 7, a groove is provided at a position to be a circuit end on the YSZ substrate 11, and a high-melting-point and high-conductive metal block such as platinum or gold is fitted. In this groove, a metal block in which a plating layer 13 of a low-melting metal such as aluminum is formed on a surface in contact with the inner peripheral surface of the groove is fitted into the groove. .

そして超電導物質であるYBa2Cu3O7-yとなる原料粉末
に7重量%の銀粉末を混合し、溶媒を加えて混練したペ
ーストを用い、前記実施例1と同様にスクリーン印刷法
によって基板11上に厚膜回路パターンを印刷し、焼結温
度Tを銀の融点以上でかつ超電導物質が超電導相を形成
する最高温度以下の温度、すなわち962℃≦T≦1100℃
の範囲内に設定して焼成し、その後にO2アニールを行な
った。
Then, a 7 wt% silver powder was mixed with the raw material powder to be YBa 2 Cu 3 O 7-y which is a superconducting substance, and a solvent was added and kneaded. 11. Print a thick film circuit pattern on 11 and set the sintering temperature T above the melting point of silver and below the maximum temperature at which the superconducting material forms a superconducting phase, ie, 962 ° C ≦ T ≦ 1100 ° C.
And baked, followed by O 2 annealing.

その結果、基板1上の溝に嵌め込まれた電極12は、ア
ルミニウム等の低融点金属のメッキ層13が基板11の成分
と反応して溝内に強固に固定された。そして、所定の位
置に超電導厚膜回路14が銀層15を介して基板11上に密着
性よく形成され、また超電導厚膜回路14と白金電極12と
も同様に銀層15を介して密着性よく形成され、圧縮や振
動等の外力によく耐えて割れや剥離を生じない超電導厚
膜回路14を形成することができた。
As a result, the electrode 12 fitted into the groove on the substrate 1 was firmly fixed in the groove by the reaction of the plating layer 13 of a low melting point metal such as aluminum with the components of the substrate 11. A superconducting thick film circuit 14 is formed at a predetermined position on the substrate 11 with good adhesion via the silver layer 15, and the superconducting thick film circuit 14 and the platinum electrode 12 also have good adhesion via the silver layer 15 similarly. The formed superconducting thick-film circuit 14 which was formed and withstood the external force such as compression and vibration and did not cause cracking or peeling was formed.

[実施例3] コネクタの差込み部を備えたプリント基板に適用した
具体例を示すもので、第8図に示すように、基板の右側
端部を幅狭に形成し、その部分の表面に複数の溝を形成
するとともに、当接面にアルミニウムのメッキ層を形成
した白金電極22を各溝内に嵌め込んでコネクタ差込み部
23としたYSZ基板21上には、超電導物質となる原料粉末
に7重量%の銀粉末を混入し、溶媒を加えて混練した前
記両実施例と同一組成のペーストを用いて厚膜回路パタ
ーンを印刷し、同一の焼結条件で焼成し、コネクタ差込
み部23上の超電導厚膜回路24の端部側の一部が各白金電
極22上に重なるように形成されている。
Example 3 This is a specific example applied to a printed circuit board having a connector insertion portion. As shown in FIG. 8, the right end of the substrate is formed to be narrow, and a plurality of portions are formed on the surface of the portion. A platinum electrode 22 with an aluminum plating layer formed on the contact surface is fitted into each groove, and the connector insertion portion is formed.
A thick film circuit pattern was formed on a YSZ substrate 21 having a thickness of 23 by mixing a 7 wt% silver powder with a raw material powder to be a superconducting substance, adding a solvent, and kneading the paste. It is printed and fired under the same sintering conditions, and is formed so that a part of the end of the superconducting thick film circuit 24 on the connector insertion portion 23 overlaps each platinum electrode 22.

そして、コネクタ差込み部23には、リード線25のキャ
ップ状のコネクタ26が外周を覆うように嵌合し、このコ
ネクタ26の各電極27がYSZ基板21側の各白金電極22に圧
接して電気的に接続されるようになっている。
Then, a cap-shaped connector 26 of a lead wire 25 is fitted into the connector insertion portion 23 so as to cover the outer periphery, and each electrode 27 of this connector 26 is pressed against each platinum electrode 22 on the YSZ substrate 21 side to be electrically connected. The connection is made.

さらに、YSZ基板21上には、搭載するIC等の電子素子2
8の各端子28aの固定用の電極29が予め設けられており、
超電導厚膜回路24を形成した際に、超電導厚膜回路24が
銀層を介して各電極29に同時に配線接続され、電子素子
28の搭載時には、電子素子28の各端子28aを、所定の電
極29にハンダ付けあるいは圧着して容易に接続できるよ
うになっている。
Furthermore, on the YSZ substrate 21, electronic elements 2 such as ICs to be mounted are mounted.
Electrodes 29 for fixing each terminal 28a of 8 are provided in advance,
When the superconducting thick film circuit 24 is formed, the superconducting thick film circuit 24 is simultaneously connected to each electrode 29 via a silver layer, and the electronic element
When mounting 28, each terminal 28a of electronic element 28 can be easily connected to predetermined electrode 29 by soldering or crimping.

したがって、上記のように形成された超電導厚膜回路
24は、コネクタ差込み部23の白金電極22に対して銀層を
介して強固に密着して、基板上に超電導厚膜回路が直接
形成された場合と比べて接続部の耐久性が大幅に向上す
る。その結果、コネクタ差込み部23に対してコネクタ26
の脱着操作を繰返し行なっても、コネクタ26の装着時の
圧縮力や、脱着時の振動によって超電導厚膜回路24が白
金電極22から剥離せず、また割れやひびが生じて断線す
ることもない。
Therefore, the superconducting thick film circuit formed as described above
24 is firmly adhered to the platinum electrode 22 of the connector insertion part 23 via the silver layer, and the durability of the connection part is greatly improved compared to the case where the superconducting thick film circuit is formed directly on the substrate I do. As a result, the connector 26
The superconducting thick film circuit 24 does not peel off from the platinum electrode 22 due to the compressive force when the connector 26 is attached or the vibration at the time of detachment even when the detachment operation of the connector 26 is repeatedly performed, and there is no breakage or cracking and disconnection. .

発明の効果 以上説明したようにこの発明の超電導厚膜回路の形成
方法は、超電導物質となる原料粉末に5〜10重量%のAg
粉末もしくはAg粉末に換算して5〜10重量%のAg2O粉末
を混合し、これに溶媒を加えてペースト状に混練し、得
られた混練物を用いて基板上に厚膜回路パターンを形成
した後、Agの融点以上の温度で焼成して超電導厚膜回路
を形成するので、焼成時に基板と厚膜回路パターンとの
間にAg層が形成され、このAg層によって基板と厚膜回路
パターンとの間の密着性が向上し、割れや剥離等等の発
生が防止されるとともに、基板成分と厚膜回路パターン
との間の反応が減少し、焼結による超電導特性の劣化を
防ぐことができる等の効果を有する。
Effect of the Invention As described above, the method for forming a superconducting thick-film circuit according to the present invention uses 5 to 10% by weight of Ag in a raw material powder to be a superconducting substance.
A powder or a Ag powder is mixed with 5 to 10% by weight of Ag 2 O powder, a solvent is added thereto, and the mixture is kneaded into a paste. Using the obtained kneaded material, a thick film circuit pattern is formed on a substrate. After formation, baking is performed at a temperature equal to or higher than the melting point of Ag to form a superconducting thick-film circuit.Therefore, an Ag layer is formed between the substrate and the thick-film circuit pattern at the time of baking, and the substrate and the thick-film circuit are formed by this Ag layer. Improved adhesion to the pattern, preventing cracks, peeling, etc., and reducing the reaction between the substrate components and the thick-film circuit pattern, preventing deterioration of superconducting characteristics due to sintering. And the like.

【図面の簡単な説明】[Brief description of the drawings]

第1図ないし第8図はこの発明の方法の実施例を示すも
ので、第1図はこの発明の方法で超電導厚膜回路を形成
した実施例1の基板の断面正面図、第2図は第1図の平
面図、第3図はこの発明の方法で形成した超電導厚膜回
路の金属組織を示す写真、第4図はこの発明の方法によ
り形成した超電導厚膜回路の温度と電気抵抗の関係を示
すグラフ、第5図は従来の方法で形成した超電導厚膜回
路の温度と電気抵抗の関係を示すグラフ、第6図はこの
発明の方法で超電導厚膜回路を形成した実施例2の基板
の断面正面図、第7図は第6図の平面図、第8図はこの
発明の方法で超電導厚膜回路を形成した実施例3の基板
の斜視図である。 1,11,21……YSZ基板、2,12,22……白金電極、3……超
電導厚膜回路、4……銀層、14,24……超電導厚膜回
路、15……銀層、26……コネクタ、27……電極、28……
電子素子、29……電極。
1 to 8 show an embodiment of the method of the present invention. FIG. 1 is a cross-sectional front view of a substrate of Embodiment 1 in which a superconducting thick film circuit is formed by the method of the present invention, and FIG. FIG. 1 is a plan view, FIG. 3 is a photograph showing a metal structure of a superconducting thick film circuit formed by the method of the present invention, and FIG. 4 is a graph showing the temperature and electric resistance of the superconducting thick film circuit formed by the method of the present invention. FIG. 5 is a graph showing the relationship between the temperature and the electric resistance of the superconducting thick film circuit formed by the conventional method. FIG. 6 is a graph showing the relationship between the embodiment 2 and the superconducting thick film circuit formed by the method of the present invention. FIG. 7 is a plan view of FIG. 6, and FIG. 8 is a perspective view of a substrate of Example 3 in which a superconducting thick film circuit is formed by the method of the present invention. 1,11,21 ... YSZ substrate, 2,12,22 ... Platinum electrode, 3 ... Superconducting thick film circuit, 4 ... Silver layer, 14,24 ... Superconducting thick film circuit, 15 ... Silver layer, 26 …… Connector, 27 …… Electrode, 28 ……
Electronic elements, 29 ... electrodes.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超電導物質となる原料粉末に対して5〜10
重量%のAg粉末もしくはAg粉末に換算して5〜10重量%
のAg2O粉末を混合し、これに溶媒を加えてペースト状に
混練し、得られた混練物を用いて基板上に厚膜回路パタ
ーンを形成した後、Agの融点以上の温度で焼成すること
を特徴とする超電導厚膜回路の形成方法。
(1) a raw material powder to be a superconducting material,
Ag powder or 5 to 10% by weight in terms of Ag powder
Ag 2 O powder is mixed, a solvent is added thereto, and the mixture is kneaded into a paste, and a thick film circuit pattern is formed on a substrate using the obtained kneaded material, and then fired at a temperature equal to or higher than the melting point of Ag. A method for forming a superconducting thick film circuit, comprising:
JP1069451A 1989-03-16 1989-03-16 Method of forming superconducting thick film circuit Expired - Lifetime JP2646735B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1069451A JP2646735B2 (en) 1989-03-16 1989-03-16 Method of forming superconducting thick film circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1069451A JP2646735B2 (en) 1989-03-16 1989-03-16 Method of forming superconducting thick film circuit

Publications (2)

Publication Number Publication Date
JPH02244693A JPH02244693A (en) 1990-09-28
JP2646735B2 true JP2646735B2 (en) 1997-08-27

Family

ID=13403019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1069451A Expired - Lifetime JP2646735B2 (en) 1989-03-16 1989-03-16 Method of forming superconducting thick film circuit

Country Status (1)

Country Link
JP (1) JP2646735B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2794960B2 (en) * 1991-02-19 1998-09-10 松下電器産業株式会社 Sintered conductor wiring board and its manufacturing method
JP5471806B2 (en) * 2010-05-14 2014-04-16 トヨタ自動車株式会社 Superconducting motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288407A (en) * 1988-09-24 1990-03-28 Mitsubishi Mining & Cement Co Ltd Ceramic superconducting paste and its production and ceramic superconducting distributing board and its production

Also Published As

Publication number Publication date
JPH02244693A (en) 1990-09-28

Similar Documents

Publication Publication Date Title
EP0463872B1 (en) Method of manufacturing circuit board and circuit board itself manufactured by said method
JP3237258B2 (en) Ceramic multilayer wiring board
EP0574956A1 (en) Metallized circuit substrate comprising nitride type ceramics
US7388296B2 (en) Wiring substrate and bonding pad composition
US5763093A (en) Aluminum nitride body having graded metallurgy
JPH08242062A (en) Ceramic circuit board backed at low temperature
JP2646735B2 (en) Method of forming superconducting thick film circuit
JPH0946013A (en) Through-hole filling conductive paste and ceramic circuit board
JP2002026528A (en) Conductive paste and multilayer ceramic substrate
JP2009224651A (en) Wiring board and manufacturing process therefor
JP4571853B2 (en) Wiring board
JPH0812953B2 (en) Glass-ceramic multilayer circuit board sintered body
JPH05238857A (en) Method for metallizing substrate of aluminum nitride
JP2850200B2 (en) Multilayer ceramic electronic components
JPH0246603A (en) Conductive paste
JPH0950904A (en) Electrically conductive paste and ntc thermistor using it
JP4352311B2 (en) Thick film circuit board
JP2598706B2 (en) Carrier board with built-in capacitor
JP2633879B2 (en) Conductive paste composition for non-oxide ceramics
JP2665557B2 (en) Bonded structure of ceramic body and external terminals
JP3450119B2 (en) Metallized composition and wiring board using the same
JP2738600B2 (en) Circuit board
JPS58130590A (en) Ceramic circuit board and thick film hybrid ic using same board
JP2000022294A (en) Electronic component circuit board
JP2002217336A (en) Wiring board