JPH0224407B2 - - Google Patents

Info

Publication number
JPH0224407B2
JPH0224407B2 JP15502482A JP15502482A JPH0224407B2 JP H0224407 B2 JPH0224407 B2 JP H0224407B2 JP 15502482 A JP15502482 A JP 15502482A JP 15502482 A JP15502482 A JP 15502482A JP H0224407 B2 JPH0224407 B2 JP H0224407B2
Authority
JP
Japan
Prior art keywords
circuit
pass
delay
circuits
ideal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15502482A
Other languages
Japanese (ja)
Other versions
JPS5944115A (en
Inventor
Tetsuo Hanehiro
Yoshihiko Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP15502482A priority Critical patent/JPS5944115A/en
Publication of JPS5944115A publication Critical patent/JPS5944115A/en
Publication of JPH0224407B2 publication Critical patent/JPH0224407B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/26Time-delay networks

Description

【発明の詳細な説明】 (発明の属する分野) 本発明は、アナログ遅延回路に関する。[Detailed description of the invention] (Field to which the invention belongs) The present invention relates to analog delay circuits.

(従来技術) 従来から用いられているアナログ遅延回路とし
ては、電荷結合素子即ちCCD(charge coupled、
devices)を利用するもの、コイル及びコンデン
サで実現するLC回路或は抵抗、コンデンサ及び
オペアンプで構成するRCアクテイブ回路などが
ある。
(Prior Art) Conventionally used analog delay circuits include charge coupled devices (CCDs).
There are LC circuits using coils and capacitors, and RC active circuits consisting of resistors, capacitors, and operational amplifiers.

しかしながらCCDは、折返し歪除去用にかな
り複雑な前置フイルタが必要となる等、純アナロ
グ回路とは言い難く、オンチツプ化しても入力信
号の電荷パケツトへの変換および出力信号を低イ
ンピーダンス電圧源信号に変換するための周辺回
路がオフチツプとなる等の欠点を有する。又、
LC回路は、L自身のオンチツプ化等小形、低価
格化を望むことがむずかしい。もつともLをR、
Cおよびオペアンプによつてシミユレートし、R
をスイツトキヤパシタ回路にて構成すること等に
よりオンチツプ化は可能となつている。しかし
LC回路から置換した場合をも含めてRC回路によ
る遅延回路としては第3図に示す如き低域通過型
CR回路(遅相回路)を使用するのが一般的であ
つた。
However, CCDs require a fairly complex pre-filter to remove aliasing distortion, and are therefore far from being pure analog circuits. It has drawbacks such as the peripheral circuitry required for conversion to be off-chip. or,
It is difficult to make the LC circuit smaller and lower in price by making the L itself on-chip. But L is R,
simulated by C and op amp, R
On-chip implementation is possible by configuring the circuit with a switch capacitor circuit. but
As a delay circuit using an RC circuit, including the case where it is replaced with an LC circuit, a low-pass type as shown in Figure 3 is used.
It was common to use a CR circuit (retarded phase circuit).

斯る遅延回路の伝送特性は前記CR回路の時定
数をτ=CR、角周波数をω、位相角をθとする
とその伝達関数F(ωτ)は、 F(ωτ)=A(ωτ)exp{−jθ(ωτ)} ……(1) (但しAは振幅、θは位相角) と表現することができ、このとき振幅特性G
(ωτ)は、 G(ωτ)=20log10A(ωτ)〔dB〕 ……(2) 理想遅延回路の特性からのずれの度合いを示す
位相角誤差特性δ(ωτ)は、 δ(ωτ)={1−θ(ωτ)/ωτ}×100〔%〕…
…(3) で与えられる。
Assuming that the time constant of the CR circuit is τ=CR, the angular frequency is ω, and the phase angle is θ, the transmission characteristic of such a delay circuit is as follows:F(ωτ)=A(ωτ)exp{ −jθ(ωτ)} ...(1) (where A is the amplitude and θ is the phase angle), and in this case, the amplitude characteristic G
(ωτ) is: G(ωτ) = 20log 10 A(ωτ) [dB] ...(2) The phase angle error characteristic δ(ωτ), which indicates the degree of deviation from the ideal delay circuit characteristics, is: δ(ωτ) = {1-θ(ωτ)/ωτ}×100[%]...
…(3) is given by.

而して前記振幅特性G(ωτ)及び位相角誤差特
性δ(ωτ)は第4図a及びbに夫々曲線Aによつ
て示される如く理想遅延回路の特性に比べ位相角
ωτが増大するに従い遅延量が不足し、ωτが
0.2rad程度で大幅にずれてしまうことが判る。
The amplitude characteristic G(ωτ) and the phase angle error characteristic δ(ωτ) change as the phase angle ωτ increases compared to the characteristics of the ideal delay circuit, as shown by curves A and B in FIG. 4, respectively. The amount of delay is insufficient and ωτ becomes
It can be seen that there is a significant deviation of about 0.2 rad.

このことは前記第3図に示す如き低域通過型
CR回路を多段縦続接続して所望の遅延量を得ん
とする場合、使用周波数帯域が極めて狭くなり実
用上非常に問題となつていた。
This corresponds to the low-pass type shown in Figure 3 above.
When attempting to obtain a desired amount of delay by cascading CR circuits in multiple stages, the frequency band used becomes extremely narrow, which poses a serious problem in practice.

(発明の目的) 本発明は上述の如き従来の遅延回路の欠点を解
決し、極めて理想遅延特性に近似せしめた遅延回
路を提供することを目的とする。
(Objective of the Invention) An object of the present invention is to solve the above-mentioned drawbacks of the conventional delay circuit, and to provide a delay circuit that closely approximates ideal delay characteristics.

(発明の概要) 上述の目的を達成する為、本発明に於いては以
下の如き構成をとる。
(Summary of the invention) In order to achieve the above-mentioned object, the present invention has the following configuration.

即ち、複数の高域通過型CR回路と係数乗算回
路とを組み合せて該各回路入力及び出力端からの
必要複数信号を加減算回路によつて合成し理想特
性に近似した遅延特性を得るよう構成する。
That is, a plurality of high-pass CR circuits and a coefficient multiplication circuit are combined, and the necessary plurality of signals from the input and output terminals of each circuit are synthesized by an adder/subtractor circuit to obtain delay characteristics that approximate ideal characteristics. .

(実施例) 以下本発明を図示した実施例に基づいて詳細に
説明する。
(Example) The present invention will be described in detail below based on an illustrated example.

第1図は本発明に係かる遅延回路の一実施例を
示す回路図である。
FIG. 1 is a circuit diagram showing an embodiment of a delay circuit according to the present invention.

珍図に於いて1−1,1−2,1−3,……,
1−nは高域通過型CR回路(進相回路)であつ
て、これをn段直列に接続した各段間に順次1/2、
1/3、……、1/nの係数をもつた係数乗算回路
2−1,2−2,……,2−m(但しm=n−1)
を挿入し、前記n段の高域通過型CR回路各段の
出力と1段目の高域通過型CR回路への入力とを
加減算回路3によつて合成するよう構成したもの
である。
In rare drawings, 1-1, 1-2, 1-3,...
1-n is a high-pass type CR circuit (phase advancing circuit), which is connected in n stages in series, with 1/2, 1/2,
Coefficient multiplier circuits 2-1, 2-2, ..., 2-m with coefficients of 1/3, ..., 1/n (however, m = n-1)
is inserted, and the output of each stage of the n-stage high-pass type CR circuit and the input to the first-stage high-pass type CR circuit are synthesized by an adder/subtractor circuit 3.

今、前記高域通過型CR回路1−1,1−2,
1−3,……,1−nすべてを同じ時定数τとし
た場合夫々の伝達関数gは g=jωτ/(1+jωτ) ……(4) で表わされ、この式を変形すれば jωτ=g/(1−g) ……(5) が得られる。
Now, the high-pass CR circuit 1-1, 1-2,
When 1-3, ..., 1-n all have the same time constant τ, the respective transfer functions g are expressed as g=jωτ/(1+jωτ) ...(4), and by transforming this equation, jωτ= g/(1-g)...(5) is obtained.

一方、定遅延回路の理想伝達関数は周知の如く exp(−jωτ) にて表わされることからこの式と前記(5)式より exp(−jωτ)=exp{−g/(1−g)} ……(6) の関係式が成り立ちこれを展開すれば exp{−g/(1−g)}=1−g−g2
/2−g3/6+……+gn/n!(又は−gn/n!)……
(7) となる。
On the other hand, as is well known, the ideal transfer function of a constant delay circuit is expressed as exp(-jωτ), so from this equation and the above equation (5), exp(-jωτ)=exp{-g/(1-g)} ...If the relational expression (6) is established and expanded, we get exp{-g/(1-g)}=1-g-g 2
/2-g 3 /6+...+g n /n! (or -g n /n!)...
(7) becomes.

一方、前記第1図に示した回路の加減算回路3
に入力する各信号値を算出すれば、まず1段目の
高域通過型CR回路1−1への入力信号0が1の
場合1段目の高域通過型CR回路1−1の出力信
1はg、2段目の高域通過型CR回路1−2の
出力信号2はg2/2、3段目の高域通過型CR回路1 −3の出力信号3はg3/6、……、n段目の高域通 過型CR回路1−nの出力信号nはgn/n!と表わさ れる。
On the other hand, the addition/subtraction circuit 3 of the circuit shown in FIG.
First, if the input signal 0 to the first-stage high-pass CR circuit 1-1 is 1, the output signal of the first-stage high-pass CR circuit 1-1 is calculated. 1 is g, the output signal 2 of the second-stage high-pass CR circuit 1-2 is g 2 /2, the output signal 3 of the third-stage high-pass CR circuit 1-3 is g 3 /6, ..., the output signal n of the n-th stage high-pass CR circuit 1-n is g n /n! It is expressed as

そこでこれらの各出力信号123、……、
n及び入力信号0を前記加減算回路によつて前記
(7)式各項の符号に応じて加算、或は減算する如く
合成すれば理想遅延特性を得るに必要な信号を導
出することができる。尚、この場合高域通過型
CR回路段数nを増加すればより理想特性に近似
しうること容易に理解できよう。
So each of these output signals 1 , 2 , 3 ,...
n and the input signal 0 by the addition/subtraction circuit.
By combining the terms in equation (7) by adding or subtracting them depending on the sign, it is possible to derive the signal necessary to obtain the ideal delay characteristic. In this case, high-pass type
It is easy to understand that by increasing the number of CR circuit stages n, the ideal characteristics can be more closely approximated.

第2図は本発明の具体的な他の実施例を示す回
路図であつて、高域通過型CR回路を3段用いた
場合を示す。
FIG. 2 is a circuit diagram showing another specific embodiment of the present invention, in which three stages of high-pass CR circuits are used.

この実施例に於いては前記第1図にならつて3
段の高域通過型CR回路4,5,6とこれらの段
間に挿入した1/2、1/3の係数をもつた係数乗算回
路7,8とをすべて直列に接続するとともに各段
に於いて1段目の高域通過型CR回路への入力信
号及び出力信号、2段目の高域通過型CR回路の
出力信号、3段目の高域通過型CR回路の出力信
号以上4つの各信号を加減算回路9によつて合成
する。
In this embodiment, 3
The high-pass CR circuits 4, 5, and 6 of the stages and the coefficient multiplier circuits 7, 8 with coefficients of 1/2 and 1/3 inserted between these stages are all connected in series, and Input signals and output signals to the first-stage high-pass CR circuit, output signals from the second-stage high-pass CR circuit, and output signals from the third-stage high-pass CR circuit. Each signal is synthesized by an addition/subtraction circuit 9.

このとき前記(7)式に対応して前記加減算回路9
に於いては前記1段目の高域通過型CR回路への
入力信号から前記各高域通過型CR回路の出力信
号を減算するように設定する。
At this time, the addition/subtraction circuit 9 corresponds to the equation (7).
In this case, the output signal of each high-pass type CR circuit is subtracted from the input signal to the first-stage high-pass type CR circuit.

このように構成した回路の伝達関数を求めれ
ば、 1−g−g2/2−g3/6≒exp(−jωτ) となつて理想特性にほゞ近似した信号を導出する
ことができる。
If the transfer function of the circuit configured in this manner is determined, 1-g-g 2 /2-g 3 /6≈exp(-jωτ), and a signal that approximately approximates the ideal characteristics can be derived.

斯くの如く構成する遅延回路の振幅特性G
(ωτ)及び位相角誤差特性δ(ωτ)を上述した要
領で求めると第4図a及びbの曲線Bの如くな
る。
Amplitude characteristic G of the delay circuit configured as above
(ωτ) and the phase angle error characteristic δ(ωτ) obtained in the manner described above result in curves B shown in FIGS. 4a and 4b.

ここで同図bに於ける低域通過型CR回路単独
の遅延回路と本発明に係る遅延回路との位相角誤
差特性曲線夫々A及びBを比較するに本発明に係
る回路は前記低域通過型CR回路の時定数を1/10
としたものをバツフアを介して10段縦続接続した
回路よりも更に良好な伝送特性を示すのみならず
回路を構成する素子数に於いて約1/3程度ですむ
ことが理解されよう。
Comparing the phase angle error characteristic curves A and B, respectively, of the delay circuit with a low-pass type CR circuit alone and the delay circuit according to the present invention in FIG. Reduce the time constant of type CR circuit to 1/10
It will be understood that not only does this exhibit better transmission characteristics than a circuit in which 10 stages are connected in cascade via a buffer, but the number of elements making up the circuit is about 1/3.

このことは少数の回路素子によつて極めて高精
度の遅延特性が得られることを示すものである。
This shows that extremely highly accurate delay characteristics can be obtained with a small number of circuit elements.

尚、前記係数乗算回路7,8及び加算減回路9
にはいずれもバツフア機能を与える必要があるこ
とはいうまでもない。
Incidentally, the coefficient multiplication circuits 7 and 8 and the addition/subtraction circuit 9
Needless to say, it is necessary to provide a buffer function for both.

このように本発明は複数段の高域通過型CR回
路及び係数乗算回路を組み合せた回路の各段から
必要な複数信号を加減算回路によつて加算、或は
減算し理想伝達特性を得るようにしたものであ
る。
In this way, the present invention adds or subtracts necessary multiple signals from each stage of a circuit that combines multiple stages of high-pass type CR circuits and coefficient multiplication circuits using an adder/subtractor circuit to obtain ideal transfer characteristics. This is what I did.

尚、本発明は複数段の高域通過型CR回路と係
数乗算回路の組み合せ順序は上述した如き必要な
信号即ち、前記(7)式の各項に値する信号が取り出
せればどのような順序でもかまわないことは自明
である。
Note that the present invention can combine the multi-stage high-pass CR circuit and the coefficient multiplication circuit in any order as long as the necessary signals as described above, that is, the signals corresponding to each term in equation (7) can be extracted. It is obvious that it does not matter.

更に本発明に係る遅延回路に於いては使用する
C及びRの値は同一でありMOS・IC化する場合
に好都合である。しかも抵抗素子を全てスイツチ
トキヤパシタ回路に置換するならば他のキヤパシ
タ、オペアンプ等は全てMOS・IC化しうるので
回路全体をオンチツプ化しうるのみならずスイツ
チトキヤパシタ回路のアナログ・スイツチに加え
るクロツク周波数を選択することによつてその抵
抗値を可変することができ、遅延時間を可変とす
るうえで極めて有効である。
Furthermore, in the delay circuit according to the present invention, the values of C and R used are the same, which is advantageous when implemented as a MOS/IC. Moreover, if all resistive elements are replaced with a switched capacitor circuit, all other capacitors, operational amplifiers, etc. can be made into MOS/IC, so not only can the entire circuit be made on-chip, but the clock frequency applied to the analog switch of the switched capacitor circuit can also be changed. The resistance value can be varied by selection, which is extremely effective in making the delay time variable.

(発明の効果) 本発明は以下説明した如く構成するので使用周
波数帯域幅が広くしかも所望の遅延特性を極めて
高精度に得ることのできるアナログ遅延回路を少
数の回路素子によつて極めて小型かつ安価に実現
しうるからアナログ信号を処理する伝送回路等に
適用する上で著しく効果を発揮する。
(Effects of the Invention) Since the present invention is configured as explained below, an analog delay circuit that has a wide usable frequency bandwidth and can obtain desired delay characteristics with extremely high precision is realized in an extremely small and inexpensive manner using a small number of circuit elements. Since it can be realized in a number of ways, it is extremely effective when applied to transmission circuits that process analog signals.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の遅延回路の一実施例を示す回
路図、第2図は本発明の具体的な他の実施例を示
す回路図、第3図は従来の遅延回路構成要素たる
低域通過型CR回路の回路図、第4図a及びbは
夫々遅延回路の振幅特性及び位相誤差特性につい
て従来の低域通過型CR回路の特性(曲線A)と
本発明の遅延回路の特性(曲線B)を示す図であ
る。 1−1,1−2,1−3,……,1−n,4,
5,6……高域通過型CR回路、2−1,2−2,
……,2−m,7,8……係数乗算回路、3,9
……加減算回路。
FIG. 1 is a circuit diagram showing one embodiment of the delay circuit of the present invention, FIG. 2 is a circuit diagram showing another specific embodiment of the present invention, and FIG. 3 is a low-frequency circuit diagram showing the components of a conventional delay circuit. The circuit diagrams of the pass-through CR circuit, Figures 4a and 4b, show the amplitude characteristics and phase error characteristics of the delay circuit, respectively, for the characteristics of the conventional low-pass CR circuit (curve A) and the characteristics of the delay circuit of the present invention (curve A). It is a figure showing B). 1-1, 1-2, 1-3, ..., 1-n, 4,
5, 6...High-pass CR circuit, 2-1, 2-2,
......, 2-m, 7, 8... Coefficient multiplication circuit, 3, 9
...Addition/subtraction circuit.

Claims (1)

【特許請求の範囲】 1 複数段の高域通過型CR回路の所要段間に係
数乗算回路を配置し前記1段目のCR回路に対す
る入力信号及び前記各CR回路或は前記係数乗算
回路からの出力信号を加減算回路に供給すると共
に、該加減算回路によつて前記信号の合成信号を
導出するよう構成したことを特徴とする高域通過
型CR回路にて構成した遅延回路。 2 理想遅延回路及び前記高域通過型CR回路の
時定数を共にτとした場合の前記理想遅延回路の
伝達関数exp(−jωτ)を前記高域通過型CR回路
の伝達関数gを用いて、 exp(−jωτ)=exp{−g/(1−g)} =1−g−g2/2−g3/6+……+gn/n!(又は−
gn/n!) (但しnは高域通過型CR回路の段数)と表わす
ときこの式を基に各項を前記高域通過型CR回路
と前記係数乗算回路との組み合せによつて成生し
これを前記加減算回路によつて、前式各項の符号
に対応して加算、或は減算する如く合成すること
によつて前記式にて表わした理想伝達関数に近似
した信号を得るよう構成したことを特徴とする高
域通過型CR回路にて構成した遅延回路。
[Claims] 1. A coefficient multiplication circuit is arranged between required stages of a plurality of high-pass CR circuits, and an input signal to the first stage CR circuit and an input signal from each of the CR circuits or the coefficient multiplication circuit are provided. 1. A delay circuit constructed of a high-pass CR circuit, characterized in that the output signal is supplied to an adder/subtracter circuit, and the adder/subtracter circuit derives a composite signal of the signals. 2. Using the transfer function g of the high-pass CR circuit, the transfer function exp(-jωτ) of the ideal delay circuit is expressed as τ, where both the time constants of the ideal delay circuit and the high-pass CR circuit are τ. exp(−jωτ)=exp{−g/(1−g)}=1−g−g 2 /2−g 3 /6+……+g n /n! (or-
g n /n! ) (where n is the number of stages of the high-pass type CR circuit) Based on this formula, each term is generated by the combination of the high-pass type CR circuit and the coefficient multiplication circuit, and this is calculated by the addition/subtraction described above. The present invention is characterized in that the circuit is configured to obtain a signal that approximates the ideal transfer function expressed by the above equation by performing addition or subtraction in accordance with the sign of each term in the above equation. A delay circuit composed of a high-pass CR circuit.
JP15502482A 1982-09-06 1982-09-06 Delay circuit consisting of high-frequency band passing type or circuit Granted JPS5944115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15502482A JPS5944115A (en) 1982-09-06 1982-09-06 Delay circuit consisting of high-frequency band passing type or circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15502482A JPS5944115A (en) 1982-09-06 1982-09-06 Delay circuit consisting of high-frequency band passing type or circuit

Publications (2)

Publication Number Publication Date
JPS5944115A JPS5944115A (en) 1984-03-12
JPH0224407B2 true JPH0224407B2 (en) 1990-05-29

Family

ID=15596999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15502482A Granted JPS5944115A (en) 1982-09-06 1982-09-06 Delay circuit consisting of high-frequency band passing type or circuit

Country Status (1)

Country Link
JP (1) JPS5944115A (en)

Also Published As

Publication number Publication date
JPS5944115A (en) 1984-03-12

Similar Documents

Publication Publication Date Title
US6035320A (en) Fir filter architecture
EP0799527B1 (en) Differential switched capacitor filtering
US6032171A (en) Fir filter architecture with precise timing acquisition
US5168461A (en) Switched capacitor differentiators and switched capacitor differentiator-based filters
EP0612148B1 (en) Digital filtering circuit operable as a three-stage moving average filter
JP3465951B2 (en) Inverting delay circuit
JP3109461B2 (en) Low-pass filter
US4218665A (en) Band-pass filter
US4192008A (en) Wave digital filter with multiplexed arithmetic hardware
WO1981001779A1 (en) Switched-capacitor elliptic filter
JPH0224407B2 (en)
JPS60114020A (en) Digital filter circuit
JPS6210043B2 (en)
US4382285A (en) Filter for binary data with integral output amplitude multiplier
US4779217A (en) Octave multiple filter
JPH0557767B2 (en)
JPH0620253B2 (en) Digital filter integrated circuit for brightness channel of color television receiver
JPS639683B2 (en)
WO2005002051A1 (en) Digital filter
JPS58177027A (en) Digital filter
EP0620642B1 (en) Inverting delay circuit
JPS5630316A (en) Cyclic filter
JPS6318368B2 (en)
JPS6290017A (en) Digital roll-off filter
JPS6118212A (en) Digital filter