JPH02243745A - Magnet alloy and its manufacture - Google Patents

Magnet alloy and its manufacture

Info

Publication number
JPH02243745A
JPH02243745A JP6338889A JP6338889A JPH02243745A JP H02243745 A JPH02243745 A JP H02243745A JP 6338889 A JP6338889 A JP 6338889A JP 6338889 A JP6338889 A JP 6338889A JP H02243745 A JPH02243745 A JP H02243745A
Authority
JP
Japan
Prior art keywords
phase
recrystallization annealing
alloy
rolling
phase region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6338889A
Other languages
Japanese (ja)
Inventor
Gakuo Sada
佐田 岳夫
Katsuhiko Kosugi
小杉 勝彦
Kenzaburo Iijima
健三郎 飯島
Toshiharu Hoshi
俊治 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP6338889A priority Critical patent/JPH02243745A/en
Publication of JPH02243745A publication Critical patent/JPH02243745A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To surely manufacture the magnet alloy of stable quality having excellent magnetic characteristics in the direction parallel to rolling by casting an Fe-Cr-Co series alloy having specified compsn., subjecting it to hot rolling and thereafter repeatedly executing recrystallization annealing with cold rolling obviated. CONSTITUTION:The molten metal of an alloy contg., by weight, 10 to 40% Cr, 3 to 30% Co and the balance Fe is cast and is thereafter subjected to hot rolling in the temp. range of [the temp. at which an alpha phase exists by 50% in an (alpha+gamma) phase + 50 deg.C] or above to [the m.p. - 50 deg.C] or below. The alloy is successively subjected to primary recrystallization annealing in the (alpha+gamma) phase area and is furthermore subjected to secondary recrystallization annealing to manufacture the above magnet alloy. After the above hot rolling, if required, the alloy is successively subjected to primary recrystallization annealing in the single phase area of an alpha phase, is thereafter to heating treatment in the (alpha+gamma) area, is furthermore to heating treatment in the (alpha+gamma+sigma) phase area and is thereafter to secondary recrystallization annealing.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は磁気異方性を示す磁石合金として知られるF
e−Cr−Co系磁石合金およびその製造方法に開する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to F, which is known as a magnetic alloy exhibiting magnetic anisotropy.
The present invention is directed to an e-Cr-Co magnet alloy and a method for manufacturing the same.

従来の技術 近年に至り、磁界中でのスピノーダル分解により磁気異
方性を与えるようにしたFe−CrCo系磁石合金が開
発されている。この磁石合金は、一般にCr10〜40
%程度、Co3〜30%程度、残部がFeを主体とする
成分組成からなるものであって、高温で溶体化処3JJ
!後、恒温磁界処理や磁場中冷却などの磁界中熱処理を
加えていわゆるスピノーダル分解を行なわせ、これによ
り非磁性マトリックス相中に強磁性相の単磁区微粒子を
形状異方性をもって析出させて磁気異方性を与えること
ができる。そしてこのFe−Cr−Co系磁石合金は、
フェライト磁石等とは異なり、圧延加工が可能であるた
め、各種の用途に使用できるものと期待されている。
BACKGROUND OF THE INVENTION In recent years, Fe--CrCo-based magnet alloys have been developed which provide magnetic anisotropy through spinodal decomposition in a magnetic field. This magnet alloy generally has Cr10-40
%, about 3 to 30% Co, with the balance mainly consisting of Fe, and is solution treated at high temperature 3JJ.
! After that, heat treatment in a magnetic field such as isothermal magnetic field treatment or cooling in a magnetic field is added to perform so-called spinodal decomposition, which causes single-domain fine particles of the ferromagnetic phase to precipitate with shape anisotropy in the non-magnetic matrix phase, resulting in magnetic anisotropy. It can give direction. This Fe-Cr-Co magnetic alloy is
Unlike ferrite magnets, etc., it can be rolled, so it is expected to be used for a variety of purposes.

しかしながら上述のFe−Cr−Co系磁石合金は、磁
界中熱処理によるスピノーダル分解たけでは、実際には
それほど高い磁気賃方性を与えることは困難であり、し
たがってその磁気特性もある程度以上高めることは困難
であった。
However, it is actually difficult to give the above-mentioned Fe-Cr-Co-based magnet alloy such high magnetic properties just by spinodal decomposition through heat treatment in a magnetic field, and therefore it is difficult to improve its magnetic properties beyond a certain level. Met.

そこで本発明者等は、既に特願昭55−64497号(
特開昭56−163218号)および特願昭55.−7
4745号(特開昭56〜169722号)において、
方向性珪素鋼板の製造方法にヒントを得て、圧延方向に
結晶の磁化容易軸すなわち<100>軸が揃った集合組
織を有するFeCr−Co系磁石合金を製造する方法を
提案している。これらの提案の方法は、冷間圧延後の高
温焼鈍時における1次再結晶粒の成長に対するインヒビ
タとして/MNもしくはMnSを用いて1次再結晶粒の
成長を阻止し、これにより圧延方向に(100>軸が配
向した2次再結晶粒を生成させて、圧延方向に(100
>軸が揃った集合組織を有する磁石材料を得ようとする
ものである。このようにして得られた磁石材料に対して
は、さらに圧延方向の磁界を加えて処理を行なうことに
より、圧延方向に優れた磁気特性を有する磁石を得るこ
とができると考えられる。
Therefore, the present inventors have already published Japanese Patent Application No. 55-64497 (
Japanese Patent Application Laid-Open No. 163218/1982) and Japanese Patent Application No. 1983/1983. -7
In No. 4745 (Unexamined Japanese Patent Publication No. 56-169722),
Inspired by the method for producing grain-oriented silicon steel sheets, we have proposed a method for producing a FeCr-Co magnetic alloy having a texture in which the crystal's easy axis of magnetization, that is, the <100> axis, is aligned in the rolling direction. These proposed methods use /MN or MnS as an inhibitor to the growth of primary recrystallized grains during high-temperature annealing after cold rolling, and thereby prevent the growth of primary recrystallized grains ( 100> Secondary recrystallized grains with axes oriented are generated, and the (100
>The aim is to obtain a magnetic material having a texture with aligned axes. It is thought that by further processing the magnetic material obtained in this manner by applying a magnetic field in the rolling direction, a magnet having excellent magnetic properties in the rolling direction can be obtained.

前記提案の各方法は、磁気異方性を向上させる上で確か
にある程度の効果があることは認められているが、実際
には結晶の磁化容易軸である<100>軸が圧延方向に
必ずしも充分に揃わないことがあり、そのため磁気特性
の向上にも限界があったのが実情である。
Although it is recognized that each of the above-mentioned proposed methods is certainly effective to some extent in improving magnetic anisotropy, in reality, the <100> axis, which is the axis of easy magnetization of the crystal, is not necessarily aligned in the rolling direction. The reality is that there are cases where they are not sufficiently aligned, and as a result, there is a limit to the improvement of magnetic properties.

一方本発明者等は既に特願昭62−231495号にお
いて、Fe−Cr−Co系磁石合金を製造するにあたり
、合金溶湯を鋳造後、適宜の熱間加工を行ない、次いで
5.0〜99.5%の範囲内の圧下率で冷間圧延を施し
、続いて(α+γ)相領域にて1次再結晶焼鈍を施し、
さらに2次再結晶焼鈍を行なう方法を提案している。こ
の方法によれば、冷間圧延後の1次再結晶焼鈍を(α+
γ)相領域で行なうこと、すなわち(α+γ)の混相組
織を形成してから2次再結晶焼鈍を行なうことによって
、2次再結晶時に<100>軸が圧延方向に対し直角な
方向に配向した2次再結晶粒を生成させることができ、
しかもその場合の2次再結晶組織における圧延方向に対
し直角な方向への(100>軸の配向度合が著しく高く
、したがって圧延方向に対し直角な方向における磁気特
性が著しく優れた磁石を得ることができる。
On the other hand, the inventors of the present invention have already disclosed in Japanese Patent Application No. 62-231495 that in manufacturing a Fe-Cr-Co magnet alloy, after casting a molten alloy, appropriate hot working is carried out, and then 5.0 to 99. Cold rolling is performed at a reduction rate within the range of 5%, followed by primary recrystallization annealing in the (α + γ) phase region,
Furthermore, a method of performing secondary recrystallization annealing is proposed. According to this method, the primary recrystallization annealing after cold rolling is performed by (α+
By performing this in the γ) phase region, that is, by forming an (α+γ) mixed phase structure and then performing secondary recrystallization annealing, the <100> axis is oriented perpendicular to the rolling direction during secondary recrystallization. It is possible to generate secondary recrystallized grains,
Moreover, in this case, the degree of orientation of the (100> axis in the direction perpendicular to the rolling direction in the secondary recrystallized structure is extremely high, and therefore it is possible to obtain a magnet with extremely excellent magnetic properties in the direction perpendicular to the rolling direction. can.

発明が解決しようとする課題 前述の特願昭62−231495号の方法によれば、確
かに圧延方向に対し直角な方向に磁気特性が著しく優れ
た磁石を得ることができるが、冷間圧延工程を必須とし
ており、そのため工程数が多く、製造コストが嵩む問題
がある。また実際上は冷間圧延工程の条件によって最終
的に得られる磁気特性がかなりばらつく問題もある。さ
らに圧延方向に対し直角な方向の磁気特性が優れており
、圧延方向と平行な方向の磁気特性は低いところから、
用途によっては使いづらい問題もあった。
Problems to be Solved by the Invention According to the method of the above-mentioned Japanese Patent Application No. 62-231495, it is possible to obtain a magnet with extremely excellent magnetic properties in the direction perpendicular to the rolling direction, but the cold rolling process This requires a large number of steps and increases manufacturing costs. Furthermore, in practice, there is a problem in that the magnetic properties finally obtained vary considerably depending on the conditions of the cold rolling process. Furthermore, the magnetic properties in the direction perpendicular to the rolling direction are excellent, and the magnetic properties in the direction parallel to the rolling direction are low.
There were some problems that made it difficult to use depending on the purpose.

この発明は以上の事情を背景としてなされたもので、冷
間圧延工程を省略して低コスト化を図ることができしか
も圧延方向に平行な方向の磁気特性が著しく優れたFe
−Cr−Co系磁石合金およびその製法を提供すること
を目的とするものである。
This invention was made against the background of the above-mentioned circumstances, and it is possible to reduce the cost by omitting the cold rolling process, and to obtain Fe, which has extremely excellent magnetic properties in the direction parallel to the rolling direction.
The object of the present invention is to provide a -Cr-Co based magnet alloy and a method for producing the same.

課題を解決するだめの手段 前述の課題を解決するべく、本発明者等がFeCr−C
o系磁石合金の製法について種々実験・検討を重ねたと
ころ、α相単相領域、もしくは(α+γ)相2相領域中
でα相が50%以上存在する領域、より正確には((α
+γ)相中、α相が50%存在する温度+50℃}〜C
融点−50℃}の温度域で熱間圧延を行なった後、冷間
圧延を行なわずに(α+γ)相領域で熱処理を行なって
おくことによって、その後の2次再結晶焼鈍により平均
粒径が2.Ourm以上でかっ<100>軸が圧延方向
に平行な方向に配向した2次再結晶組織を生成させ得る
こと、すなわち圧延方向に平行な(110}<100>
集合組織が得られること、しかもその場合上述のように
平均結晶粒径を2.0ttrtnJJ、上とすることに
よって(110)(100>軸の圧延方向に平行な方向
への集積度が著しく高くなって磁気異方性に優れること
を見出し、この発明をなすに至ったのである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors developed FeCr-C
After conducting various experiments and studies on the manufacturing method of o-based magnetic alloys, we found that the α-phase single-phase region or the (α+γ)-phase two-phase region in which the α phase exists in 50% or more, more precisely ((α
+γ) Temperature at which 50% α phase exists in the phase +50°C}~C
By performing hot rolling in the temperature range of (melting point -50°C) and then performing heat treatment in the (α + γ) phase region without performing cold rolling, the average grain size can be reduced by subsequent secondary recrystallization annealing. 2. It is possible to generate a secondary recrystallized structure in which the <100> axis is oriented in the direction parallel to the rolling direction, that is, the (110} <100> axis is parallel to the rolling direction.
In this case, by setting the average grain size to 2.0 ttrtnJJ or more as described above, the degree of accumulation in the direction parallel to the rolling direction of the (110) (100> axis becomes significantly higher). They discovered that it has excellent magnetic anisotropy, and came up with this invention.

したがって本願の請求項1の発明の磁石合金は、Cr 
10〜40%およびCo 3〜30%を含有し、残部が
Feを主体とするFe−Cr−Co系磁石合金において
、平均結晶粒径が2.0.m以上でかつ圧延方向に平行
な方向に(110)(100>軸が配向された集合組織
を有することを特徴とするものである。
Therefore, the magnetic alloy of the invention of claim 1 of the present application is Cr
In a Fe-Cr-Co magnet alloy containing 10 to 40% of Co and 3 to 30% of Co, with the balance mainly consisting of Fe, the average crystal grain size is 2.0. m or more and has a texture in which (110) (100> axes are oriented in a direction parallel to the rolling direction).

また請求項2〜請求項5の発明は、それぞれ請求項1の
発明のFe−Cr−Co系磁石合金を製造する方法につ
いてのものであって、請求項2の発明の製法は、Cr1
0〜40%および003〜30%を含有し、残部がFe
を主体とするFe−CrGO系磁石合金を製造するにあ
たり、合金溶湯を鋳造後、((α+γ)相中、α相が5
0%存在する温度+50℃}以上、(融点−50℃}以
下の範囲内の温度で熱間圧延を施し、続いて(α+γ)
相領域にて1次再結晶焼鈍を施し、さらに2次再結晶焼
鈍を施すことを特徴とするものである。
Further, the inventions of claims 2 to 5 each relate to a method of manufacturing the Fe-Cr-Co-based magnetic alloy of the invention of claim 1, and the manufacturing method of the invention of claim 2 includes Cr1
0 to 40% and 003 to 30%, with the remainder being Fe.
In producing a Fe-CrGO magnetic alloy mainly composed of
Hot rolling is performed at a temperature within the range of 0% existing temperature + 50 ° C} or higher and (melting point - 50 ° C} or lower, followed by (α + γ)
It is characterized in that primary recrystallization annealing is performed in the phase region, and then secondary recrystallization annealing is performed.

また請求項3の発明の製法は、前記同様の熱間圧延の後
、α相の単相領域で1次再結晶焼鈍を施し、その後(α
+γ)相領域での加熱処理を施してかう2次再結晶焼鈍
を行なうものである。
Further, in the manufacturing method of the invention of claim 3, after hot rolling similar to the above, primary recrystallization annealing is performed in a single phase region of α phase, and then (α
This secondary recrystallization annealing is performed by performing heat treatment in the +γ) phase region.

さらに請求項4の発明の製法は、前記同様の熱間圧延の
後、(α+γ)相領域で1次再結晶焼鈍を施した後(α
」−γ十σ)相領域での加熱処理を施してから2次再結
晶焼鈍を行なうものである。
Furthermore, in the manufacturing method of the invention of claim 4, after hot rolling as described above, primary recrystallization annealing is performed in the (α+γ) phase region, and then (α
After heat treatment in the ``-γ1σ) phase region, secondary recrystallization annealing is performed.

そしてまた請求項5の発明の製法は、請求項3の発明の
製法と請求項4の発明の製法とを組合せたものであって
、前記同様の熱間圧延の後、先ずα相単相領域での1次
再結晶焼鈍を施し、次いで(α+γ)相領域での加熱処
理を施し、ざらに(α十γ十σ)相領域での加熱処理を
施した後、2次再結晶焼鈍を施すものである。
Furthermore, the manufacturing method of the invention of claim 5 is a combination of the manufacturing method of the invention of claim 3 and the manufacturing method of the invention of claim 4, in which after the same hot rolling as described above, first the α phase single phase region is First recrystallization annealing is performed, then heat treatment is performed in the (α + γ) phase region, heat treatment is roughly performed in the (α1γ1σ) phase region, and then secondary recrystallization annealing is performed. It is something.

作   用 請求項1の発明の磁石合金は、平均結晶粒径が2.01
11#1以上でかつ圧延方向に平行な方向に磁化容易軸
である(1101(100>軸が配向された集合11織
を有するものとされている。このような磁石合金に、溶
体化処理後、圧延方向と平行な方向に磁界を加えながら
の磁場中熱処理を行なえば、圧延方向に平行な方向に磁
気異方性が著しく高く、その方向に磁気特性が著しく高
い磁石を得ることができる。
Function The magnetic alloy of the invention of claim 1 has an average crystal grain size of 2.01.
11#1 or more and has an easy axis of magnetization in the direction parallel to the rolling direction (1101 (100>) is said to have a set of 11 weaves with the axis oriented in the direction parallel to the rolling direction. By performing heat treatment in a magnetic field while applying a magnetic field in a direction parallel to the rolling direction, it is possible to obtain a magnet that has extremely high magnetic anisotropy in the direction parallel to the rolling direction and extremely high magnetic properties in that direction.

ここで、平均結晶粒径が2.01lI#I未満では上述
のような溶体化処理後磁場中熱処理を行なっても圧延方
向と平行な方向に(110}<100>軸が配向した集
合組織の集積度が低く、したがって圧延方向と平行な方
向に充分な磁気特性を有する磁石が得られず、したがっ
て平均結晶粒径を2.0mm以上とJ゛る必要がある。
Here, if the average grain size is less than 2.01lI#I, even if heat treatment is performed in a magnetic field after solution treatment as described above, a texture with the (110}<100> axis oriented in the direction parallel to the rolling direction will be formed. The degree of integration is low, and therefore a magnet with sufficient magnetic properties in the direction parallel to the rolling direction cannot be obtained, and therefore it is necessary to have an average crystal grain size of 2.0 mm or more.

上述のような請求項1の発明の磁石は、基本的には請求
項2の発明の製法によって製造することができる。すな
わち、所要の成分組成を有する合金溶湯を溶製して鋳造
し、その詩興に必要に応じて熱間@造を施した後、((
α+γ)相中、α相が50%存在する温度+50℃}以
上、(融点−50℃}以下の温度域で熱間圧延を施して
再結晶に必要な歪を導入し、続いて(α+γ)の2相領
域にて1次再結晶焼鈍を施し、その後2次再結晶焼鈍を
施す。
The magnet of the invention of claim 1 as described above can basically be manufactured by the manufacturing method of the invention of claim 2. That is, after melting and casting a molten alloy having the required composition, and subjecting it to hot casting as necessary, ((
The strain necessary for recrystallization is introduced by hot rolling in a temperature range from 50% of the α phase in the α+γ) phase to +50°C} and below the melting point of −50°C, and then (α+γ) Primary recrystallization annealing is performed in the two-phase region, and then secondary recrystallization annealing is performed.

ここで、熱間圧延はα相単相あるいは(α+γ)相2相
中、α相が50%以上存在する領域の温度で行なう必要
があるが、実操業上においてγ相の析出を50%未満に
確実に押えつつしかも過熱による局部溶融を確実に防止
するため、α相単相あるいは(α+γ)相2相中、α相
が50%以上存在する領域の温度範囲内でも特に((α
+γ)相中、α相が50%存在する温度+50°C)以
上、(融点−50℃}以下の温度域において熱間圧延を
行なうこととした。このようにα相単相あるいは(α+
γ)相2相中、α相が50%以上存在する領域で熱間圧
延を行なうことは、後の2次再結晶焼鈍によって圧延方
向に平行な方向の(110)(100>集合組織を得る
ために重要であり、α相単相あるいはくα+γ)相2相
中、α相が50%以上存在する領域の圧延でなければ、
圧延方向に平行な(110}<100>集合11織を得
ることができない。また上記のα相単相あるいは(α+
γ)相2相中、α相が50%以上存在覆る領域での熱間
圧延によっである程度の歪を導入した後、(α+γ)相
の2相領域でづ次頁結晶焼鈍を行なうことも重要であり
、このように(α+γ)相領域で1次再結晶焼鈍を行な
うことによって1次再結晶組織として(α+γ)の混相
組織を得、この混相組織に対して2次再結晶焼鈍を行な
うことによっては七めて平均結晶粒径を2.0w以上と
して、圧延方向に平行な方向に(110}< 100>
軸が配向した集合組織の集積度が高い材料を得ることが
可能となる。
Here, hot rolling needs to be carried out at a temperature in a region where 50% or more of the α phase exists in the α phase single phase or (α + γ) phase two phases, but in actual operation, the precipitation of the γ phase should be less than 50%. In order to reliably suppress local melting due to overheating while reliably suppressing the
It was decided to carry out hot rolling in a temperature range from the temperature at which 50% of the α phase exists in the α phase (+50°C) to (the melting point -50°C}).
Hot rolling in a region where α phase exists in 50% or more of the two γ) phases means that a (110) (100> texture in the direction parallel to the rolling direction is obtained by subsequent secondary recrystallization annealing. Therefore, unless rolling is performed in a region where α phase exists in a single phase or α phase (α + γ) two phases, 50% or more of the α phase exists.
It is not possible to obtain a (110}
After introducing a certain amount of strain by hot rolling in the region covered by 50% or more of the α phase among the two γ) phases, crystal annealing may be performed in the two-phase region of the (α+γ) phase. This is important, and by performing primary recrystallization annealing in the (α + γ) phase region in this way, an (α + γ) mixed phase structure is obtained as the primary recrystallization structure, and secondary recrystallization annealing is performed on this mixed phase structure. In some cases, the average grain size is set to 2.0w or more, and the rolling direction is parallel to the rolling direction (110}<100>
It becomes possible to obtain a material with a high degree of accumulation of texture with oriented axes.

前述のようにして圧延方向に平行な方向に(110}<
100>軸が配向した集合1IIIIIIliが得られ
る理由は未だ明確ではないが、概ね次のように考えられ
る。すなわち、α相単相あるいは(α+γ)相2相中、
α相が50%以上存在する領域での熱間圧延の後の(α
+γ)相領域での1次再結晶焼鈍においてγ相が主とし
て1次再結晶粒の粒界に析出する。この粒界に析出した
γ相が、後の2次再結晶焼鈍時に圧延方向に平行に(1
00>軸が配向した結晶粒を優先的に成長させるに寄与
するものと考えられる。
As described above, in the direction parallel to the rolling direction (110}<
The reason why the set 1IIIIIIli in which the 100> axis is oriented is not yet clear, but it is generally thought to be as follows. In other words, in a single α phase or two (α+γ) phases,

In the primary recrystallization annealing in the +γ) phase region, the γ phase mainly precipitates at the grain boundaries of the primary recrystallized grains. During secondary recrystallization annealing, the γ phase precipitated at this grain boundary becomes parallel to the rolling direction (1
It is thought that this contributes to the preferential growth of crystal grains with the 00> axis oriented.

なお先願の特願昭62−231495号の発明の方法の
場合は、熱間圧延後に冷間圧延を施してから、上記同様
のくα+γ)相領域での1次再結晶焼鈍およびその後の
2次再結晶焼鈍を行なっており、この場合は圧延方向と
直角な方向に<100>軸が配向した集合組織が得られ
る。これに対しこの発明では冷間圧延を省いて同様の熱
処理を行なうことによって<ioo>軸が圧延方向と平
行な方向に配向した集合組織が得られるが、このような
先願とこの発明の相違は圧延工程の相違によるものと考
えられる。すなわち、熱間圧延時には<100>軸は圧
延方向と平行になるが、それにざらに冷間圧延を施せば
、<100>軸が圧延方向と直角な方向へ回転すると考
えられる。
In the case of the method of the invention of the earlier patent application No. 62-231495, cold rolling is performed after hot rolling, and then primary recrystallization annealing in the α+γ) phase region as described above and the subsequent two steps are performed. Next recrystallization annealing is performed, and in this case a texture with <100> axes oriented in a direction perpendicular to the rolling direction is obtained. On the other hand, in the present invention, a texture in which the <ioo> axis is oriented in a direction parallel to the rolling direction is obtained by omitting cold rolling and performing the same heat treatment, but this difference between the previous application and this invention is that This is thought to be due to the difference in the rolling process. That is, during hot rolling, the <100> axis is parallel to the rolling direction, but if rough cold rolling is performed, the <100> axis is considered to rotate in a direction perpendicular to the rolling direction.

請求項3の発明の製法においては、前記同様なα相単相
あるいはくα+γ)相2相中、α相が50%以上存在す
る領域での熱間圧延の後、α相の単相領域で1次再結晶
焼鈍を施してから、(α+γ)相領域での加熱処理を行
なう。この場合は一次再結晶がα相単相で行なわれ、そ
の後の(α→−γ)相領域での加熱により1次再結晶粒
界にγ相が析出し、その粒界に析出したγ相が、前述の
場合と同様に2次再結晶焼鈍時に圧延方向に平行な方向
に(110)(100>軸が配向した2次再結晶粒の優
先成長に寄与する。このような請求項3の発明の方法で
は、(α+γ)相化する前の段階で一旦α相での1次再
結晶を行なっているため、組織が均質化されて、続く(
α+γ)相化の際にγ相が粒界に折れやすくなり、その
結果圧延方向と平行な方向に(110}<100>軸が
配向した組織をより容易に得ることが可能となる。
In the manufacturing method of the invention of claim 3, after hot rolling in a region where 50% or more of the α phase is present in the above-mentioned single α phase or α + γ) phase, in the single α phase region. After primary recrystallization annealing is performed, heat treatment in the (α+γ) phase region is performed. In this case, the primary recrystallization is carried out as a single α phase, and the subsequent heating in the (α→−γ) phase region precipitates the γ phase at the primary recrystallized grain boundaries, and the γ phase precipitates at the grain boundaries. However, as in the case described above, during secondary recrystallization annealing, the secondary recrystallized grains whose (110) (100> axis is oriented in the direction parallel to the rolling direction) contribute to preferential growth. In the method of the invention, primary recrystallization is performed in the α phase before the (α+γ) phase is formed, so the structure is homogenized and the subsequent (
When the α+γ) phase is formed, the γ phase easily breaks at the grain boundaries, and as a result, it becomes easier to obtain a structure in which the (110}<100> axis is oriented in the direction parallel to the rolling direction.

方請求項4の発明の製法においては、請求項2の発明の
製法と同様にα相単相あるいは(α+γ)相2相中、α
相が50%以上存在する領域での熱間圧延後に(α十γ
ン相領5域での1次再結晶焼鈍を行なった後、2次再結
晶焼鈍を行なう前の段階で(α+γ+σ)の3相領域の
温度に加熱する。
In the manufacturing method of the invention of claim 4, in the α phase single phase or (α + γ) phase two phases, α
After hot rolling in the region where 50% or more of the phase exists (α + γ
After primary recrystallization annealing is performed in the 5-phase region, heating is performed to the temperature of the 3-phase region (α+γ+σ) at a stage before secondary recrystallization annealing is performed.

これによってα相が析出するが、このα相の析出によっ
て歪が導入され、その結果数の2次再結晶焼鈍において
2次再結晶が生じやすくなり、より磁気特性を向上させ
ることができる。
This precipitates the α phase, and the precipitation of the α phase introduces strain, and as a result, secondary recrystallization is more likely to occur during secondary recrystallization annealing, and the magnetic properties can be further improved.

そしてまた請求5の発明の製法は、請求項3の発明の製
法と請求項4の発明の製法とを組合せたもの、すなわち
α相単相あるいは(α+γ)相2相中、α相が50%以
上存在する領域での熱間圧延の後、α相単相領域での1
次再結晶焼鈍を行なってマトリックスの均質化を行ない
、その後(α+γ)相領域に加熱してγ相を粒界に析出
させ、さらに(α+γ」−σ)相領域での加熱によって
α相の析出による歪の導入を行なう。この場合には最も
効果的に高い磁気特性を得ることができる。
The manufacturing method of the invention of claim 5 is a combination of the manufacturing method of the invention of claim 3 and the manufacturing method of the invention of claim 4, that is, the α phase accounts for 50% of the α phase single phase or (α+γ) two phases. After hot rolling in the region where the above exists, 1 in the α phase single phase region
Next, recrystallization annealing is performed to homogenize the matrix, followed by heating to the (α+γ) phase region to precipitate the γ phase at grain boundaries, and further heating to the (α+γ''-σ) phase region to precipitate the α phase. Introducing distortion by In this case, high magnetic properties can be obtained most effectively.

発明の実施のための具体的な説明 先ずこの発明で対象とする合金の成分組成について説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the composition of the alloy targeted by the present invention will be explained.

この発明で対象とするFe−Cr−Co系合金は、基本
的にはCr10〜40%、003〜30%、残部Feを
主体とするものであるが、より好ましくはCr20〜3
5%、0010〜20%、残部Feを主体とすることが
適当である。またこれらの成分のうち、必要に応じてF
eの一部を28%以下のMOで置換しても良い。さらに
必要に応じて4%以下のW、  3%以下の■i、2%
以下のNb、4%以下のV、  2%以下のZrのうち
から選ばれた1種または2種以上を含有しても良い。
The Fe-Cr-Co alloy targeted by this invention is basically mainly composed of 10 to 40% Cr, 003 to 30%, and the balance is Fe, but more preferably 20 to 3% Cr.
It is appropriate that the main content is 5%, 0.010 to 20%, and the balance Fe. Also, among these ingredients, F
A part of e may be replaced with 28% or less of MO. Furthermore, if necessary, W of 4% or less, ■i of 3% or less, 2%
It may contain one or more selected from the following Nb, 4% or less of V, and 2% or less of Zr.

さらにこの光切で対象とする合金は、2次再結晶焼鈍時
において1次再結晶粒の成長′を抑制して、(110}
<100>軸が圧延方向に平行な2次再結晶粒を優先的
に生成させるためのインヒビタとしてMnSを作用させ
るため、Mn 0101〜2%および3 o、ooi〜
1.0%を含有させておいても良い。
Furthermore, the alloy targeted by this optical cutting suppresses the growth of primary recrystallized grains during secondary recrystallization annealing, resulting in (110)
In order to make MnS act as an inhibitor to preferentially generate secondary recrystallized grains whose <100> axes are parallel to the rolling direction, Mn 0101~2% and 3o, ooi~
1.0% may be included.

ここでMn0.01%未満またはs o、ooi%未渦
では充分な量のMnSを生成させることができず、その
ためインヒビタにより1次再結晶粒の成長を抑制する効
果が得られず、またMnが2%を越えるかまたはSが1
.0%を越えれば、最終的に得られる磁石合金の残留磁
束密度が低下する。
Here, if Mn is less than 0.01% or so, ooi% is not swirled, a sufficient amount of MnS cannot be generated, and therefore the inhibitor cannot have the effect of suppressing the growth of primary recrystallized grains, and Mn exceeds 2% or S is 1
.. If it exceeds 0%, the residual magnetic flux density of the finally obtained magnet alloy will decrease.

また前述と同様に1次再結晶粒の成長に対するインヒビ
タとしてAlNを作用させるため、Al2O,01〜2
%およびN O,0006〜0.2%を含有させておい
ても良い。ここでAl  0.01%未満またはN O
,0006%未満では充分な量のA&Nを生成させるこ
とができず、そのためインヒビタにより1次再結晶粒の
成長を抑制する効果が得られず、またA1が2%を越え
るかまたはNが0.2%を越えれば、最終的に得られる
磁石合金の残留磁束密度が低下する。
In addition, in order to cause AlN to act as an inhibitor to the growth of primary recrystallized grains as described above, Al2O,01~2
% and NO,0006 to 0.2%. where Al less than 0.01% or NO
If A1 is less than 2% or N is less than 0.0006%, a sufficient amount of A&N cannot be generated, and therefore the inhibitor cannot have the effect of suppressing the growth of primary recrystallized grains. If it exceeds 2%, the residual magnetic flux density of the finally obtained magnet alloy will decrease.

次に製造方法の具体的なプロセスについて説明する。Next, the specific process of the manufacturing method will be explained.

先ず前述のような成分組成の合金溶湯を真空溶解その他
の適宜の手段によって溶製し、さらに真空鋳造等の公知
の鋳造手段によって鋳造し、鋳塊とする。次いで必要に
応じて熱間鍛造を行なった後、((α+γ)相中、α相
が50%存在する温度+50℃}〜(融点−50°C)
の温度域で熱間圧延を行なって、所望の板厚とする。こ
こで((α+γ)相中、α相が50%存在する温度+5
0℃}〜(融点=50℃}の温度域の具体的範囲は成分
組成によって異なるが、水系の代表的な成分組成である
Cr28〜32%、Co15〜18%、MO2〜4%、
残部Feなる成分組成の場合は、800〜1550°C
Pi!度である。
First, a molten alloy having the above-mentioned composition is melted by vacuum melting or other appropriate means, and then cast by a known casting means such as vacuum casting to form an ingot. Then, after hot forging as necessary, (temperature at which 50% α phase exists in the (α+γ) phase +50°C} to (melting point -50°C)
Hot rolling is carried out at a temperature range of 1 to obtain the desired thickness. Here, the temperature at which 50% of the α phase exists in the ((α+γ) phase + 5
The specific temperature range from 0℃} to (melting point = 50℃} varies depending on the component composition, but typical component compositions of water systems are Cr28-32%, Co15-18%, MO2-4%,
If the balance is Fe, the temperature is 800 to 1550°C.
Pi! degree.

この熱間圧延においては、1パス当りの平均圧下率を5
.0〜90%の範囲内とし、かつ総圧下率を40.0〜
99%の範囲内とすることが望ましい。既に述べたよう
に!#終的に(1101<100>集合組織を得るため
には、熱間圧延工程においである程度の歪を導入してお
くことが必要であり、1パス当りの平均圧下率が5.0
%未満、または総圧下率が40,0%未満では、最終的
に圧延方向に平行な(110}<100>集合組織を得
ることが困難となる。また1パス当りの平均圧下率が9
0%を越えるような強加工を加えた場合、もしくは総圧
下率が99%を越えるような強加工を加えた場合には、
逆に(110}<100>軸が圧延方向と平行な2次再
結晶が優先的に生成されなくなるおそれがある。したが
って圧延方向に平行に(110}<100>軸が配向し
た集合組織を得て、圧延方向と平行な方向の磁気特性が
充分に優れた磁石を得るためには、熱間圧延工程での圧
下率を前記範囲内に設定することが望ましい。
In this hot rolling, the average reduction rate per pass was 5
.. Within the range of 0-90%, and the total rolling reduction rate is 40.0-90%.
It is desirable that it be within the range of 99%. As already mentioned! #Finally, in order to obtain the 1101<100> texture, it is necessary to introduce a certain amount of strain in the hot rolling process, and the average rolling reduction per pass is 5.0.
% or the total rolling reduction is less than 40.0%, it becomes difficult to finally obtain a (110}<100> texture parallel to the rolling direction. Also, if the average rolling reduction per pass is 9.
In the case of applying strong processing that exceeds 0%, or in the case of applying strong processing that causes the total reduction rate to exceed 99%,
Conversely, secondary recrystallization in which the (110}<100> axis is parallel to the rolling direction may not be preferentially generated. Therefore, it is difficult to obtain a texture in which the (110}<100> axis is oriented parallel to the rolling direction. In order to obtain a magnet with sufficiently excellent magnetic properties in the direction parallel to the rolling direction, it is desirable to set the rolling reduction rate in the hot rolling process within the above range.

熱間圧延後は、請求項2の発明および請求項4の発明の
方法の場合はくα+γ)相領域での1次再結晶焼鈍を行
ない、また請求項3の発明および請求項5の発明の方法
の場合はα相の単相領域での1次再結晶焼鈍を行なって
から(α+γ)相領域での加熱処理を行なう。ここでα
相単相領域での1次再結晶焼鈍の温度は要はα単相温度
域内とすれば良く、具体的には成分組成によって異なる
が、前述の代表的成分組成の場合は1150〜1300
℃程度とすれば良く、またその加熱時間は0.2〜4時
間程度とすれば良い。一方(α+γ)相領域での1次再
結晶焼鈍もしくは加熱処理(α相単相での1次再結晶焼
鈍後の(α+γ)相加熱処理)における温度は、要は(
α+γ)の2相領域の範囲内とすれば良く、具体的には
成分組成によって異なるが、前述の代表的成分組成の場
合、800〜1250℃程度とすれば良い。また(α+
γ)相領域での加熱時間は、1次再結晶焼鈍を兼ねる場
合は0.5〜10時間程度、1次再結晶を兼ねない場合
(すなわちα相領域での1次再結晶焼鈍後の加熱の場合
)は0.1〜0.5時間程度とすれば良い。なおα相領
域もしくはくα+γ)相領域での1次再結晶焼鈍による
1次再結晶粒は平均粒径で0.01〜1mm程度となる
After hot rolling, in the method of the invention of claim 2 and the invention of claim 4, primary recrystallization annealing is performed in the α+γ) phase region, and in the method of the invention of claim 3 and the invention of claim 5, In the case of this method, primary recrystallization annealing is performed in the single phase region of α phase, and then heat treatment is performed in the (α+γ) phase region. Here α
The temperature of the primary recrystallization annealing in the single-phase region should basically be within the α single-phase temperature range, and specifically varies depending on the component composition, but in the case of the above-mentioned typical component composition, it is 1150 to 1300.
The heating time may be approximately 0.2 to 4 hours. On the other hand, the temperature in primary recrystallization annealing or heat treatment in the (α + γ) phase region ((α + γ) phase heat treatment after primary recrystallization annealing in the α phase single phase) is (
The temperature may be within the two-phase region of α+γ), and specifically varies depending on the component composition, but in the case of the above-mentioned typical component composition, the temperature may be about 800 to 1250°C. Also (α+
The heating time in the γ) phase region is approximately 0.5 to 10 hours when the primary recrystallization annealing is also performed, and when the heating time is not also the primary recrystallization annealing (i.e. heating after the primary recrystallization annealing in the α phase region) ) may be set to about 0.1 to 0.5 hours. The average grain size of the primary recrystallized grains in the α phase region or α+γ) phase region due to the primary recrystallization annealing is approximately 0.01 to 1 mm.

上述のように(α+γ)相領域での1次再結晶焼鈍もし
くは加熱処理の後には、請求項4の発明もしくは請求項
5の発明の場合はくα+γ+σ)相領域での加熱処理を
行なってから2次再結晶焼鈍を行ない、また請求項2の
発明もしくは請求項3の発明の場合は直ちに2次再結晶
焼鈍を行なう。
As mentioned above, after the primary recrystallization annealing or heat treatment in the (α + γ) phase region, in the case of the invention of claim 4 or the invention of claim 5, heat treatment in the α + γ + σ) phase region is performed. Secondary recrystallization annealing is performed, and in the case of the invention of claim 2 or claim 3, secondary recrystallization annealing is performed immediately.

ここで(α+γ十σ)相領域での加熱は、要は(α+γ
+σ)の3相部度域で行なえば良く、具体向温度は成分
組成によって異なるが、前述の代表的′成分組成の場合
700〜1000℃程度とすれば良く、またその加熱保
持時間は0.2〜5時間程度とすることが好ましい。ま
た2次再結晶焼鈍はα相単相領域で行えば良いが、具体
的には1150〜1300℃程度で0.2〜20時間程
度加熱すれば良い。
Here, heating in the (α + γ + σ) phase region is essentially (α + γ
+σ) The specific target temperature varies depending on the component composition, but in the case of the above-mentioned typical component composition, it may be about 700 to 1000°C, and the heating holding time is 0. It is preferable to set it as about 2 to 5 hours. Further, the secondary recrystallization annealing may be performed in the α phase single phase region, but specifically, it may be heated at about 1150 to 1300° C. for about 0.2 to 20 hours.

以上のように、2次再結晶焼鈍を施すことにより、平均
結晶粒径が2.Oram以上であって、圧延方向に対し
平行な方向に(110}<100>軸が高度に配向した
集合組織を有する磁石合金材料を得ることができる。な
おこの磁石材料においては、圧延方向と平行な方向に(
110}<100>軸が配向した集合組織の集積度が5
0%以上であることが、最終的な磁石において圧延方向
と平行な方向に優れた磁気特性を得るためには望ましい
が、前述のような工程を経て製造することによって平均
結晶粒径を2.Ornm以上とすれば、容易に集積度5
0%以上を確保することができる。
As described above, by performing secondary recrystallization annealing, the average crystal grain size can be reduced to 2. Oram or higher, it is possible to obtain a magnet alloy material having a texture in which the (110}<100> axis is highly oriented in a direction parallel to the rolling direction. in the direction (
110}<100> axis-oriented texture has an accumulation degree of 5
0% or more is desirable in order to obtain excellent magnetic properties in the direction parallel to the rolling direction in the final magnet, but by manufacturing through the steps described above, the average grain size can be reduced to 2.0%. If it is Ornm or more, the integration degree is easily 5.
It is possible to secure 0% or more.

このような磁石合金材料を実際に磁石として使用するに
あたっては、さらに溶体化処理・焼入れを行なった後、
磁気的に硬質化するための処理、換言すればスピノーダ
ル分解のための磁場中熱処理(磁場中時効)および2次
時効処理を行なう。
In order to actually use such magnet alloy materials as magnets, after further solution treatment and quenching,
A treatment for magnetically hardening, in other words, a heat treatment in a magnetic field (aging in a magnetic field) for spinodal decomposition and a secondary aging treatment are performed.

ここで溶体化処理は1000〜1300℃程度から焼入
れすれば良いが、前述の2次再結晶により得られた集合
組織を破壊してランダムな方位の結晶を発生させたりあ
るいは所望の方向から外れた方位の結晶の成長を防止す
るためには、溶体化処理のための熱処理温度は2次再結
晶温度以下とすることが望ましい。そしてまた2次再結
晶焼鈍直後の冷却過程を利用して溶体化処理を行なうこ
ともでき、その場合には2次再結晶焼鈍後に改めて溶体
化のみのために加熱する必要がなくなる。
Here, the solution treatment can be performed by quenching at a temperature of about 1000 to 1300°C, but it may destroy the texture obtained by the secondary recrystallization described above and generate crystals with random orientation or crystals deviated from the desired direction. In order to prevent the growth of oriented crystals, it is desirable that the heat treatment temperature for solution treatment be lower than the secondary recrystallization temperature. It is also possible to perform solution treatment using the cooling process immediately after secondary recrystallization annealing, and in that case, it is not necessary to heat only for solution treatment after secondary recrystallization annealing.

溶体化処理・焼入れ後の磁場中熱処理および2次時効処
理は、次のように行なえば良い。
The heat treatment in a magnetic field and the secondary aging treatment after the solution treatment and quenching may be performed as follows.

すなわち、従来からF e −G r −Co系磁石合
金において提案されているように磁界中にて630〜7
00℃程度の恒温熱処理(磁場中時効処理)を0.25
〜4時間程度行ない、その後600〜500℃前後で0
.5〜40時間程時間数時効処理を行なう。
That is, as has been conventionally proposed for Fe-Gr-Co magnet alloys, 630 to 7
Constant temperature heat treatment (aging treatment in magnetic field) at about 0.00℃ to 0.25
It is carried out for about 4 hours, and then heated to 0 at around 600 to 500℃.
.. Aging treatment is performed for about 5 to 40 hours.

このようにすればスピノーダル変態により非磁性相中に
単磁区状の強磁性相が分散析出し、しかもその単磁区状
強磁性相粒子が磁界方向に整列した状態となる。ここで
前述のように2次再結晶焼鈍後には、圧延方向に対し平
行な方向に磁化容易軸である(110}<100>軸が
揃った集合組織が得られている。したがってその合金に
さらに磁界を圧延方向に対し平行な方向に加えながらの
磁界中熱処理および時効処理を行なえば、前述のような
集合組織であることと磁界処理効果とが相俟って、著し
く高い配向率で単磁区状強磁性相粒子が圧延方向に対し
平行な方向に析出されることになり、その結果著しく高
い異方性磁気特性を有する磁石合金が得られることとな
る。
In this way, a single magnetic domain ferromagnetic phase is dispersed and precipitated in the nonmagnetic phase due to spinodal transformation, and the single domain ferromagnetic phase particles are aligned in the direction of the magnetic field. As mentioned above, after secondary recrystallization annealing, a texture is obtained in which the axis of easy magnetization (110}<100> is aligned in the direction parallel to the rolling direction. Therefore, the alloy is further If heat treatment in a magnetic field and aging treatment are performed while applying a magnetic field in a direction parallel to the rolling direction, the above-mentioned texture and magnetic field treatment effect combine to form a single magnetic domain with a significantly high orientation rate. The shaped ferromagnetic phase particles are precipitated in a direction parallel to the rolling direction, resulting in a magnetic alloy with significantly high anisotropic magnetic properties.

実  施  例 以下にこの発明の実施例および比較例を記す。Example Examples and comparative examples of this invention are described below.

[実施例1] Cr30%、Co15%、MO3%、Ti0.3%、M
no、1%、S O,05%、残部がFeおよび不可避
的不純物よりなる合金を常法にしたがって溶製、鋳造し
、得られた鋳塊を1200℃に加熱して熱間鍛造して厚
さ20mmとし、次いで再び1200℃に加熱して熱間
圧延を施した。この熱間圧延は1パス当り圧下率5〜9
0%の範囲内で種々変化させ、総圧下率90%として板
厚2mmの熱延板とした。なお一部の試料は熱間圧延を
行なわず、1パス当り圧下率O%、総圧下率0%とした
。その後、各板材から圧延方向に直角な方向の試料およ
び圧延方向に対し直角な方向(板幅方向)の試料を切出
し、各試料について、(α+γ)相領域での1次再結晶
焼鈍として、1000℃で10分間加熱した後、水冷し
、続いてα相領域での2次再結晶焼鈍として、1200
℃で15時間加熱保持した後、水冷した。さらに硬質化
のための熱処理として次のような熱処理を行なった。す
なわち1200℃で1時間加熱後水冷する溶体化処理を
行なった後、磁場中において640°Cで20分加熱し
続いて同じく磁場中において620℃で4時間保持する
磁場中時効処理を行ない、続いて610℃で2時間保持
後4℃/hrの冷却速度で500℃まで徐冷し、500
℃において10時間保持づ一る2次時効処理を行なった
。なお磁場中時効処理は、圧延方向と平行な方向に磁界
を加えての処理もしくは圧延方向に直角な方向に磁界を
加えての処理を行なった。
[Example 1] Cr30%, Co15%, MO3%, Ti0.3%, M
An alloy consisting of NO, 1%, SO, 05%, and the balance consisting of Fe and unavoidable impurities is melted and cast according to a conventional method, and the resulting ingot is heated to 1200°C and hot forged to form a thick The length was set to 20 mm, and then hot rolling was performed by heating to 1200° C. again. This hot rolling has a reduction rate of 5 to 9 per pass.
Various changes were made within the range of 0%, and the total rolling reduction was set at 90% to obtain a hot rolled sheet with a thickness of 2 mm. Note that some samples were not hot rolled, and the rolling reduction per pass was 0% and the total rolling reduction was 0%. After that, a sample in the direction perpendicular to the rolling direction and a sample in the direction perpendicular to the rolling direction (plate width direction) were cut out from each plate material, and each sample was subjected to primary recrystallization annealing in the (α+γ) phase region. After heating at ℃ for 10 minutes, water cooling and subsequent recrystallization annealing at 120
After being heated and maintained at ℃ for 15 hours, it was cooled with water. Furthermore, the following heat treatment was performed for hardening. That is, after performing solution treatment by heating at 1200°C for 1 hour and cooling with water, heating at 640°C in a magnetic field for 20 minutes, followed by aging treatment in a magnetic field by holding at 620°C for 4 hours in the same magnetic field, and then After holding at 610°C for 2 hours, it was slowly cooled to 500°C at a cooling rate of 4°C/hr.
A secondary aging treatment was carried out by holding at ℃ for 10 hours. The aging treatment in a magnetic field was performed by applying a magnetic field in a direction parallel to the rolling direction or by applying a magnetic field in a direction perpendicular to the rolling direction.

[比較例1] 実施例1と同じ成分組成の合金について、熱間圧延まで
は実施例1と同じ条件で処理し、熱間圧延後、1次再結
晶焼鈍および2次再結晶焼鈍を行なうことなく、直ちに
硬質化のための熱処理を実施例1と同じ条件で行なった
[Comparative Example 1] An alloy having the same composition as Example 1 was treated under the same conditions as Example 1 until hot rolling, and after hot rolling, primary recrystallization annealing and secondary recrystallization annealing were performed. Instead, heat treatment for hardening was immediately performed under the same conditions as in Example 1.

以上の実施例1および比較例1により得られた各材料(
硬質化処理済みの磁石)について、それぞれ磁気特性、
すなわち(BH)max、 B rおよび1l−1cを
調べた結果を、熱間圧延における1パス当り圧下率と対
応して第1図に示す。なお第1図において1圧延方向と
平行」とは、圧延方向と平行な方向に磁界を加えて磁場
中時効処理を施した試料について、圧延方向と平行な方
向の磁気特性を測定したもの、「圧延方向に直角」とは
、圧延方向に直角な方向に磁界を加えて磁場中時効処理
を施した試料について、圧延方向と直角な方向の磁気特
性を測定したものである。
Each material obtained in Example 1 and Comparative Example 1 above (
hardening treated magnets), magnetic properties,
That is, the results of examining (BH)max, Br, and 11-1c are shown in FIG. 1 in correspondence with the rolling reduction per pass in hot rolling. In Fig. 1, "parallel to the rolling direction" refers to the measurement of the magnetic properties in the direction parallel to the rolling direction of a sample subjected to aging treatment in a magnetic field by applying a magnetic field in a direction parallel to the rolling direction. "Perpendicular to the rolling direction" refers to the measurement of the magnetic properties in the direction perpendicular to the rolling direction for a sample that was subjected to aging treatment in a magnetic field by applying a magnetic field in the direction perpendicular to the rolling direction.

第1図から、実施例1において1パス当り5%以上の圧
下率で熱間圧延を行なった試料は、圧延方向と平行な方
向の磁気特性が著しく高くなっていることが明らかであ
る。
From FIG. 1, it is clear that the samples hot rolled in Example 1 at a rolling reduction of 5% or more per pass have significantly higher magnetic properties in the direction parallel to the rolling direction.

[実施例2] 実施例1と同じ成分組成の合金について、熱間鍛造まで
は実施例1と同じ条件で処理し、次いで1200℃に加
熱して熱間圧延を総圧下率0〜99,9%の範囲内で変
化・させて施した。その後、1次再結晶焼鈍および2次
再結晶焼鈍、さらに硬質化のための熱処理を実施例1と
同じ条件で施した。
[Example 2] An alloy having the same composition as Example 1 was treated under the same conditions as Example 1 until hot forging, then heated to 1200°C and hot rolled at a total reduction rate of 0 to 99.9 It was applied by changing it within the range of %. Thereafter, primary recrystallization annealing, secondary recrystallization annealing, and further heat treatment for hardening were performed under the same conditions as in Example 1.

[比較例2] 実施例1と同じ成分組成の合金について、熱間圧延まで
は実施例2と同様に処理し、その後1次再結晶焼鈍およ
び2次再結晶焼鈍を行なうことなく、直ちに硬質化のた
めの熱処理を実施例1と同じ条件で施した。
[Comparative Example 2] An alloy having the same composition as Example 1 was treated in the same manner as Example 2 until hot rolling, and then immediately hardened without performing primary recrystallization annealing and secondary recrystallization annealing. The heat treatment for this purpose was performed under the same conditions as in Example 1.

以上の実施例2および比較例2で得られた各材料につい
て、それぞれ磁気特性を調べた結果を、熱間圧延の総圧
下率に対応して第2図に示す。
The results of examining the magnetic properties of each of the materials obtained in Example 2 and Comparative Example 2 are shown in FIG. 2 in correspondence to the total reduction ratio of hot rolling.

第2図から、実施例2において熱間圧延の総圧下率を4
0.0%以上とすることによって圧延方向と平行な方向
の磁気特性が著しく優れた磁石が得られることが明らか
である。
From Figure 2, it can be seen that in Example 2, the total reduction rate of hot rolling was 4
It is clear that by setting the content to 0.0% or more, a magnet with extremely excellent magnetic properties in the direction parallel to the rolling direction can be obtained.

[実施例3] 実施例1と同じ成分組成の合金について、熱間鍛造まで
は実施例1と同じ条件で処理し、次いで熱間圧延を、8
00〜1500℃の種々の加熱温度にて、1パス当り圧
下率50%、総圧下率90%で施した。
[Example 3] An alloy having the same composition as Example 1 was processed under the same conditions as Example 1 up to hot forging, and then hot rolled for 8
The heating was carried out at various heating temperatures from 00 to 1500°C, with a rolling reduction rate of 50% per pass and a total rolling reduction rate of 90%.

その後1次再結晶焼鈍および2次再結晶焼鈍、さらに硬
質化のための熱処理を実施例1と同じ条件で施した。
Thereafter, primary recrystallization annealing, secondary recrystallization annealing, and further heat treatment for hardening were performed under the same conditions as in Example 1.

[比較例3] 実施例1と同じ成分組成の合金について、熱間圧延まで
は実施例3と同様に処理し、その後1次再結晶焼鈍およ
び2次再結晶焼鈍を行なうことなく、直ちに硬質化のた
めの熱処理を実施例1と同じ条件で施した。
[Comparative Example 3] An alloy having the same composition as in Example 1 was treated in the same manner as in Example 3 until hot rolling, and then immediately hardened without performing primary recrystallization annealing and secondary recrystallization annealing. The heat treatment for this purpose was performed under the same conditions as in Example 1.

以上の実施例3および比較例3により得られた各材料に
ついてそれぞれ磁気特性を調べた結果を、熱間圧延の加
熱温度と対応して第3図に示す。
The results of examining the magnetic properties of each of the materials obtained in Example 3 and Comparative Example 3 are shown in FIG. 3 in correspondence with the heating temperature during hot rolling.

この実施例3、比較例3て用いた成分組成の合金におけ
る((α+γ)相中、α相が50%存在する温度+50
℃}は約850℃、(融点−50℃}は約1500℃で
あるが、第3図から、実施例3においてその850℃〜
1500 ’Cの範囲内の温度に加熱して熱間圧延した
場合に、圧延方向と平行な方向の磁気特性が著しく優れ
ることが明らかである。
In the alloy having the composition used in Example 3 and Comparative Example 3, the temperature at which 50% of the α phase exists in the ((α+γ) phase +50
℃} is about 850℃, (melting point -50℃} is about 1500℃, but from FIG. 3, in Example 3, the melting point is about 850℃~
It is clear that when hot rolled by heating to a temperature within the range of 1500'C, the magnetic properties in the direction parallel to the rolling direction are significantly superior.

[実施例4] 実施例1と同じ成分組成の合金について、実施例1と同
様に熱間鍛造まで行ない、次いて1200℃に加熱して
1パス当り圧下率50%、総圧下率90%で熱間圧延を
行なった。その後、α相領域での1次再結晶焼鈍として
1250℃で30分加熱した後、水冷し、次いで(α+
γ)相領域での加熱処理として1000℃で10分間加
熱後、水冷し、ざらにα相領域での2次再結晶焼鈍とし
て1200℃で151間加熱保持、水冷した。その後、
硬質化のための熱処理を実施例1と同じ条件で行なった
[Example 4] An alloy having the same composition as in Example 1 was hot forged in the same manner as in Example 1, and then heated to 1200°C with a rolling reduction rate of 50% per pass and a total rolling reduction rate of 90%. Hot rolling was performed. Thereafter, after heating at 1250°C for 30 minutes as primary recrystallization annealing in the α phase region, water cooling, and then (α+
After heating at 1000° C. for 10 minutes as heat treatment in the γ) phase region, it was cooled with water, and then heated and held at 1200° C. for 151 minutes as secondary recrystallization annealing in the α phase region, followed by water cooling. after that,
Heat treatment for hardening was performed under the same conditions as in Example 1.

[実施例5] 実施例1と同じ成分組成の合金について、実施例4と同
じ条件で熱間圧延までを行なった。その後、(α+γ)
相領域での1次再結晶焼鈍として1000℃で10分間
加熱後、水冷し、次いで(α+γ+σ)相領域での加熱
処理として900℃で1時間加熱後、水冷し、ざらにα
相領域での2次再結晶焼鈍として1200℃で15時間
加熱保持後、水冷した。
[Example 5] An alloy having the same composition as in Example 1 was subjected to hot rolling under the same conditions as in Example 4. Then (α+γ)
After heating at 1000 °C for 10 minutes as primary recrystallization annealing in the phase region, water cooling, then heating at 900 °C for 1 hour as heat treatment in the (α + γ + σ) phase region, water cooling, and rough α
After being heated and held at 1200° C. for 15 hours as secondary recrystallization annealing in the phase region, it was cooled with water.

その後硬質化のための熱処理を実施例1と同じ条件で行
なった。
Thereafter, heat treatment for hardening was performed under the same conditions as in Example 1.

U実施例6] 実施例1と同じ成分組成の合金について、実施例4と同
じ条件で熱間圧延までを行なった。その後、α相領域で
の1次再結晶焼鈍として1250℃で30分間加熱後、
水冷し、次いで(α+γ)相領域での加熱処理として1
000℃で10分加熱後、水冷し、さらに(α+γ+σ
)相領域での加熱処理として900℃で 1時間加熱後
、水冷し、続いてα相領域での2次再結晶焼鈍として1
200℃で15時間保持後、水冷した。その後、硬質化
のための熱処理を実施例1と同じ条件で行なった。
U Example 6] An alloy having the same composition as in Example 1 was subjected to hot rolling under the same conditions as in Example 4. After that, after heating at 1250 ° C. for 30 minutes as primary recrystallization annealing in the α phase region,
1 as water cooling and then heat treatment in the (α+γ) phase region.
After heating at 000℃ for 10 minutes, cooling with water, and further heating (α+γ+σ
) After heating at 900°C for 1 hour as a heat treatment in the phase region, water cooling was performed, followed by secondary recrystallization annealing in the α phase region.
After being held at 200°C for 15 hours, it was cooled with water. Thereafter, heat treatment for hardening was performed under the same conditions as in Example 1.

実施例4〜6により得られた各試料について、圧延方向
と平行な方向の磁気特性を測定した結果を、実施例3に
より得られた試料のうち熱間圧延温度が実施例4〜6と
同じ1200℃のものについての圧延方向と平行な方向
の磁気特性と併せて第1表に示す。
The results of measuring the magnetic properties in the direction parallel to the rolling direction for each sample obtained in Examples 4 to 6 are the same as those in Examples 4 to 6 among the samples obtained in Example 3. Table 1 also shows the magnetic properties in the direction parallel to the rolling direction for those heated at 1200°C.

第   1   表 第1表から、実施例3→実施例4→実施例5→実施例6
の順に、より優れた磁気特性が得られることが判る。
From Table 1, Example 3 → Example 4 → Example 5 → Example 6
It can be seen that better magnetic properties are obtained in this order.

さらに、実施例3〜6および比較例3の試料(但し実施
例3および比較例3については熱間圧延の加熱温度が1
200℃のもの)について、2次再結晶焼鈍後の平均結
晶粒径を調べた結果を、各熱処理形態と対応させて第4
図に示す。
Furthermore, samples of Examples 3 to 6 and Comparative Example 3 (However, for Example 3 and Comparative Example 3, the heating temperature of hot rolling was 1
The results of examining the average grain size after secondary recrystallization annealing (200°C) were compared to each heat treatment form.
As shown in the figure.

第4図から、2次再結晶焼鈍前に(α+γ)相領域での
熱処理(1次再結晶焼鈍)を行なっておくことによって
2次再結晶焼鈍後に2.omm以上の平均結晶粒径が得
られることが判る。また(α+γ)相領域での熱処理に
先立ってα相領域での熱処理を施しておいたり、また(
α+γン相領域での熱処理後に(α十γ十σ)相領域で
の熱処理を施すことによって、2次再結晶焼鈍後の結晶
粒径がより一層大きくなることが判る。
From FIG. 4, it can be seen that 2. It can be seen that an average crystal grain size of .omm or more can be obtained. In addition, heat treatment in the α phase region may be performed before heat treatment in the (α + γ) phase region, or (
It can be seen that by performing heat treatment in the (α+γ+σ) phase region after heat treatment in the α+γ phase region, the grain size after secondary recrystallization annealing becomes even larger.

また実施例1〜6のデータに基いて、2次再結晶焼鈍後
の平均結晶粒径と、硬質化処理後の圧延方向に平行な方
向の磁気特性との関係をまとめた結果を第5図に示す。
Furthermore, based on the data of Examples 1 to 6, Figure 5 summarizes the relationship between the average grain size after secondary recrystallization annealing and the magnetic properties in the direction parallel to the rolling direction after hardening treatment. Shown below.

第5図から、2次再結晶焼鈍後の平均結晶粒径と磁気特
性との間には相関関係があり、平均結晶粒径を2.0.
m以上とすることによって圧延方向と平行な方向に著し
く優れた磁気持性が得られることが明らかである。
From FIG. 5, there is a correlation between the average grain size and magnetic properties after secondary recrystallization annealing, and the average grain size is 2.0.
It is clear that when the magnetic field is greater than or equal to m, extremely excellent magnetic properties can be obtained in the direction parallel to the rolling direction.

さらに実施例1〜6のデータに基いて、2次再結晶焼鈍
後の平均結晶粒径と、同じく2次再結晶m鈍後の(11
0}<100>集合組織の圧延方向と平行な方向への集
積度との関係をまとめた結果を第6図に示す。第6図か
ら、2次再結晶焼鈍後の平均結晶粒径と(110}<1
00>集合組織の圧延方向と平行な方向への集積度とは
相関関係があり、平均結晶粒径を2.0mm以上とする
ことによって50%以上と著しく高い集積度とすること
ができることが判る。
Further, based on the data of Examples 1 to 6, the average grain size after secondary recrystallization annealing and (11
0}<100> A summary of the relationship between the degree of accumulation of the texture in the direction parallel to the rolling direction is shown in FIG. From Figure 6, the average grain size after secondary recrystallization annealing and (110}<1
00> It can be seen that there is a correlation between the degree of accumulation of the texture in the direction parallel to the rolling direction, and by setting the average grain size to 2.0 mm or more, it is possible to achieve a significantly high degree of accumulation of 50% or more. .

したがって第5図、第6図の両者から、2次再結晶焼鈍
後の平均結晶粒径をz、omm以上とすることによって
、(110}<100>集合組織の圧□延方向に平行な
方向への集積度が50%以上と著しく高くなり、それに
伴なって圧延方向に平行な方向に著しく高い磁気特性が
得れることが明らかである。
Therefore, from both Fig. 5 and Fig. 6, by setting the average grain size after secondary recrystallization annealing to z, omm or more, the rolling direction of the (110} <100> texture □ direction parallel to the rolling direction It is clear that the degree of integration becomes significantly high at 50% or more, and as a result, significantly high magnetic properties can be obtained in the direction parallel to the rolling direction.

発明の効果 請求項1の発明の磁石合金は、Fe−CrCo系磁石合
金として、平均結晶粒径が2.0.m以上であって圧延
方向と平行な方向に(110)(100>軸が配向した
集合組織が高度に集積されたl111illiを有し、
そのため圧延方向と平行な方向に著しく優れた磁気特性
を示すことができる。
Effects of the Invention The magnetic alloy of the invention according to claim 1 is a Fe-CrCo based magnetic alloy having an average crystal grain size of 2.0. m or more and has a highly integrated texture with a (110) (100> axis oriented in a direction parallel to the rolling direction),
Therefore, it can exhibit extremely excellent magnetic properties in the direction parallel to the rolling direction.

また請求項2〜5の発明の製法によれば、上述のように
圧延方向に平行な方向に磁気特性が優れた磁石合金を確
実かつ安定して製造することができ、また冷間圧延を行
なわないため、製造コストの低減を図ることができると
ともに、冷間圧延工程の条件による特性のばらつきの発
生を解消して安定した品質の磁石合金を得ることができ
る。
Further, according to the manufacturing method of the invention according to claims 2 to 5, it is possible to reliably and stably manufacture a magnet alloy having excellent magnetic properties in the direction parallel to the rolling direction as described above, and also without performing cold rolling. Therefore, manufacturing costs can be reduced, and variations in characteristics due to conditions of the cold rolling process can be eliminated, making it possible to obtain a magnetic alloy of stable quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1および比較例1により得られた磁石合
金の硬質化処理後の各方向の磁気特性を熱間圧延工程の
1パス当り圧下率と対応しで示すグラフ、第2図は実施
例2および比較例2により得られた磁石合金の硬質化処
理後の各方向の磁気特性を熱間圧延工程の総圧下率と対
応して示すグラフ、第3図は実施例3および比較例3に
より得られた磁石合金の硬質化処理後の各方向の磁気特
性を熱間圧延工程の加熱温度と対応して示すグラ)、第
4図は2次再結晶焼鈍前の熱処理形態と2次再結晶焼鈍
後の平均粒径との関係を示すグラフ、第5図は2次再結
晶焼鈍後の平均結晶粒径と硬質化処理後の磁気特性との
関係を示すグラフ、第6図は2次再結晶焼鈍後の圧延方
向と平行な方向への(iio}<1oo>集合組織の集
積度と2次再結晶焼鈍後の平均結晶粒径との関係を示す
グラフである。 出願人  ヤ マ ハ 株式会社
Figure 1 is a graph showing the magnetic properties in each direction after hardening treatment of the magnetic alloys obtained in Example 1 and Comparative Example 1 in correspondence with the rolling reduction rate per pass of the hot rolling process. A graph showing the magnetic properties in each direction after hardening treatment of the magnetic alloys obtained in Example 2 and Comparative Example 2 in correspondence with the total rolling reduction of the hot rolling process, FIG. 3 is a graph showing the magnetic properties of Example 3 and Comparative Example Figure 4 shows the magnetic properties in each direction after hardening treatment of the magnetic alloy obtained in step 3 in correspondence with the heating temperature in the hot rolling process. Figure 4 shows the heat treatment form before secondary recrystallization annealing and the secondary A graph showing the relationship between the average grain size after recrystallization annealing, Figure 5 is a graph showing the relationship between the average grain size after secondary recrystallization annealing and the magnetic properties after hardening treatment, and Figure 6 is a graph showing the relationship between the average grain size after secondary recrystallization annealing and the magnetic properties after hardening treatment. It is a graph showing the relationship between the degree of accumulation of (iio}<1oo> texture in the direction parallel to the rolling direction after secondary recrystallization annealing and the average grain size after secondary recrystallization annealing. Applicant Yama C Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] (1)Cr10〜40%(重量%、以下同じ)およびC
o3〜30%を含有し、残部がFeを主体とするFe−
Cr−Co系磁石合金において、 平均結晶粒径が2.0mm以上でかつ圧延方向に平行な
方向に{110}<100>軸が配向された集合組織を
有することを特徴とするFe−Cr−Co系磁石合金。
(1) 10 to 40% Cr (weight%, same below) and C
Fe-
In the Cr-Co based magnetic alloy, a Fe-Cr- Co-based magnetic alloy.
(2)Cr10〜40%およびCo3〜30%を含有し
、残部がFeを主体とするFe−Cr−Co系磁石合金
を製造するにあたり、 合金溶湯を鋳造後、{(α+γ)相中、α相が50%存
在する温度+50℃}以上、{融点−50℃}以下の範
囲内の温度で熱間圧延を施し、続いて(α+γ)相領域
にて1次再結晶焼鈍を施し、さらに2次再結晶焼鈍を施
すことを特徴とするFe−Cr−Co系磁石合金の製法
(2) In producing a Fe-Cr-Co magnetic alloy containing 10 to 40% Cr and 3 to 30% Co, with the balance mainly consisting of Fe, after casting the molten alloy, Hot rolling is performed at a temperature within the range of the temperature at which 50% of the phase exists + 50°C} or more and the melting point - 50°C}, followed by primary recrystallization annealing in the (α + γ) phase region, and further 2 A method for producing a Fe-Cr-Co magnet alloy, which comprises performing secondary recrystallization annealing.
(3)Cr10〜40%およびCo3〜30%を含有し
、残部がFeを主体とするFe−Cr−Co系磁石合金
を製造するにあたり、 合金溶湯を鋳造後、{(α+γ)相中、α相が50%存
在する温度+50℃}以上、{融点−50℃}以下の範
囲内の温度で熱間圧延を施し、続いてα相領域にて1次
再結晶焼鈍を施した後、(α+γ)相領域での加熱処理
を施し、さらに2次再結晶焼鈍を施すことを特徴とする
Fe−Cr−Co系磁石合金の製法。
(3) In producing a Fe-Cr-Co magnetic alloy containing 10 to 40% Cr and 3 to 30% Co, with the balance mainly consisting of Fe, after casting the molten alloy, Hot rolling is carried out at a temperature within the range of 50% phase existence temperature + 50°C} or higher and {melting point -50°C} or lower, followed by primary recrystallization annealing in the α phase region, and then (α + γ ) A method for producing a Fe-Cr-Co based magnet alloy, which comprises performing heat treatment in the phase region and further performing secondary recrystallization annealing.
(4)Cr10〜40%およびCo3〜30%を含有し
、残部がFeを主体とするFe−Cr−Co系磁石合金
を製造するにあたり、 合金溶湯を鋳造後、{(α+γ)相中、α相が50%存
在する温度+50℃}以上、{融点−50℃}以下の範
囲内の温度で熱間圧延を施し、続いて(α+γ)相領域
にて1次再結晶焼鈍を施した後、(α+γ+σ)相領域
での加熱処理を施し、さらに2次再結晶焼鈍を施すこと
を特徴とするFe−Cr−Co系磁石合金の製法。
(4) In producing a Fe-Cr-Co magnetic alloy containing 10 to 40% Cr and 3 to 30% Co, with the balance mainly consisting of Fe, after casting the molten alloy, After performing hot rolling at a temperature within the range of not less than the temperature at which 50% of the phase exists + 50 ° C} and not more than {melting point - 50 ° C}, followed by primary recrystallization annealing in the (α + γ) phase region, A method for producing a Fe-Cr-Co magnet alloy, which comprises performing heat treatment in the (α+γ+σ) phase region and further performing secondary recrystallization annealing.
(5)Cr10〜40%およびCo3〜30%を含有し
、残部がFeを主体とするFe−Cr−Co系磁石合金
を製造するにあたり、 合金溶湯を鋳造後、{(α+γ)相中、α相が50%存
在する温度+50℃}以上、{融点−50℃}以下の範
囲内の温度で熱間圧延を施し、続いてα相領域にて1次
再結晶焼鈍を施した後、(α+γ)相領域での加熱処理
を施し、さらに(α+γ+σ)相領域での加熱処理を施
した後、2次再結晶焼鈍を施すことを特徴とするFe−
Cr−Co系磁石合金の製法。
(5) In producing a Fe-Cr-Co magnetic alloy containing 10 to 40% Cr and 3 to 30% Co, with the balance mainly consisting of Fe, after casting the molten alloy, Hot rolling is carried out at a temperature within the range of 50% phase existence temperature + 50°C} or higher and {melting point -50°C} or lower, followed by primary recrystallization annealing in the α phase region, and then (α + γ Fe-
Manufacturing method of Cr-Co magnet alloy.
JP6338889A 1989-03-15 1989-03-15 Magnet alloy and its manufacture Pending JPH02243745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6338889A JPH02243745A (en) 1989-03-15 1989-03-15 Magnet alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6338889A JPH02243745A (en) 1989-03-15 1989-03-15 Magnet alloy and its manufacture

Publications (1)

Publication Number Publication Date
JPH02243745A true JPH02243745A (en) 1990-09-27

Family

ID=13227866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6338889A Pending JPH02243745A (en) 1989-03-15 1989-03-15 Magnet alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPH02243745A (en)

Similar Documents

Publication Publication Date Title
CN103429775B (en) There is the preparation method of the grain-oriented electrical steel sheet of fine magnetic property
JP4653261B2 (en) Method for producing grain-oriented electrical steel strip with high magnetic properties from thin slabs
SK27999A3 (en) Process for the production of grain oriented electrical steel strip starting from thin slabs
JP2022545027A (en) 600MPa class non-oriented electrical steel sheet and manufacturing method thereof
KR100973406B1 (en) Method of forming rotated cube texture at metal sheets and electrical steel sheets manufactured by using the same
JPS63272007A (en) Ultra-high coercive force permanent magnet exhibiting maximum energy product and manufacture thereof
JP2639227B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP4075083B2 (en) Method for producing grain-oriented electrical steel sheet
JPH02243745A (en) Magnet alloy and its manufacture
JPH02213421A (en) Production of soft-magnetic steel stock
JP3551849B2 (en) Primary recrystallization annealed sheet for unidirectional electrical steel sheet
JPH02274844A (en) Silicon steel sheet excellent in magnetic property and its production
JPH04224624A (en) Manufacture of silicon steel sheet excellent in magnetic property
JP7428872B2 (en) Non-oriented electrical steel sheet and its manufacturing method
EP4180543A1 (en) Soft magnetic member and intermediate thereof, methods respectively for producing said member and said intermediate, and alloy for soft magnetic member
JPH02310316A (en) Production of nonoriented silicon steel sheet having developed (100)&lt;uvw&gt; aggregate structure
JPS62188756A (en) Grain-oriented foil of high saturation magnetic flux density and its production
JP4626046B2 (en) Method for producing semi-processed non-oriented electrical steel sheet
JPH0734127A (en) Ultrahigh silicon electrical steel sheet excellent in magnetic property and heat treating method therefor
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JPS61149432A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH0499819A (en) Production of mild magnetic steel products
JPH046221A (en) Production of double oriented silicon steel sheet
JPH08176666A (en) Production of grain oriented silicon steel sheet excellent in magnetic property
JP2752882B2 (en) Method for producing grain-oriented silicon steel sheet with good magnetic properties and few surface defects