JPH0224303B2 - - Google Patents

Info

Publication number
JPH0224303B2
JPH0224303B2 JP8470082A JP8470082A JPH0224303B2 JP H0224303 B2 JPH0224303 B2 JP H0224303B2 JP 8470082 A JP8470082 A JP 8470082A JP 8470082 A JP8470082 A JP 8470082A JP H0224303 B2 JPH0224303 B2 JP H0224303B2
Authority
JP
Japan
Prior art keywords
metal
needle
magnetic properties
thermoplastic resin
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8470082A
Other languages
Japanese (ja)
Other versions
JPS58204035A (en
Inventor
Yoshiaki Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
I Pex Inc
Original Assignee
Dai Ichi Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi Seiko Co Ltd filed Critical Dai Ichi Seiko Co Ltd
Priority to JP8470082A priority Critical patent/JPS58204035A/en
Publication of JPS58204035A publication Critical patent/JPS58204035A/en
Publication of JPH0224303B2 publication Critical patent/JPH0224303B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は良好な磁気特性を有していてしかも射
出成形の可能な軟磁性材料に関するものである。 従来、軟磁性材料として鉄等の金属粉に適当な
結合剤を加えて圧縮成形したものに、その圧縮成
形前又は圧縮成形後に外部磁場を加えて圧粉磁心
等にしたものは知られている。このような従来の
圧粉磁心等の製造に用いられる材料は、それを用
いて射出成形を行なおうとしても、材料の流動性
その他の成形条件等の関係から成形することが出
来ない。したがつて前述のようにそのすべてが圧
縮成形等の方法にて行われていた。しかしながら
圧縮成形による場合は、比較的複雑な形状や小型
の成形品を精度良く成形することは不可能であつ
た。例えば小さい歯車状のものをこの材料を用い
て圧縮成形にて作るのは困難であつて作り得たと
しても極めて小さい歯の形状や寸法を精度よく作
成することは出来ない。 本発明の目的は、針状の金属(例えば鉄)とフ
エライト粉末とに結合剤としての熱可塑性合成樹
脂とを混合し、これによつて金属とフエライトの
合計の混入量を比較的多くしても成形時の流動性
が十分保たれしたがつて射出成形可能にし、しか
も磁気特性を良好にし得る射出成形可能な磁性材
料を提供するものである。 本発明の磁性材料は針状金属(金属のフアイバ
ー)とフエライト粉とを混合した充填物と熱可塑
性樹脂との混合物であつて、結合材としての熱可
塑性樹脂が40〜60容量パーセントの範囲内の分量
よりなるものである。 一般に材料の粘度が増すと材料を加熱溶融した
時の流動性が減少して射出成形による成形が不可
能となる。又熱可塑性樹脂材料に針状金属を混入
する場合、針状金属の混入度が増大するにしたが
つて加熱溶融時の粘度が増大する。そのために針
状金属を混入した熱可塑性樹脂材料にて射出成形
を行なうためには針状金属の混入度に一定の限度
があり、この限度を越えた場合には射出成形が不
可能になる。したがつて針状金属を混入した材料
を用いて射出成形が可能なのは針状金属の混入率
が約30容量パーセント以内である。更に高配合の
材料で射出成形を行なう場合は、金属間で焼結を
おこして成形不能になる。そのために実際に射出
成形可能な針状金属の混入率の限度は一層低くな
り、例えば20容量パーセント以下の極めて低い混
入率でなければ射出成形出来ない。このような金
属混入率の低い材料では、射出成形は可能であつ
ても磁気特性が良好なものが得られない。 又熱可塑性樹脂材料にフエライトの粉末を混入
する場合、針状金属を混入する場合に比べてその
混入量が可成り大であつても射出成形は可能であ
る。しかしながらフエライト粉末を混入した熱可
塑性樹脂材料にて成形したものは、磁気特性があ
まり良くなく、これを多量に混入し成形可能な限
度まで混入したとしてもあまり良い磁気特性は得
られない。 本発明は針状金属とフエライト粉末とを熱可塑
性樹脂材料に混入する場合、射出成形可能な混入
量の針状金属とフエライトの合計の限度量が針状
金属のみ混入する場合の限度量より大巾に増大せ
しめ得ると共に磁気特性も改善し得る点に着目し
てなされたものである。そして前述のような範囲
内において充填材と結合材(熱可塑性樹脂)を配
合することによつて射出成形可能で磁気特性の良
好な磁性材料を得ることが出来る。 尚充填材のうちの針状金属は、全体の10〜40容
量パーセント又フエライト粉末は全体の10〜40容
量パーセントの範囲内であることが望ましいと考
えられる。 以上説明した本発明磁性材料の実施例について
説明する。 実施例 鉄フアイバー(針状の鉄) 25ν% フエライト粉 25ν% ナイロン 50ν% 上記構成よりなる実施例と従来例とを比較する
と次の表の通りである。
The present invention relates to a soft magnetic material that has good magnetic properties and can be injection molded. Conventionally, it is known that a soft magnetic material is made by compression molding metal powder such as iron with a suitable binder and applying an external magnetic field before or after the compression molding to form a powder magnetic core. . Even if injection molding is attempted using the materials used in the production of conventional powder magnetic cores, it is impossible to mold the materials due to the fluidity of the material and other molding conditions. Therefore, as mentioned above, all of these processes have been carried out by methods such as compression molding. However, when compression molding is used, it has been impossible to accurately mold relatively complex shapes or small molded products. For example, it is difficult to make a small gear-like item by compression molding using this material, and even if it could be made, it would not be possible to accurately make the shape and size of extremely small teeth. The object of the present invention is to mix needle-like metal (for example iron) and ferrite powder with a thermoplastic synthetic resin as a binder, thereby increasing the total amount of metal and ferrite. Another object of the present invention is to provide an injection-moldable magnetic material that maintains sufficient fluidity during molding and thus can be injection-molded and has good magnetic properties. The magnetic material of the present invention is a mixture of a filler made of a mixture of acicular metal (metal fiber) and ferrite powder and a thermoplastic resin, and the thermoplastic resin as a binder is in the range of 40 to 60% by volume. It consists of the amount of Generally, when the viscosity of a material increases, its fluidity when heated and melted decreases, making injection molding impossible. Further, when a needle-like metal is mixed into a thermoplastic resin material, the viscosity when heated and melted increases as the degree of mixing of the needle-like metal increases. Therefore, in order to carry out injection molding using a thermoplastic resin material mixed with acicular metal, there is a certain limit to the degree of incorporation of acicular metal, and if this limit is exceeded, injection molding becomes impossible. Therefore, injection molding using a material containing acicular metal is possible only when the acicular metal content is within about 30% by volume. Furthermore, when injection molding is performed using a material with a high blending ratio, sintering occurs between the metals, making molding impossible. For this reason, the limit on the mixing rate of needle metal that can actually be injection molded is even lower, and injection molding is only possible if the mixing rate is extremely low, for example, 20% by volume or less. Although injection molding is possible with such a material with a low metal content, it is difficult to obtain a material with good magnetic properties. Furthermore, when ferrite powder is mixed into the thermoplastic resin material, injection molding is possible even if the amount of ferrite powder mixed is considerably larger than when needle-like metal is mixed. However, products molded from thermoplastic resin materials mixed with ferrite powder do not have very good magnetic properties, and even if a large amount of this is mixed in to the moldable limit, very good magnetic properties cannot be obtained. The present invention provides that when needle metal and ferrite powder are mixed into a thermoplastic resin material, the total amount of needle metal and ferrite that can be mixed in by injection molding is larger than the limit amount when only needle metal is mixed. This was done with the focus on the fact that it can increase the width and also improve the magnetic properties. By blending the filler and the binder (thermoplastic resin) within the above-mentioned range, a magnetic material that can be injection molded and has good magnetic properties can be obtained. It is considered desirable that the acicular metal of the filler should be in the range of 10 to 40 percent by volume of the total, and that the ferrite powder should be in the range of 10 to 40 percent by volume of the total. Examples of the magnetic material of the present invention described above will be described. Example: Iron fiber (acicular iron): 25ν% Ferrite powder: 25ν% Nylon: 50ν% A comparison between the embodiment having the above structure and the conventional example is as shown in the following table.

【表】 上記表において(1)は鉄粉50ν%、ナイロン50ν%
よりなる材料で無配向の場合、(2)同じ材料で配向
した場合、(3)は鉄フアイバー50ν%、ナイロン50ν
%の材料で無配向の場合、(4)は(3)と同じ材料で配
向した場合、(5)は上記の本発明実施例のもので無
配向の場合、(6)は(5)と同じ材料で配向した場合で
ある。又上記の各例における特性を夫々第1図乃
至第6図に示してある。 上記の表および図面より明らかなように本発明
のものは他の鉄とナイロンの場合に比較して特性
が良好である。特に本発明の材料で配向したもの
は良好な特性を有している。又射出成形による加
工性においてもすぐれたものである。 尚配向による磁気特性に対する影響は針状の鉄
の長さ特に長さを直径で割つた値であるアスペク
ト比に関係すると考えられる。即ちアスペクト比
が大きい程磁気特性は良くなる。しかしアスペク
ト比が小さい程配向しやすくなる。したがつてア
スペクト比の適切な値の鉄を選ぶことによつて配
向による磁気特性を最も良くすることが望まし
い。本発明では針状の鉄の他のフエライト粉を混
入したことによつてアスペクト比の比較的大きい
針状の鉄であつてしかも良く配向されたものとな
つている。したがつて配向による効果が一層有効
に得られ、これによつて表に示すように配向した
場合において特に良好な磁気特性が得られる。 以上説明したように本発明の磁性材料は射出成
形が可能であつてしかも従来のものに比べて良好
な磁特性を有するものである。
[Table] In the above table, (1) is iron powder 50ν%, nylon 50ν%
(2) When the same material is oriented, (3) is 50ν% iron fiber and 50ν% nylon.
% of the material is non-oriented, (4) is the same material as (3) and is oriented, (5) is the same material as (3) and is non-oriented, (6) is the same as (5). This is the case when they are oriented using the same material. Further, the characteristics of each of the above examples are shown in FIGS. 1 to 6, respectively. As is clear from the above table and drawings, the properties of the material of the present invention are better than those of other iron and nylon materials. In particular, the oriented material of the present invention has good properties. It also has excellent processability by injection molding. It is believed that the influence of orientation on magnetic properties is related to the length of the needle-shaped iron, particularly the aspect ratio, which is the value obtained by dividing the length by the diameter. That is, the larger the aspect ratio, the better the magnetic properties. However, the smaller the aspect ratio, the easier the orientation becomes. Therefore, it is desirable to maximize the magnetic properties due to orientation by selecting iron with an appropriate aspect ratio. In the present invention, by mixing needle-shaped iron with other ferrite powder, needle-shaped iron has a relatively large aspect ratio and is well oriented. Therefore, the effect of orientation can be obtained more effectively, and as a result, particularly good magnetic properties can be obtained when the materials are oriented as shown in the table. As explained above, the magnetic material of the present invention can be injection molded and has better magnetic properties than conventional materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図はいずれも従来例の磁気特性
を示す図、第5図および第6図は本発明材料の磁
気特性を示す図である。
1 to 4 are diagrams showing the magnetic properties of the conventional example, and FIGS. 5 and 6 are diagrams showing the magnetic properties of the material of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 針状金属とフエライト粉末とよりなる充填物
と熱可塑性樹脂との混合物で熱可塑性樹脂が40乃
至60容量パーセントである射出成形可能な軟磁性
材料。
1. A soft magnetic material that can be injection molded, which is a mixture of a filling made of needle metal and ferrite powder and a thermoplastic resin, the thermoplastic resin being 40 to 60% by volume.
JP8470082A 1982-05-21 1982-05-21 Injection-moldable soft magnetic material Granted JPS58204035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8470082A JPS58204035A (en) 1982-05-21 1982-05-21 Injection-moldable soft magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8470082A JPS58204035A (en) 1982-05-21 1982-05-21 Injection-moldable soft magnetic material

Publications (2)

Publication Number Publication Date
JPS58204035A JPS58204035A (en) 1983-11-28
JPH0224303B2 true JPH0224303B2 (en) 1990-05-29

Family

ID=13837936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8470082A Granted JPS58204035A (en) 1982-05-21 1982-05-21 Injection-moldable soft magnetic material

Country Status (1)

Country Link
JP (1) JPS58204035A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109231882A (en) * 2018-10-12 2019-01-18 屠国存 A kind of preparation method of environmental protection magnetostriction materials

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109231882A (en) * 2018-10-12 2019-01-18 屠国存 A kind of preparation method of environmental protection magnetostriction materials

Also Published As

Publication number Publication date
JPS58204035A (en) 1983-11-28

Similar Documents

Publication Publication Date Title
JP4452240B2 (en) Soft magnetic composite powder and method for producing the same, and method for producing soft magnetic compact
JPH0224303B2 (en)
JPS59135705A (en) Resin magnet material
JPH01150304A (en) Composite magnetic molding material
JPS5944975B2 (en) Manufacturing method of anisotropic resin magnet
JPH04257203A (en) Plastic magnet composite
JPS60162604A (en) Manufacture of conductive pellet
JPS61296067A (en) Electrically-conductive resin composition
JPH05109516A (en) Composition for formation of bonded magnet, and bonded magnet
JPH01111305A (en) Plastic magnet composition
JPS59182819A (en) Electrically conductive molding material
JPH0512994Y2 (en)
JPS60216524A (en) Manufacture of permanent magnet
JP3312255B2 (en) Manufacturing method of bonded magnet
JPS58158903A (en) Combined magnetic material
JPS63185005A (en) Permanent magnet
JPH0620858A (en) Manufacture of ferrite core by injection molding
JPS59125603A (en) Permanent magnet material and manufacture thereof
JPS5910202A (en) Composite magnetic material
JPH0241364A (en) Electroconductive and thermoplastic resin composition having high rigidity
JPS6079701A (en) Manufacture of rare earth resin magnet
JPS5993737A (en) Manufacture of molding material of resin magnet
JP2002313615A (en) Plastic magnet composition
JP2756860B2 (en) Materials for polyamide plastic magnets
JPS62117306A (en) Anisotropic composite magnet and manufacture thereof