JPH02242886A - Hydrogenolysis reaction of hydrocarbon oil - Google Patents

Hydrogenolysis reaction of hydrocarbon oil

Info

Publication number
JPH02242886A
JPH02242886A JP24334189A JP24334189A JPH02242886A JP H02242886 A JPH02242886 A JP H02242886A JP 24334189 A JP24334189 A JP 24334189A JP 24334189 A JP24334189 A JP 24334189A JP H02242886 A JPH02242886 A JP H02242886A
Authority
JP
Japan
Prior art keywords
catalyst
hydrocarbon oil
hydrogen
raw material
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24334189A
Other languages
Japanese (ja)
Inventor
Shigeo Makino
重雄 牧野
Hiroshi Suzumura
洋 鈴村
Masami Kondo
正實 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP21325482A external-priority patent/JPS59105084A/en
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP24334189A priority Critical patent/JPH02242886A/en
Publication of JPH02242886A publication Critical patent/JPH02242886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To contrive to improve the contact efficiency between fluid and catalyst layer by preventing the pressure loss and block formation in catalyst layer by means of disposing the raw material-supplying tube with a double pipe structure onto a catalyst-filling reactor, and blowing raw material oil and hydrogen gas supplied from the upper portion of the reactor to the lower portion of the catalyst layer under indirect preheating of the raw material oil and hydrogen gas, respectively. CONSTITUTION:A hydrocarbon oil from the upper portion of a raw material- supplying pipe 1 and hydrogen gas in an amount of 1.5-3 times that of the hydrocarbon oil from the upper portion of a raw material pipe 2 indirectly pre-heated by the heating of a catalyst layer 3, respectively, are supplied into a reactor filled with the catalyst having an average particle size of 0.2-8mm, and simultaneously carried downward, followed by blowing both the raw material oil and hydrogen gas into the lower portion of the catalyst layer 3 in a high speed. Thereby, the particulate catalyst, the hydrocarbon oil and the hydrogen gas are mixed with stirring and boiled to perform the liquid phase hydrogenation reaction while preserving conditions of temperature at 340-480 deg.C and pressure of 50-300kg/cm<2>G.

Description

【発明の詳細な説明】 本発明は触媒の存在下で炭化水素油類を水素で処理する
方法に関する。更に詳しくは、本発明は高圧、高温のも
とで重質炭化水素油類の触媒反応処理によって水素化分
解を行なう方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for treating hydrocarbon oils with hydrogen in the presence of a catalyst. More specifically, the present invention relates to an improvement in a method for hydrocracking heavy hydrocarbon oils by catalytic reaction treatment under high pressure and high temperature.

重質油類の水素化処理は、経済的に好ましいにも拘らず
多くの困難な問題点があった。これらの問題点の一つは
、触媒物質上にコークを生成し、触媒層の閉塞を伴うこ
とであった。第二の問題は、生起する反応が著しい発熱
反応である場合に、安定でしかも満足な反応温度を保持
することの難かしさにあった。
Although hydroprocessing of heavy oils is economically preferable, there are many difficult problems. One of these problems was the formation of coke on the catalytic material, with accompanying blockage of the catalytic bed. A second problem was the difficulty of maintaining a stable and satisfactory reaction temperature when the reaction that occurs is highly exothermic.

本発明の目的は、触媒物質上のコークの生成による触媒
層の圧力損失や閉塞がなく、マた流体と触媒層との接触
効率をよくすることによって装置の小容量化が計れるよ
うな炭化水素油の水素化分解反応方法を提供することに
ある。
It is an object of the present invention to provide a hydrocarbon solution that eliminates pressure loss and blockage of the catalyst layer due to the formation of coke on the catalyst material, and that allows the capacity of the device to be reduced by improving the contact efficiency between the catalyst fluid and the catalyst layer. An object of the present invention is to provide a method for hydrocracking reaction of oil.

米国特許第2987465号明細書は固体が膨張した状
態にあり、塊の静止状態に比して少なくとも10%大き
な容積を占めて、ガス−液体系の中で不規則な運動をし
ているような状態で、ガス、液体および固体を接触させ
ることについて記載している。液体またはガス−液体相
中でこのように不規則運動をしている固体粒子の集団は
1沸騰している”と呼ぶことができる。
U.S. Pat. No. 2,987,465 discloses that the solid is in an expanded state, occupying at least 10% more volume than in the resting state of the mass, and is in irregular motion within a gas-liquid system. describes the contacting of gases, liquids, and solids under conditions. A population of solid particles in such irregular motion in a liquid or gas-liquid phase can be called a "boiling".

沸騰床では従来、通常の固定床反応装置で経験した炭素
生成によって生ずる大きな圧力降下や閉塞による困難を
完全に取り除くことができ、更には固定床反応装置では
異常な圧力損失のために本質的に適用不可能であったよ
うな比較的小粒径の極めて活性の高い触媒粒子の使用が
可能になっている。
Ebullated beds completely eliminate the difficulties traditionally experienced in conventional fixed bed reactors due to large pressure drops and blockages caused by carbon formation, and even moreover, fixed bed reactors inherently suffer from the It has now become possible to use highly active catalyst particles of relatively small particle size, which would otherwise not have been possible.

しかしながら、従来の沸騰床反応を行う際には原料(重
質炭化水素油及び水素ガス)を反応装置下部より供給し
て流動化させていた。この方法では原料を下部より供給
するために供給ノズルへの触媒の蓄積、並びに液、ガス
の分散を高めるために分配装置、例えば分散板のような
ものを必要とする。
However, when performing a conventional ebullated bed reaction, raw materials (heavy hydrocarbon oil and hydrogen gas) were supplied from the lower part of the reactor and fluidized. This method requires a distribution device, such as a distribution plate, to increase the accumulation of catalyst in the feed nozzle and the dispersion of liquids and gases in order to feed the raw material from below.

しかし、この方法では以下に記す種々の欠点を有してい
る。
However, this method has various drawbacks as described below.

その第一は分配装置による分散効果の不規則性である。The first is the irregularity of the dispersion effect due to the distribution device.

すなわち原料供給ノズルより供給される液、ガスを気−
液一固相の接触効率を高めるために反応器の下部に分配
装置を配置する必要がある。−船釣にも、分配装置の選
定は困難を有している上に、触媒の不規則運動による摩
耗片等の詰りによって分配効果の変化が起こるというよ
うに、効果的な分配装置を提供することは困難を有する
。また、前記した触媒摩耗片による分配装置の詰りによ
って圧力損失の上昇が引起され、ひいては装置全体の停
止も考えられる事態を生ずる。
In other words, the liquid and gas supplied from the raw material supply nozzle are
In order to increase the contact efficiency of liquid and solid phase, it is necessary to place a distribution device at the bottom of the reactor. - For boat fishing, it is difficult to select a distribution device, and the distribution effect changes due to clogging with wear particles caused by irregular movement of the catalyst, so it is necessary to provide an effective distribution device. That has its difficulties. In addition, clogging of the distribution device due to the catalyst wear debris causes an increase in pressure loss, which may even lead to a shutdown of the entire device.

また、構造的にも分配装置の取付、ノズル等の増加によ
り反応器の下部が複雑な構造を呈し、触媒の完全抜出し
、洗浄等が困難であるという欠点を有している。
In addition, structurally, the lower part of the reactor has a complicated structure due to the installation of a distribution device, the increase in the number of nozzles, etc., and it has the disadvantage that it is difficult to completely extract the catalyst, clean it, etc.

本発明は、これら従来のものの欠点を克服するためにな
されたもので、経時的圧力損失がなく、かつ温度制御が
容易であり、さらに微細な粒径の触媒を使用し得るもの
で、しかも重質油に対して有効な水素化分解方法を提供
するものである。
The present invention has been made to overcome the drawbacks of these conventional methods, and has no pressure loss over time, easy temperature control, the ability to use catalysts with finer particle sizes, and a heavy weight catalyst. This provides an effective hydrocracking method for quality oil.

本発明は触媒を充填した反応容器内に、二重管構造の原
料供給管を設は該供給管上部から原料油と水素を供給し
、その間に両者を触媒層の間接加熱で予熱し、原料油と
水素を触媒層下部に噴出して原料油と水素、触媒を攪拌
混合させて反応をおこなわせるものである。
In the present invention, a raw material supply pipe with a double pipe structure is installed in a reaction vessel filled with a catalyst, and raw material oil and hydrogen are supplied from the upper part of the supply pipe, and in the meantime, both are preheated by indirect heating of the catalyst layer. Oil and hydrogen are injected into the lower part of the catalyst layer, and the raw oil, hydrogen, and catalyst are stirred and mixed to cause a reaction.

すなわち、本発明は高温、高圧のもとで触媒を介して液
状油に水素を接触させこれを水素化分解するに当り、平
均粒径0.2〜8 mmの触媒が充填された反応器内に
、外部の上部から連続的に供給される炭化水素油を該触
媒と否接触状態、で熱交換せしめながら触媒層中を下方
に向って通過せしめるとともに、同じく外部の上部から
該炭化水素油中の1.5〜3倍最の水素を該炭化水素油
及び前記触媒と否接触の状態で熱交換せしめながら下方
に向って給送した後、前記炭化水素油を前記反応器の底
部中央に向けて噴出せしめ、さらに噴出している炭化水
素油中に前記。
That is, in the present invention, when hydrogen is brought into contact with liquid oil through a catalyst under high temperature and high pressure to hydrocrack it, hydrogen is added to the liquid oil in a reactor filled with a catalyst having an average particle size of 0.2 to 8 mm. Hydrocarbon oil is continuously supplied from the upper part of the outside and passed through the catalyst layer downward while exchanging heat with the catalyst in a non-contact state, and the hydrocarbon oil is also supplied from the upper part of the outside into the hydrocarbon oil. After feeding 1.5 to 3 times the maximum amount of hydrogen downward while exchanging heat with the hydrocarbon oil and the catalyst in a non-contact state, the hydrocarbon oil is directed toward the center of the bottom of the reactor. The above-mentioned gas is ejected into the hydrocarbon oil that is gushing out.

水素を高速度で分散噴出せしめることによって、前記粒
状触媒、炭化水素油及び水素を攪拌混合させて340〜
480℃、  50〜300kg/cdG内における所
定の実質的に等温1等圧の条件下において沸騰させなが
ら液相水素化することを特徴とする炭化水素油の水素化
分解方法である。
By dispersing and ejecting hydrogen at high speed, the granular catalyst, hydrocarbon oil, and hydrogen are stirred and mixed.
This is a method for hydrocracking hydrocarbon oil, characterized by carrying out liquid phase hydrogenation while boiling under predetermined substantially isothermal and isobaric conditions at 480° C. and 50 to 300 kg/cdG.

以下、第1図、第2図に示す実施例にもとづいて本発明
を説明する。図中1は液状油供給管(外管)で水素供給
管2との二重管の形状で反応器4の下方部まで挿入され
ている。以下、これを総称して原料供給管と云う。
The present invention will be explained below based on the embodiments shown in FIGS. 1 and 2. In the figure, reference numeral 1 denotes a liquid oil supply pipe (outer pipe) which is inserted to the lower part of the reactor 4 in the form of a double pipe with the hydrogen supply pipe 2. Hereinafter, this will be collectively referred to as the raw material supply pipe.

液状油と水素は、原料供給管出口にて混合、分散され、
流動化している触媒層内3に供給される。液状油及び水
素は前記原料供給管1. 2内を流下する間に前記触媒
層3と間接的に熱交換することによって夫々所定の温度
まで予熱される。図中4は本発明方法を実施する反応器
で、反応器4内の触媒及び水素と反応した液状油は、よ
り分子量の小さい油及び水素の流れとして抜出管5より
流出する。
Liquid oil and hydrogen are mixed and dispersed at the raw material supply pipe outlet.
It is supplied to the fluidized catalyst bed 3. Liquid oil and hydrogen are supplied to the raw material supply pipe 1. By indirectly exchanging heat with the catalyst layer 3 while flowing through the catalyst layer 2, the catalyst layer 2 is preheated to a predetermined temperature. 4 in the figure is a reactor for carrying out the method of the present invention, and the liquid oil that has reacted with the catalyst and hydrogen in the reactor 4 flows out from the extraction pipe 5 as a flow of oil with a smaller molecular weight and hydrogen.

触媒の供給は触媒供給管6より行ない、抜出しは触媒抜
出管7より行なう。この場合、触媒の抜出しは反応器4
内に分配装置を持たない構造であるため、困難を呈する
ことなく簡潔に全量の抜出しが可能である。
The catalyst is supplied through a catalyst supply pipe 6, and extracted through a catalyst withdrawal pipe 7. In this case, the catalyst is removed from the reactor 4.
Since the structure does not have a dispensing device inside, the entire amount can be easily extracted without any difficulty.

原料供給管l及び2の詳細を第2図に示す。Details of the raw material supply pipes 1 and 2 are shown in FIG.

液状油は供給管1より供給されノズル8から反応器4の
底部に向って流出するが、このノズル8は流出部にて絞
られており、ある流速を持って常時反応器4内に流出さ
れる。このため、ノズル8へ触媒粒子が詰まることはな
い。本発明者らの実験によれば水素供給量/液供給量(
−〇/L)が2〜3の場合において、ノズル8の有効断
面積を水素供給管2の断面積の1〜2倍とすることが、
最も有効な分散効果を与えることが証明された。
Liquid oil is supplied from the supply pipe 1 and flows out from the nozzle 8 toward the bottom of the reactor 4, but this nozzle 8 is constricted at the outflow section, so that it constantly flows out into the reactor 4 at a certain flow rate. Ru. Therefore, the nozzle 8 is not clogged with catalyst particles. According to experiments conducted by the inventors, hydrogen supply amount/liquid supply amount (
-〇/L) is 2 to 3, making the effective cross-sectional area of the nozzle 8 1 to 2 times the cross-sectional area of the hydrogen supply pipe 2,
It was proven to give the most effective dispersion effect.

水素供給管2は流出部に多数の水素噴出口9を底部及び
円周部に持ち、噴流となって流出した液状油と混合、分
散し、流動化している触媒層内3に供給される。
The hydrogen supply pipe 2 has a large number of hydrogen jet ports 9 at the bottom and the circumference of the hydrogen supply pipe 2, and is mixed with and dispersed with the liquid oil that flows out as a jet, and is supplied to the inside of the catalyst bed 3 where it is fluidized.

本実験によれば、G/L=2〜3に保つ場合、可成りの
撹乱流と反応器4の上部〜底部管の混合が得られ、最低
流動化速度Marを水素の空塔速度v9と同等以上とす
ることができるため、多くの場合、水素化反応装置にお
ける温度調節の手段が実質的に不要となることが判った
。炭化水素油及び水素との熱交換と分散仮にかえ、ノズ
ル開口8及び小間口9を備えた二重管1,2の利用によ
る流動化速度の均等化により温度が安定するものと考え
られる。また、通常の場合に起る反応器4内の温度勾配
は、上部〜底部間の混合によって平均化され実質的に消
失する。
According to this experiment, when G/L is maintained at 2 to 3, considerable turbulent flow and mixing from the top to bottom pipes of the reactor 4 are obtained, and the minimum fluidization velocity Mar is set to the superficial velocity of hydrogen v9. It has been found that in many cases, temperature control means in the hydrogenation reactor are essentially unnecessary because the temperature can be maintained at the same level or higher. Instead of heat exchange and dispersion with the hydrocarbon oil and hydrogen, it is thought that the temperature is stabilized by equalizing the fluidization speed by using the double pipes 1 and 2 equipped with the nozzle opening 8 and the small opening 9. Furthermore, the temperature gradient within the reactor 4 that normally occurs is averaged out and substantially eliminated by the mixing from the top to the bottom.

従って、本発明方法により通常より微細な物質を用いれ
ば、内部循環流(反応器上部〜底部間の撹乱混合)を保
持する際の困難を伴なわず、あるいは反応による発熱制
御に広く用いられる低温水素による冷却方式におけるコ
ストを必要としない。
Therefore, if the method of the present invention uses finer than usual substances, there will be no difficulty in maintaining the internal circulation flow (turbulent mixing between the top and bottom of the reactor), or the low temperature that is widely used to control the heat generated by the reaction. Eliminates the cost of hydrogen cooling methods.

また、本発明方法によると、分配装置を持たない反応装
置が用いることができるので、詰りによる圧力損失の増
加の原因がなくなり、したがって低圧損で実施が可能で
あり、かつ経時的圧力損失の増加がないという有利性が
ある。
In addition, according to the method of the present invention, a reactor without a distribution device can be used, so there is no cause for increased pressure loss due to clogging, and therefore it can be carried out with low pressure loss, and there is no increase in pressure loss over time. It has the advantage of not having

第3.4.5図に実施例での重質炭化水素油の水素化分
解結果を示す。
Figure 3.4.5 shows the results of hydrocracking of heavy hydrocarbon oil in Examples.

この実施例では20印φの水素供給管、ノズル先端部4
0IIIO1φの液体油供給管よりなる一体構造の二重
管を備えた3 00 ramφX3000市長さの反応
管に、平均粒径1.6IIIIlのN1−M系アルミナ
触媒(Ni口 :3.4wt%、 M、oOa : 1
9.8 wt%Al2O3:残部)又はCo−Mo系ア
ルミナ触媒(CoO:3.3wt% 、  Mo口a:
14wt% 、 ^1203  :  残部)を充填し
、水素供給機2 m’/h (循環水素量40ff+3
7h±25%)、シェルオイル供給量1 m3/h(循
環シェルオイル20m3/l+±25%)を夫々水素供
給管、液体油供給管より水素及びシェルオイルを供給、
循環させ、平均温度380℃(初期触媒活性高い時期は
340℃、後期触媒活性低下時期は420℃)、平均圧
力150kg/ ad Gの条件で行った。
In this embodiment, a hydrogen supply pipe with a diameter of 20 marks and a nozzle tip 4 are used.
A N1-M alumina catalyst (Ni port: 3.4 wt%, M , oOa: 1
9.8 wt% Al2O3: balance) or Co-Mo-based alumina catalyst (CoO: 3.3 wt%, Mo a:
14wt%, ^1203: remainder) and hydrogen supply machine 2 m'/h (circulating hydrogen amount 40ff+3
7 hours ± 25%), shell oil supply amount 1 m3/h (circulating shell oil 20 m3/l + ± 25%), hydrogen and shell oil were supplied from the hydrogen supply pipe and liquid oil supply pipe, respectively.
The reaction was carried out under conditions of an average temperature of 380° C. (340° C. during the period of high initial catalytic activity, 420° C. during the period of lower catalytic activity at the later stage) and an average pressure of 150 kg/ad G.

第3図は本実施例へと、比較例Bとして[1=1(液状
油及び水素)を反応器下部より分配装置を通して沸騰床
内へ供給した場合の圧力損失と液空塔速度の関係を示す
。共に水素量を一定とした場合で、図に示すように、本
実施例△は約Aと低く、また従来例Bでは、液空塔速度
が増加するに1.たがって圧力損失は上昇する傾向にあ
るが、本実施例ではその傾向は見られない。
Figure 3 shows the relationship between pressure drop and liquid superficial velocity when 1=1 (liquid oil and hydrogen) is supplied from the bottom of the reactor through the distribution device into the boiling bed as Comparative Example B. show. In both cases, when the amount of hydrogen is constant, as shown in the figure, the present example Δ is as low as about A, and in the conventional example B, as the liquid superficial velocity increases, it is 1. Therefore, the pressure loss tends to increase, but this tendency is not seen in this example.

これは分配装置固有の圧力損失の堆大であり、本実施例
の如く、分配装置を持たない場合では前記現象が皆無で
あることは明白である。
This is a result of the pressure loss inherent to the distribution device, and it is clear that the above phenomenon does not occur at all in the case where the distribution device is not provided, as in this embodiment.

第4図は反応器内圧力損失の経時変化を示すもので、従
来例Bの沸騰床形反応器では、経時的に圧力損失の増加
が見られたが、本実施例Aではその傾向は見られなかっ
た。
Figure 4 shows the change in pressure loss within the reactor over time. In the ebullated bed reactor of Conventional Example B, an increase in pressure loss was observed over time, but in this Example A, this tendency was not observed. I couldn't.

解放点検の結果では、分配装置(分散板)を持つ従来例
では分散板に触媒粉(混合による摩耗片)による部分的
な詰りを生じてあり、その結果、圧力損失の増加を招い
たものであると理解できる。
The results of the open inspection showed that in conventional models with a distribution device (dispersion plate), the distribution plate was partially clogged with catalyst powder (wear debris from mixing), which resulted in an increase in pressure loss. I can understand that there is.

第5図は、実施例Aと従来例Bとを比較した水素化分解
率とG/LをCH2O(=供給液状油量/触媒層容積)
一定の下で示す。図に示すように、G/Lが1.5以下
では、本実施例への場合従来例Bに比較し低い分解率を
示すが、これは水素量が少ないため充分な流動現象が得
られないこと、また本発明によ、る場合、水素ガス供給
管2が反応器内中央に位置しているため部分流動となる
ためである。しかしながら充分な流動を呈するG/L=
15〜3では水素化分解率はほとんど変わらないことが
解る。
Figure 5 shows the hydrocracking rate and G/L of Example A and Conventional Example B compared with CH2O (=supplied liquid oil amount/catalyst bed volume).
Shown under constant. As shown in the figure, when G/L is 1.5 or less, the decomposition rate of this example is lower than that of conventional example B, but this is because the amount of hydrogen is small and sufficient flow phenomenon cannot be obtained. This is also because, in accordance with the present invention, the hydrogen gas supply pipe 2 is located at the center of the reactor, resulting in partial flow. However, G/L which exhibits sufficient flow =
It can be seen that the hydrogenolysis rate remains almost unchanged for 15 to 3.

次に第6図に水素ガス供給管2の異なる実施例を示す。Next, a different embodiment of the hydrogen gas supply pipe 2 is shown in FIG.

(a)例は、水素ガスの分散効果を高めるため、無数の
小口径の噴出口9−1を持つものである。
Example (a) has numerous small-diameter jet ports 9-1 in order to enhance the dispersion effect of hydrogen gas.

小さい気泡とする程、ガス量に対する比表面積は大きく
なり反応効率を高め、本発明者らの実験によれば充分な
流動を与える。G/L=2〜3においては分配装置を持
つ従来と比較しても、分散効果はほとんど変わらないこ
とが証明された。
The smaller the bubbles are, the larger the specific surface area relative to the amount of gas is, increasing the reaction efficiency, and according to experiments conducted by the present inventors, sufficient flow is provided. It has been proven that when G/L=2 to 3, the dispersion effect is almost the same compared to the conventional method having a distribution device.

(b)例は水素ガス噴出口9−2がその横断面図である
(b′)に示すようにら線状を持っており、水素ガスの
噴出により触媒層に回転する力を与えるもので、G/L
の低い場合において効果を発揮するものである。実験の
結果では、G/L=1付近では、(a)例に比較して水
素化分解率は高くなる結果を得た。また充分な流動を与
えるG/L=2〜3では触媒層の外側が上昇流、中央部
が下降流という循環形態を呈し、反応器の温度調節はほ
とんど不要であった。
In the example (b), the hydrogen gas ejection port 9-2 has a spiral shape as shown in its cross-sectional view (b'), and the ejection of hydrogen gas gives a rotating force to the catalyst layer. , G/L
This is effective in cases where the The experimental results showed that when G/L=1, the hydrogenolysis rate was higher than in Example (a). In addition, when G/L=2 to 3, which provides sufficient flow, a circulation pattern was formed in which the outside of the catalyst layer was an upward flow and the central part was a downward flow, and temperature control of the reactor was almost unnecessary.

次に、第7図を用いて本発明方法を実施する場合の全体
のフローを説明する。供給液状油及び水素ガスをそれぞ
れ液状油供給管1及び水素ガス供給管2で構成された二
重管にて流動触媒3を充填した反応器4に注入し、反応
器内で50kg/cdG 〜300kg/cjG 、 
 340℃〜480℃で水素化分解を行なわせ、しかる
後、気液混合物5を気液分離器10へ送入し、ガス生成
物12、液状体生成物13推びに水素循環流14、外部
液体循環流15に分離し、水素循環流14及び外部液体
循環流15はそれぞれ水素供給管2、液状油供給管1に
合流する。また器液混合物5に一部同伴した触媒は固形
分貯槽11より排出する。
Next, the overall flow when implementing the method of the present invention will be explained using FIG. The supplied liquid oil and hydrogen gas are injected into a reactor 4 filled with a fluidized catalyst 3 through a double pipe composed of a liquid oil supply pipe 1 and a hydrogen gas supply pipe 2, respectively, and the reaction rate is 50 kg/cdG to 300 kg within the reactor. /cjG,
Hydrocracking is carried out at 340° C. to 480° C., after which the gas-liquid mixture 5 is fed to a gas-liquid separator 10, which produces a gas product 12, a liquid product 13, a hydrogen recycle stream 14, and an external liquid. The hydrogen circulating flow 14 and the external liquid circulating flow 15 are separated into a circulating flow 15 and join the hydrogen supply pipe 2 and the liquid oil supply pipe 1, respectively. Further, the catalyst partially entrained in the vessel liquid mixture 5 is discharged from the solid content storage tank 11.

以上の実施例においては平均粒径1.6 mmの触媒に
ついて述べたものであるが、触媒の平均粒径の小さい場
合(約0.3mm)、大きい場合(5ops)について
も実施例と同様な効果が得られることを確認した。
In the above example, a catalyst with an average particle size of 1.6 mm was described, but the same method as in the example can be applied to cases where the average particle size of the catalyst is small (approximately 0.3 mm) or large (5 ops). We confirmed that it was effective.

なお、本触媒の活性成分としてはCo−Mo系シリカア
ルミナ、Ni1o系シリカアルミナ、N iM。
The active components of this catalyst include Co-Mo silica alumina, Ni1o silica alumina, and NiM.

P2O5−−アルミナを用いつる。P2O5--Vine using alumina.

以上のように、本発明方法は低圧損で経時的圧力損失の
増加がなく、構造的にも簡単でコンバク)・な反応器を
用いることができ、かつ高い水素化分解率が得られ、又
、水素化反応による大きな発熱及び温度勾配を容易に解
消しつる水素化分解反応方法であり、また、底部に付属
物がないため触媒の抜出しが非常に簡単に行えるという
実用上有用な反応方法と云える。
As described above, the method of the present invention has low pressure drop, no increase in pressure loss over time, can use a structurally simple and compact reactor, and can obtain a high hydrogenolysis rate. This is a hydrocracking reaction method that easily eliminates the large heat generation and temperature gradient caused by the hydrogenation reaction, and is also a practically useful reaction method in that the catalyst can be removed very easily since there are no appendages at the bottom. I can say that.

又、本発明方法で使用する反応器4の上部に液状油供給
管1及び水素供給管2を二重管として一体的にまとめた
ものが図示されていないフランジを介して取付けられて
反応器4内に吊下げられているため、液状油の性状その
他の条件が変更され、液状油あるいは水素の噴出速度や
方向等を変更する必要が生じた際には、上記フランジを
取外し原料供給管1.2を反応器4外に引出してノズル
8あるいは水素ガス噴出出口9を簡単に取換えることが
できる。
Further, a double pipe integrally combining the liquid oil supply pipe 1 and the hydrogen supply pipe 2 is attached to the upper part of the reactor 4 used in the method of the present invention via a flange (not shown). Since the liquid oil is suspended inside the raw material supply pipe 1, if the properties or other conditions of the liquid oil change and it becomes necessary to change the jetting speed or direction of the liquid oil or hydrogen, the flange can be removed and the raw material supply pipe 1. 2 can be pulled out of the reactor 4 and the nozzle 8 or hydrogen gas outlet 9 can be easily replaced.

【図面の簡単な説明】[Brief explanation of drawings]

題1図は本発明方法を実施するための装置の1例を示す
縦断面図であり、第2図は第1図の二重管構造を呈する
原料供給管部分の拡大図であり、第3図、第4図、第5
図は本発明方法による効果を示すグラフであり、第6図
は本発明方法で使用する反応器の原料供給管の別の態様
を示す側面図および横断面図であり、第7図は本発明方
法の一例のフロー図である。
Figure 1 is a longitudinal cross-sectional view showing an example of an apparatus for carrying out the method of the present invention, Figure 2 is an enlarged view of the raw material supply pipe section exhibiting a double pipe structure in Figure 1, and Figure 3 Figure, Figure 4, Figure 5
The figure is a graph showing the effects of the method of the present invention, Figure 6 is a side view and cross-sectional view showing another embodiment of the raw material supply pipe of the reactor used in the method of the present invention, and Figure 7 is a graph showing the effects of the method of the present invention. FIG. 2 is a flow diagram of an example method.

Claims (1)

【特許請求の範囲】[Claims] (1)高温、高圧のもとで触媒を介して液状油に水素を
接触させこれを水素化分解するに当り、平均粒径0.2
〜8mmの触媒が充填された反応器内に、外部の上部か
ら連続的に供給される炭化水素油を該触媒と否接触状態
で熱交換せしめながら触媒層中を下方に向って通過せし
めるとともに、同じく外部の上部から該炭化水素油の1
.5〜3倍量の水素を該炭化水素油及び前記触媒と否接
触の状態で熱交換せしめながら下方に向って給送した後
、前記炭化水素油を前記反応器の底部中央に向けて噴出
せしめ、さらに噴出している炭化水素油中に前記水素を
高速度で分散噴出せしめることによって、前記粒状触媒
、炭化水素油及び水素を攪拌混合させて340〜480
℃、50〜 300kg/cm^2G内における所定の実質的に等温
、等圧の条件下において沸騰させながら液相水素化する
ことを特徴とする炭化水素油の水素化分解方法。
(1) When hydrogen is brought into contact with liquid oil through a catalyst under high temperature and high pressure to hydrocrack it, the average particle size is 0.2.
In a reactor filled with ~8 mm of catalyst, hydrocarbon oil is continuously supplied from the top of the outside and passed through the catalyst layer downward while exchanging heat with the catalyst in a non-contact state, and 1 of the hydrocarbon oil from the upper part of the outside.
.. After feeding 5 to 3 times the amount of hydrogen downward while exchanging heat with the hydrocarbon oil and the catalyst in a non-contact state, the hydrocarbon oil is jetted toward the center of the bottom of the reactor. Further, by dispersing and ejecting the hydrogen into the ejected hydrocarbon oil at a high speed, the granular catalyst, hydrocarbon oil, and hydrogen are stirred and mixed to achieve a 340 to 480
A method for hydrocracking hydrocarbon oil, characterized by carrying out liquid phase hydrogenation while boiling under predetermined substantially isothermal and isobaric conditions at 50 to 300 kg/cm^2G.
JP24334189A 1982-12-07 1989-09-21 Hydrogenolysis reaction of hydrocarbon oil Pending JPH02242886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24334189A JPH02242886A (en) 1982-12-07 1989-09-21 Hydrogenolysis reaction of hydrocarbon oil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP21325482A JPS59105084A (en) 1982-12-07 1982-12-07 Process and apparatus for hydrocracking of hydrocarbon oil
JP24334189A JPH02242886A (en) 1982-12-07 1989-09-21 Hydrogenolysis reaction of hydrocarbon oil

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP21325482A Division JPS59105084A (en) 1982-12-07 1982-12-07 Process and apparatus for hydrocracking of hydrocarbon oil

Publications (1)

Publication Number Publication Date
JPH02242886A true JPH02242886A (en) 1990-09-27

Family

ID=26519688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24334189A Pending JPH02242886A (en) 1982-12-07 1989-09-21 Hydrogenolysis reaction of hydrocarbon oil

Country Status (1)

Country Link
JP (1) JPH02242886A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187029A (en) * 1981-04-29 1982-11-17 Inst Francais Du Petrole Method and apparatus for taking out of solid particle and introducing liquid preparation in lower part of contact region

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187029A (en) * 1981-04-29 1982-11-17 Inst Francais Du Petrole Method and apparatus for taking out of solid particle and introducing liquid preparation in lower part of contact region

Similar Documents

Publication Publication Date Title
JP3984656B2 (en) Slurry hydrocarbon synthesis process for filtering product through downcomer
US2987465A (en) Gas-liquid contacting process
AU2005218950B2 (en) Gas distributor for a reactor
US2419245A (en) Regenerating carbon contaminated catalysts
JP2001526587A (en) Slurry hydrocarbon synthesis method by external product filtration
KR101937431B1 (en) Apparatus and method for hydroconversion
KR100478175B1 (en) Process and reactor for carrying out conversions with catalysts suspended in liquids
JPH05212298A (en) Method and device for conducting heat exchange of solid particles for double regeneration in catalytic cracking
US3151060A (en) Process and apparatus for liquid-gas reactions
US2488406A (en) Method and apparatus for conducting chemical reactions
US10363535B1 (en) Gas-liquid-solid three-phase slurry bed industrial reactor capable of achieving continuous operation
JP5097324B2 (en) Slurry hydrocarbon synthesis increases the activity of new catalysts during hydrocarbon production.
US6099720A (en) Method and device for descending catalytic cracking by injecting feedstock at an adequate angle on a conditioned catalyst
US7332138B2 (en) Jet mixing of process fluids in fixed bed reactor
US2968614A (en) Liquid phase hydrogenation of petroleum fractions
US2506221A (en) Catalytic synthesis of hydrocarbons
RU2384603C1 (en) Reaction system with bubble column type suspended layer for fischer-tropsch synthesis
JPS60137991A (en) Solid supply method and device
JPH10216501A (en) Slurry bed reactor
JPH02242886A (en) Hydrogenolysis reaction of hydrocarbon oil
NO116829B (en)
JPH0249359B2 (en)
JP2761435B2 (en) Hydrocarbon treatment of gas-containing feeds in countercurrent moving catalyst beds.
CS207552B2 (en) Method of remowing the soot from the free suspension of soot
JPS61287438A (en) Dispersing device for three phase fluidized bed reactor