JPH0249359B2 - - Google Patents

Info

Publication number
JPH0249359B2
JPH0249359B2 JP57213254A JP21325482A JPH0249359B2 JP H0249359 B2 JPH0249359 B2 JP H0249359B2 JP 57213254 A JP57213254 A JP 57213254A JP 21325482 A JP21325482 A JP 21325482A JP H0249359 B2 JPH0249359 B2 JP H0249359B2
Authority
JP
Japan
Prior art keywords
reactor
hydrogen
catalyst
liquid
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57213254A
Other languages
Japanese (ja)
Other versions
JPS59105084A (en
Inventor
Shigeo Makino
Hiroshi Suzumura
Masami Kondo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP21325482A priority Critical patent/JPS59105084A/en
Publication of JPS59105084A publication Critical patent/JPS59105084A/en
Priority to JP24334189A priority patent/JPH02242886A/en
Publication of JPH0249359B2 publication Critical patent/JPH0249359B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 本発明は触媒の存在下で炭化水素油類を水素で
処理する装置に関する。更に詳しくは、本発明は
高圧、高温のもとで重質炭化水素油類の触媒反応
処理によつて水素化分解を行う装置の改良に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for treating hydrocarbon oils with hydrogen in the presence of a catalyst. More specifically, the present invention relates to an improvement in an apparatus for hydrocracking heavy hydrocarbon oils by catalytic reaction treatment under high pressure and high temperature.

重質油類の水素化処理は、経済的に好ましいに
も拘らず多くの困難な問題点があつた。これらの
問題点の一つは、触媒物質上にコークを生成し、
触媒層の閉塞を伴うことであつた。第二の問題
は、生起する反応が著しい発熱反応である場合
に、安定でしかも満足な反応温度を保持すること
の難かしさにあつた。
Although the hydroprocessing of heavy oils is economically preferable, there are many difficult problems. One of these problems is the formation of coke on the catalyst material,
This was accompanied by clogging of the catalyst layer. A second problem has been the difficulty of maintaining a stable and satisfactory reaction temperature when the reaction that occurs is highly exothermic.

本発明の目的は、触媒物質上のコークの生成に
よる、触媒層の圧力損失や閉塞がなく、また流体
と触媒層との、接触効率をよくすることによつて
装置の小容量化が計れるような構造な簡単な水素
化分解反応器を提供することにある。
The purpose of the present invention is to eliminate pressure loss and blockage of the catalyst layer due to the formation of coke on the catalyst material, and to reduce the capacity of the device by improving the contact efficiency between the fluid and the catalyst layer. The object of the present invention is to provide a simple hydrocracking reactor with a simple structure.

米国特許第2987465号明細書は、固体が膨張し
た状態にあり、塊の静止状態に比して少なくとも
10%大きな容積を占めて、ガス−液体系の中で不
規則な運動をしているような状態で、ガス、液体
および固体を接触させることについて記載してい
る。液体またはガス−液体中でこのように不規則
運動をしている固体粒子の集団は“沸騰してい
る”と呼ぶことができる。沸騰床では従来、通常
の固定床反応装置で経験した、炭素生成によつて
生ずる大きな圧力降下や閉塞による困難を完全に
取り除くことができ、更には固定床反応装置では
異常な圧力損失のために本質的に適用不可能であ
つたような比較的小粒径の極めて、活性の高い触
媒粒子の使用が可能になつている。
U.S. Pat. No. 2,987,465 discloses that the solid is in an expanded state and has at least
It describes contacting gases, liquids, and solids in such a way that they occupy 10% more volume and are in irregular motion within a gas-liquid system. A population of solid particles in such irregular motion in a liquid or gas-liquid can be called "boiling." Ebullated beds can completely eliminate the difficulties traditionally experienced in conventional fixed bed reactors due to large pressure drops and blockages caused by carbon formation, and even more so due to the abnormal pressure drop in fixed bed reactors. It has become possible to use very highly active catalyst particles of relatively small particle size that would otherwise have been inapplicable.

しかしながら、従来の沸騰床反応装置では原料
(重質炭化水素油及び水素ガス)を反応装置下よ
り供給し、いわゆる流動化させていた。この装置
では原料を下部より供給するために供給ノズルへ
の触媒の蓄積、並びに液、ガスの分散を高めるた
めに分配装置、例えば分散板のようなものを必要
とする。
However, in conventional ebullated bed reactors, raw materials (heavy hydrocarbon oil and hydrogen gas) are supplied from below the reactor and are fluidized. This device requires a distribution device, such as a dispersion plate, to increase the accumulation of catalyst in the feed nozzle and the dispersion of liquids and gases in order to feed the raw material from below.

しかし、この方法では以下に記す種々の欠点を
有している。
However, this method has various drawbacks as described below.

その第一は分配装置による分散効果の不規則性
である。すなわち原料供給ノズルより供給される
液、ガスを気−液−固相の接触効率を高めるため
に反応器の下部に分配装置を配置する必要があ
る。一般的にも、分配装置の選定は困難を有して
いる上に、触媒の不規則運動による摩耗片等の詰
りによつて分配効果の変化が起こるというよう
に、効果的な分配装置を提供することは困難を有
する。また、前記した触媒摩耗片による分配装置
の詰りによつて、圧力損失の上昇が引起され、ひ
いては装置全体の停止も考えられる事態を生ず
る。
The first is the irregularity of the dispersion effect due to the distribution device. That is, it is necessary to arrange a distribution device at the bottom of the reactor in order to increase the efficiency of gas-liquid-solid phase contact of the liquid and gas supplied from the raw material supply nozzle. In general, it is difficult to select a distribution device, and the distribution effect changes due to clogging with wear particles caused by irregular movement of the catalyst. It is difficult to do. Further, clogging of the distribution device due to the catalyst wear debris causes an increase in pressure loss, which may even lead to a shutdown of the entire device.

また、構造的にも分配装置の取付、ノズル等の
増加により反応器の下部が複雑な構造を呈し、触
媒の完全抜出し、洗浄等が困難であるという欠点
を有している。
In addition, structurally, the lower part of the reactor has a complicated structure due to the installation of a distribution device, the increase in the number of nozzles, etc., and it has the disadvantage that it is difficult to completely extract the catalyst, clean it, etc.

本発明は、これら従来のものの欠点を克服する
ために為されたもので、経済的圧力損失がなく、
かつ温度制御が容易であり、さらに微細な粒径の
触媒を使用し得るもので、しかも重質油に対して
有効な水素化分解反応装置を提供するものであ
る。
The present invention has been made to overcome the drawbacks of these conventional methods, and has no economic pressure loss.
Furthermore, the present invention provides a hydrocracking reactor that is easy to control temperature, allows the use of a catalyst with a finer particle size, and is effective for heavy oil.

すなわち、本発明は高温高圧反応器の上部に、
その一端が外部に開口し前記反応器の中央部を貫
通して底部に達する他端が絞られたノズル開口と
なつている液状油供給外管と、該外管の前記ノズ
ル開口から僅かな間〓を隔てて前記外管内に挿入
されその一端を外部に開口し前記ノズル開口から
突出した他端部に多数の小開口を備えた水素供給
内管とからなる二重管として構成された原料供給
管と、該反応器とこれに続く気液分離器とを接続
する気液混合物抜出管とを備えてなることを特徴
とする炭化水素油の水素化分解反応装置である。
That is, in the present invention, in the upper part of the high temperature and high pressure reactor,
a liquid oil supply outer pipe whose one end is open to the outside, passes through the center of the reactor and reaches the bottom, and whose other end is a constricted nozzle opening; A raw material supply configured as a double pipe consisting of a hydrogen supply inner pipe inserted into the outer pipe with one end open to the outside and a hydrogen supply inner pipe having a large number of small openings at the other end protruding from the nozzle opening. This is a hydrocracking reaction apparatus for hydrocarbon oil, characterized by comprising a pipe and a gas-liquid mixture extraction pipe connecting the reactor and a gas-liquid separator following the reactor.

本発明の装置は高温、高圧のもとで触媒を介し
て液状油に水素を接触させこれを水素化分解する
に当り、平均粒径0.2〜8mmの触媒が充填された
前記高温高圧反応器内に外部の上部から前記液状
油供給外管を介して連続的に供給される炭化水素
油を該触媒と否接触状態で熱交換せしめながら下
部に向かつて触媒層中を通過せしめるとともに、
同じく外部の上部から前記水素供給内管を介して
該炭化水素油中にその1.5〜3倍量の水素を該炭
化水素油と否接触の状態で熱交換せしめながら下
部に向かつて給送した後、前記炭化水素油を前記
反応器の底部中央に向けて噴出せしめ、さらに噴
出している炭化水素油中に前記水素を高速度で分
散噴出せしめることによつて、前記粒状触媒、炭
化水素油及び水素を撹拌混合させて340〜480℃、
50〜300Kg/cm2G内における所定の実質的に等温、
等圧の条件下において沸騰させながら液相水素化
を行わせ、未反応液状油と水素とを前記気液分離
器で分離し、それぞれを原料として循環使用する
ように操業される。
In the apparatus of the present invention, when hydrogen is brought into contact with liquid oil through a catalyst under high temperature and high pressure to hydrocrack it, the high temperature and high pressure reactor is filled with a catalyst having an average particle size of 0.2 to 8 mm. The hydrocarbon oil is continuously supplied from the upper part of the outside through the liquid oil supply outer pipe and is caused to pass through the catalyst layer toward the lower part while exchanging heat with the catalyst in a non-contact state, and
Similarly, 1.5 to 3 times the amount of hydrogen is fed into the hydrocarbon oil from the upper part of the outside through the hydrogen supply inner pipe toward the lower part while exchanging heat with the hydrocarbon oil in a non-contact state. , the granular catalyst, the hydrocarbon oil and Stir and mix hydrogen at 340-480℃,
a predetermined substantially isothermal temperature within 50-300 Kg/cm 2 G;
It is operated in such a way that liquid phase hydrogenation is carried out while boiling under conditions of equal pressure, unreacted liquid oil and hydrogen are separated in the gas-liquid separator, and each is recycled as a raw material.

以下、第1図、第2図に示す実施例にもとづい
て本発明を説明する。図中1は液状油供給(外
管)で水素供給管2との二重管の形状で反応器4
の下方部まで挿入されている。以下、これを総称
して原料供給管と云う。
The present invention will be explained below based on the embodiments shown in FIGS. 1 and 2. In the figure, 1 is the liquid oil supply (outer pipe), which is in the form of a double pipe with the hydrogen supply pipe 2, and is the reactor 4.
It is inserted all the way to the bottom. Hereinafter, this will be collectively referred to as the raw material supply pipe.

液状油と水素は、原料供給管出口にて混合、分
散され、流動化している触媒層内3に供給され
る。液状油及び水素は前記原料供給管1,2内を
流下する間に前記触媒層3と間接的に熱交換する
ことによつて夫々所定の温度まで予熱される。図
中4は、本発明の反応器で反応器4内の触媒及び
水素と反応した液状油は、より分子量の小さい油
及び水素の流れとして抜出管5より流出する。
The liquid oil and hydrogen are mixed and dispersed at the outlet of the raw material supply pipe, and are supplied to the fluidized catalyst bed 3. The liquid oil and hydrogen are preheated to predetermined temperatures by indirectly exchanging heat with the catalyst layer 3 while flowing down through the raw material supply pipes 1 and 2, respectively. In the figure, 4 indicates the reactor of the present invention, and the liquid oil that has reacted with the catalyst and hydrogen in the reactor 4 flows out from the extraction pipe 5 as a flow of oil with a smaller molecular weight and hydrogen.

触媒の供給は触媒供給管6より行ない、抜出し
は触媒抜出管7より行なう。この場合、触媒の抜
出しは反応器4内に分配装置を持たない構造であ
るため、困難を呈することなく簡潔に全量の抜出
しが可能である。
The catalyst is supplied through a catalyst supply pipe 6, and extracted through a catalyst withdrawal pipe 7. In this case, since the reactor 4 does not have a distribution device for removing the catalyst, the entire amount can be easily removed without any difficulty.

原料供給管1及び2の詳細を第2図に示す。液
状油は供給管1より供給されノズル8から反応器
4の底部に向つて流出するが、このノズル8は流
出部にて絞られており、ある流速を持つて常時反
応器4内に流出される。このため、ノズル8へ触
媒粒子が詰まることとはない。本発明者らの実験
によれば水素供給量/液供給量(=G/L)が2
〜3の場合において、ノズル8の有効断面積を水
素供給管2の断面積の1〜2倍とすることが、最
も有効な分散効果を与えることが証明された。
Details of the raw material supply pipes 1 and 2 are shown in FIG. Liquid oil is supplied from the supply pipe 1 and flows out from the nozzle 8 toward the bottom of the reactor 4, but this nozzle 8 is constricted at the outflow section, so that it always flows out into the reactor 4 at a certain flow rate. Ru. Therefore, the nozzle 8 will not be clogged with catalyst particles. According to experiments conducted by the present inventors, hydrogen supply amount/liquid supply amount (=G/L) is 2.
In cases 3 to 3, it has been proven that setting the effective cross-sectional area of the nozzle 8 to 1 to 2 times the cross-sectional area of the hydrogen supply pipe 2 provides the most effective dispersion effect.

水素供給管2は流出部に多数の水素噴出口9を
底部及び円周部に持ち、噴流となつて流出した液
状油と混合、分散し、流動化している触媒層内3
に供給される。
The hydrogen supply pipe 2 has a large number of hydrogen spout ports 9 at the bottom and the circumference at the outflow portion, and the hydrogen supply pipe 2 has a large number of hydrogen jet ports 9 at the bottom and the circumference, and the hydrogen supply pipe 2 has a large number of hydrogen spout ports 9 at the bottom and the circumference, and the hydrogen supply pipe 2 has a large number of hydrogen spouts 9 at the bottom and the circumference, and the inside of the catalyst layer 3 is mixed with and dispersed with the liquid oil that flows out as a jet and is fluidized.
is supplied to

本実験によれば、G/L=2〜3に保つ場合、
可成りの撹乱流と反応器4の上部〜底部間の混合
が得られ、最低流動化速度Vnfを水素の空塔速度
Vgと同等以上とすることができるため、多くの
場合、水素化反応装置における温度調節の手段が
実質的に不要となることが判つた。
According to this experiment, when maintaining G/L=2 to 3,
Considerable turbulence and mixing between the top and bottom of reactor 4 is obtained, reducing the minimum fluidization velocity V nf to the superficial velocity of hydrogen.
It has been found that since it can be made equal to or higher than V g , in many cases a means for temperature control in the hydrogenation reactor is essentially unnecessary.

(炭化水素油及び水素との熱交換と分散板に代り
ノズル開口8及び小開口9を備えた二重管1,2
の利用による流動化速度の均等化により温度が安
定するものと考えられる。)また、通常の場合に
起る反応器4内の温度勾配は、上部〜底部間の混
合によつて平均化され実質的に消失する。
(Double pipes 1 and 2 equipped with nozzle openings 8 and small openings 9 in place of heat exchange with hydrocarbon oil and hydrogen and dispersion plates)
It is thought that the temperature is stabilized by equalizing the fluidization speed by using . ) Also, the temperature gradient within the reactor 4 that normally occurs is averaged out and virtually eliminated by the mixing from top to bottom.

従つて、本発明の反応器4を用いると通常より
微細な物質を用いれば、内部循環流(反応器上部
〜底部間の撹乱混合)を保持する際の困難を伴な
わず、あるいは反応による発熱制御に広く用いら
れる低温水素による冷却方式におけるコストを必
要としない。
Therefore, if the reactor 4 of the present invention is used with finer substances than usual, there will be no difficulty in maintaining the internal circulation flow (turbulent mixing between the top and bottom of the reactor), or there will be no heat generation due to the reaction. It does not require the cost of cooling methods using low-temperature hydrogen, which are widely used for control.

また、本形式の反応装置は分配装置を持たない
ため詰りによる圧力損失の増加の原因となること
はなく、したがつて低圧損であり、かつ経時的圧
力損失の増加がない。
Furthermore, since this type of reactor does not have a distribution device, it does not cause an increase in pressure loss due to clogging, so the pressure loss is low and there is no increase in pressure loss over time.

第3,4,5図に実施例での重質炭化水素油の
水素化分解結果を示す。この実施例では20mmφの
水素供給管、ノズル先端部40mmφの液体油供給管
よりなる一体構造の二重管を備えた300mmφ×
3000mm長さの反応管に、平均粒径1.6mmのNi−
Mo系アルミナ触媒(NiO:3.4wt%、MoO3
19.8wt%、Al2O3:残部)又はCo−Mo系アルミ
ナ触媒(CoO:3.3wt%、MoO3:14wt%、
Al2O3:残部)を充填し、水素供給量2m3/h
(循環水素量40m3/h±25%)、シエルオイル供給
量1m3/h(循環シエルオイル量20m3/h±25%)
を夫々水素供給管、液体油供給管より水素及びシ
エルオイルを供給、循環させ、平均温度380℃
(初期触媒活性高い時期は340℃、後期触媒活性低
下時期は420℃)、平均圧力150Kg/cm2Gの条件で
行つた。第3図は本実施例Aと、比較例Bとして
原料(液状油及び水素)を反応器下部より分配装
置を通して沸騰床内へ供給した場合の圧力損失と
液空塔速度の関係を示す。共に水素量を一定とし
た場合で、図に示すように、本実施例Aは約1/
2と低く、また従来例Bでは、液空塔速度が増加
するにしたがつて圧力損失は上昇する傾向にある
が、本実施例ではその傾向は見られない。これは
分配装置固有の圧力損失の増大であり、本実施例
の如く、分配装置を持たない場合では前記現象が
皆無であることは明白である。
Figures 3, 4, and 5 show the results of hydrocracking of heavy hydrocarbon oil in Examples. In this example, a 300 mmφ x
Ni− with an average particle size of 1.6 mm was placed in a 3000 mm long reaction tube.
Mo-based alumina catalyst (NiO: 3.4wt%, MoO 3 :
19.8wt%, Al2O3 : balance ) or Co-Mo alumina catalyst (CoO: 3.3wt%, MoO3 : 14wt%,
Al 2 O 3 (remaining part) is charged and hydrogen supply amount is 2 m 3 /h.
(Circulating hydrogen amount 40m 3 /h ±25%), Shell oil supply amount 1m 3 /h (Circulating shell oil amount 20m 3 /h ±25%)
Hydrogen and shell oil are supplied and circulated through the hydrogen supply pipe and liquid oil supply pipe respectively, and the average temperature is 380℃.
(340°C during the initial period of high catalytic activity, 420°C during the latter period of decreased catalytic activity) and an average pressure of 150 Kg/cm 2 G. FIG. 3 shows the relationship between pressure loss and liquid superficial velocity in the case of Example A and Comparative Example B in which raw materials (liquid oil and hydrogen) were supplied from the lower part of the reactor through the distribution device into the ebullated bed. In both cases, when the amount of hydrogen is constant, as shown in the figure, in this example A, the amount of hydrogen is approximately 1/1
In Conventional Example B, the pressure loss tends to increase as the superficial liquid velocity increases, but this tendency is not observed in this example. This is an increase in pressure loss inherent to the distribution device, and it is clear that the above phenomenon does not occur at all in the case where the distribution device is not provided, as in this embodiment.

第4図は反応器内圧力損失の経時変化を示すも
ので、従来例Bの沸騰床形反応器では、経時的に
圧力損失の増加が見られたが、本実施例Aではそ
の傾向は見られなかつた。
Figure 4 shows the change in pressure loss within the reactor over time. In the ebullated bed reactor of Conventional Example B, an increase in pressure loss was observed over time, but in this Example A, this tendency was not observed. I couldn't help it.

開放点検の結果では、分配装置(分散板)を持
つ従来例では分散板に触媒粉(混合による摩耗
片)による部分的な詰りを生じており、その結
果、圧力損失の増加を招いたものであると理解で
きる。
The results of the overhaul inspection revealed that in conventional models equipped with a distribution device (dispersion plate), the dispersion plate was partially clogged with catalyst powder (wear debris from mixing), which resulted in an increase in pressure loss. I can understand that there is.

第5図は、実施例Aと従来例Bとを比較した水
素化分解率とG/LをCHSU(=供給液状油量/
触媒層容積)一定の下で示す。図に示すように、
G/Lが1.5以下では、本実施例Aの場合、従来
例Bに比較し、低い分解率を示すが、これは水素
量が少ないため充分な流動現象が得られないこ
と、また本発明による水素ガス供給管2が反応器
内中央に位置しているため部分流動となるためで
ある。しかしながら充分な流動を呈するG/L=
1.5〜3では水素化分解率はほとんど変らないこ
とが解る。
Figure 5 shows the hydrocracking rate and G/L of CHSU (=supplied liquid oil amount/
Catalyst layer volume) shown under constant conditions. As shown in the figure,
When G/L is 1.5 or less, Example A exhibits a lower decomposition rate than Conventional Example B, but this is because a sufficient flow phenomenon cannot be obtained due to the small amount of hydrogen, and also because the present invention This is because the hydrogen gas supply pipe 2 is located at the center of the reactor, resulting in partial flow. However, G/L which exhibits sufficient flow =
It can be seen that the hydrogenolysis rate hardly changes between 1.5 and 3.

次に第6図に水素ガス供給管2の異なる実施例
を示す。
Next, a different embodiment of the hydrogen gas supply pipe 2 is shown in FIG.

a例は、水素ガスの分解効果を高めるため、無
数の小径口の噴出口9−1を持つものである。小
さい気泡とする程、ガス量に対する比表面積は大
きくなり、反応効率を高め、本発明者らの実験に
よれば、充分な流動を与える。G/L=2〜3に
おいては分配装置を持つ従来と比較しても、分散
効果はほとんど変らないことが証明された。
Example a has numerous small-diameter jet ports 9-1 in order to enhance the hydrogen gas decomposition effect. The smaller the bubbles, the larger the specific surface area relative to the amount of gas, which increases the reaction efficiency and, according to the inventors' experiments, provides sufficient flow. It has been proven that when G/L=2 to 3, the dispersion effect is almost unchanged compared to the conventional method having a distribution device.

b例は水素ガス噴出口9−2がその横断面図で
あるbに示すようにら線状の形状を持つており、
水素ガスの噴出により触媒層に回転する力を与え
るもので、G/Lの低い場合において効果を発揮
するものである。実験の結果では、G/L=1付
近では、a例に比較して水素化分解率は高くなる
結果を得た。また充分な流動を与えるG/L=2
〜3では触媒層の外側が上昇流、中央部が下降流
という循環形態を呈し、反応器の温度調節はほと
んど不要であつた。
In example b, the hydrogen gas outlet 9-2 has a spiral shape as shown in its cross-sectional view b,
It applies rotational force to the catalyst layer by ejecting hydrogen gas, and is effective when G/L is low. The experimental results showed that when G/L=1, the hydrogenolysis rate was higher than in Example a. Also, G/L = 2, which provides sufficient flow.
-3 exhibited a circulation pattern in which the outside of the catalyst layer was an upward flow and the central part was a downward flow, and temperature control of the reactor was almost unnecessary.

次に、第7図を用いて全体のフローを述べる。
供給液状油及び水素ガスをそれぞれ液状油供給管
1及び水素ガス供給管2で構成された二重管にて
流動触媒3を充填した反応器4に注入し、反応器
内で50Kg/cm2G〜300Kg/cm2G、340〜480℃で水
素化分解を行なわせ、しかる後、気液混合物5を
気液分離器10へ送入し、ガス生成物12、液状
体生成物13並びに水素循環流14、外部液体循
環流15に分離し、水素循環流14及び外部液体
循環流15はそれぞれ水素供給管2、液状油供給
管1に合流する。また気液混合物5に一部同伴し
た触媒は固形分貯槽11より排出する。
Next, the overall flow will be described using FIG.
The supplied liquid oil and hydrogen gas were injected into a reactor 4 filled with a fluidized catalyst 3 through a double pipe composed of a liquid oil supply pipe 1 and a hydrogen gas supply pipe 2, respectively, and 50Kg/cm 2 G in the reactor. Hydrogenolysis is carried out at ~300 Kg/cm 2 G and 340 ~ 480°C, and then the gas-liquid mixture 5 is sent to the gas-liquid separator 10 to produce a gas product 12, a liquid product 13, and hydrogen circulation. The hydrogen circulating flow 14 and the external liquid circulating flow 15 are separated into a hydrogen supply pipe 2 and a liquid oil supply pipe 1, respectively. Further, the catalyst partially entrained in the gas-liquid mixture 5 is discharged from the solid content storage tank 11.

以上の実施例においては平均粒径1.6mmの触媒
について述べたものであるが、触媒の平均粒径の
小さい場合(約0.3mm)、大きい場合(5mm)につ
いても実施例と同様な効果が得られることを確認
した。
Although the above example describes a catalyst with an average particle size of 1.6 mm, the same effect as in the example can be obtained when the average particle size of the catalyst is small (approximately 0.3 mm) or large (5 mm). It was confirmed that

なお、本触媒の活性成分としてはCo−Mo系シ
リカアルミナ、Ni−Mo系シリカアルミナ、
NiMo−P2O5−アルミナを用いた。
The active components of this catalyst include Co-Mo silica alumina, Ni-Mo silica alumina,
NiMo- P2O5 - alumina was used.

以上のように、本発明装置は低圧損で経時的圧
力損失の増加がなく、構造的にも簡単でコンパク
ト、かつ高い水素化分解率が得られ、又、水素化
反応による大きな発熱及び温度勾配を容易に解消
しうる水素化分解反応装置であり、また、底部に
は付属物がないためその構造が簡単で、触媒の抜
出しが非常に簡単に行なえるという実用上有用な
反応装置である。
As described above, the device of the present invention has a low pressure drop, no increase in pressure loss over time, is simple and compact in structure, and can achieve a high hydrogenolysis rate. This is a hydrocracking reactor that can easily solve the problem, and since there are no appendages at the bottom, the structure is simple, and the catalyst can be extracted very easily, making it a practically useful reactor.

又、反応器4の上部に液状油供給管1及び水素
供給管2を二重管として一体的にまとめたもの
が、図示されていないフランジを介して取付けら
れ反応器4内に吊下げられているため、液状油の
性状その他の条件が変更され、液状油あるいは水
素の噴出速度や方向等を変更する必要が生じた際
には、上記フランジを取外し原料供給管1,2を
反応器4外に引出してノズル8あるいは水素ガス
噴出口9を簡単に取換えることができる。
Furthermore, a double pipe in which the liquid oil supply pipe 1 and the hydrogen supply pipe 2 are integrated is attached to the upper part of the reactor 4 via a flange (not shown) and suspended within the reactor 4. Therefore, if the properties or other conditions of the liquid oil change and it becomes necessary to change the jetting speed or direction of the liquid oil or hydrogen, remove the flanges and connect the raw material supply pipes 1 and 2 to the outside of the reactor 4. The nozzle 8 or the hydrogen gas spout 9 can be easily replaced by pulling it out.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明装置の1例を縦断面図であり、
第2図は第1図の二重管構造を呈する原料供給管
部分の拡大図であり、第3図、第4図、第5図は
本発明装置による効果を示すグラフであり、第6
図は原料供給管の別の態様を示す側面図および横
断面図であり、第7図は本発明装置の操作例の説
明図である。
FIG. 1 is a longitudinal sectional view of an example of the device of the present invention,
FIG. 2 is an enlarged view of the raw material supply pipe portion exhibiting the double pipe structure in FIG.
The figures are a side view and a cross-sectional view showing another embodiment of the raw material supply pipe, and FIG. 7 is an explanatory diagram of an example of operation of the apparatus of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 高温高圧反応器の上部に、その一端が外部に
開口し前記反応器の中央部を貫通して底部に達す
る他端が絞られたノズル開口となつている液状油
供給外管と、該外管の前記ノズル開口から僅かな
間〓を隔てて前記外管内に挿入されその一端を外
部に開口し前記ノズル開口から突出した他端部に
多数の小開口を備えた水素供給内管とからなる二
重管として構成された原料供給管と、該反応器と
これに続く気液分離器とを接続する気液混合物抜
出管とを備えてなることを特徴とする炭化水素油
の水素化分解反応装置。
1. At the top of the high-temperature, high-pressure reactor, there is a liquid oil supply outer pipe whose one end is open to the outside and which passes through the center of the reactor and reaches the bottom, with the other end serving as a constricted nozzle opening; The hydrogen supply inner tube is inserted into the outer tube at a short distance from the nozzle opening of the tube, has one end open to the outside, and has a large number of small openings at the other end protruding from the nozzle opening. Hydrocracking of hydrocarbon oil, characterized by comprising a raw material supply pipe configured as a double pipe, and a gas-liquid mixture withdrawal pipe connecting the reactor and a subsequent gas-liquid separator. Reactor.
JP21325482A 1982-12-07 1982-12-07 Process and apparatus for hydrocracking of hydrocarbon oil Granted JPS59105084A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21325482A JPS59105084A (en) 1982-12-07 1982-12-07 Process and apparatus for hydrocracking of hydrocarbon oil
JP24334189A JPH02242886A (en) 1982-12-07 1989-09-21 Hydrogenolysis reaction of hydrocarbon oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21325482A JPS59105084A (en) 1982-12-07 1982-12-07 Process and apparatus for hydrocracking of hydrocarbon oil

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP24334189A Division JPH02242886A (en) 1982-12-07 1989-09-21 Hydrogenolysis reaction of hydrocarbon oil

Publications (2)

Publication Number Publication Date
JPS59105084A JPS59105084A (en) 1984-06-18
JPH0249359B2 true JPH0249359B2 (en) 1990-10-29

Family

ID=16636049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21325482A Granted JPS59105084A (en) 1982-12-07 1982-12-07 Process and apparatus for hydrocracking of hydrocarbon oil

Country Status (1)

Country Link
JP (1) JPS59105084A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948703A (en) * 1972-05-12 1974-05-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948703A (en) * 1972-05-12 1974-05-11

Also Published As

Publication number Publication date
JPS59105084A (en) 1984-06-18

Similar Documents

Publication Publication Date Title
US2987465A (en) Gas-liquid contacting process
KR101274902B1 (en) Apparatus and process for regenerating catalyst
US5770629A (en) Slurry hydrocarbon synthesis with external product filtration
CA1259578A (en) Back-mixed hydrotreating reactor
US5158919A (en) Catalyst regeneration in a single stage regenerator converted to a two stage high efficiency regenerator
JP3732226B2 (en) FCC catalyst stripper
KR101937431B1 (en) Apparatus and method for hydroconversion
US10363535B1 (en) Gas-liquid-solid three-phase slurry bed industrial reactor capable of achieving continuous operation
US6517706B1 (en) Hydrocracking of heavy hydrocarbon oils with improved gas and liquid distribution
CN104549067A (en) Heavy oil hydrogenation slurry bed reactor and heavy oil hydrogenation method
US2968614A (en) Liquid phase hydrogenation of petroleum fractions
AU729543B2 (en) Gas and solids reducing slurry downcomer
JP2001503080A (en) Descending contact cracking method and apparatus using injection of charge at an appropriate angle to the conditioning catalyst
JPH0249359B2 (en)
US4804458A (en) Process for collecting vapor in ebullated bed reactors
US2959537A (en) Fluid hydroforming process and apparatus
JPS60137991A (en) Solid supply method and device
AU2021343870B2 (en) Molten salts reactor systems for methane pyrolysis
US2740750A (en) Method and apparatus for fluidized catalytic conversion
JPH02242886A (en) Hydrogenolysis reaction of hydrocarbon oil
JPH0263547A (en) Entrainment fluidized bed reactor equipped with solid particle flow control means and use thereof
US4950459A (en) Vapor collection and process for ebullated bed reactors
JPH0572439B2 (en)
JPH05507946A (en) Hydrocarbon processing of gas-containing feeds in a countercurrently transferred catalyst bed
CN211754831U (en) Slurry bed reactor for heavy oil hydrogenation