JPH02241663A - Method for ingot-making of chromium and chromium alloy - Google Patents
Method for ingot-making of chromium and chromium alloyInfo
- Publication number
- JPH02241663A JPH02241663A JP6120089A JP6120089A JPH02241663A JP H02241663 A JPH02241663 A JP H02241663A JP 6120089 A JP6120089 A JP 6120089A JP 6120089 A JP6120089 A JP 6120089A JP H02241663 A JPH02241663 A JP H02241663A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- ingot
- ratio
- chromium
- making
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 9
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 title claims description 32
- 229910052804 chromium Inorganic materials 0.000 title claims description 20
- 239000011651 chromium Substances 0.000 title claims description 20
- 229910000599 Cr alloy Inorganic materials 0.000 title claims description 9
- 239000000788 chromium alloy Substances 0.000 title claims description 9
- 238000005266 casting Methods 0.000 claims abstract description 9
- 229910052751 metal Inorganic materials 0.000 abstract description 7
- 239000002184 metal Substances 0.000 abstract description 7
- 238000005336 cracking Methods 0.000 abstract description 6
- 230000003647 oxidation Effects 0.000 abstract description 5
- 238000007254 oxidation reaction Methods 0.000 abstract description 5
- 239000011261 inert gas Substances 0.000 abstract description 3
- 230000003405 preventing effect Effects 0.000 abstract description 3
- 239000012535 impurity Substances 0.000 abstract description 2
- 239000000956 alloy Substances 0.000 abstract 2
- 229910045601 alloy Inorganic materials 0.000 abstract 2
- 230000003628 erosive effect Effects 0.000 abstract 1
- 238000009834 vaporization Methods 0.000 abstract 1
- 230000008016 vaporization Effects 0.000 abstract 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- 230000008018 melting Effects 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、クロムおよびクロム合金の造塊方法に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of ingot-forming chromium and chromium alloys.
一般に、クロムまたはクロム合金(以下単にクロムと言
う)は、融点が高く、また融点に近い温度での蒸気圧が
高く、さらに酸素との親和力が強いことから、溶製する
ことが賀しいとされ、これまでのクロム製品、例えばス
パッタリングターゲット材料等は、主として電解クロム
粉を原料とする粉末冶金法により製造されていた。In general, chromium or chromium alloys (hereinafter simply referred to as chromium) have a high melting point, a high vapor pressure at temperatures close to the melting point, and a strong affinity for oxygen, making it difficult to melt. Conventional chromium products, such as sputtering target materials, have been mainly manufactured by powder metallurgy using electrolytic chromium powder as a raw material.
しかしながら、粉末冶金法では、金属粉末を焼結して製
品を製造することから、製造される製品の大きさに限界
があり、クロムが耐高温酸化性等の優れた特性を具備し
ているにもかかわらず実用範囲が制限されていた。However, in the powder metallurgy method, products are manufactured by sintering metal powder, so there is a limit to the size of the products that can be manufactured. However, its practical range was limited.
そこで、本発明者等は、クロムが具備する耐高温酸化性
等の優れた特性をより広い用途、例えば構造材等の大型
製品に適用すべく造塊を試みた。Therefore, the present inventors attempted to create ingots in order to apply the excellent properties of chromium, such as high temperature oxidation resistance, to wider applications, for example, large products such as structural materials.
その結果、クロムの溶解については、減圧アルゴンガス
雰囲気の下で溶解すると、クロムの1発が抑制されると
同時に、酸化が防止され歩留のよい溶解が行えることを
知見したが、この溶解されたクロム溶湯を、溶解した時
と同様に減圧アルゴンガス雰囲気の下で造塊したところ
、鋳塊に内部割れが見出された。As a result, we found that when chromium is dissolved under a reduced pressure argon gas atmosphere, one shot of chromium is suppressed, oxidation is prevented, and a high yield can be achieved. When the molten chrome metal was formed into an ingot under a reduced pressure argon gas atmosphere in the same manner as when it was melted, internal cracks were found in the ingot.
そこで、本発明者等は、鋳塊に内部割れの無い造塊方法
を提供することを目的として、さらに鋭意研究を重ねた
結果、鋳塊に発生する内部割れの原因が金型の抜熱力、
引いては金型の壁部体積と関係があることをつきとめ本
発明を完成するに至ったもので、その要旨は、溶製され
たクロムまたはクロム合金溶湯を減圧不活性雰囲気下で
鋳造するに際し、鋳型比が0.4〜1.1の造塊用金型
を用いるクロムおよびクロム合金の造塊方法である。Therefore, with the aim of providing an ingot making method that does not cause internal cracks in the ingot, the present inventors conducted further intensive research and found that the cause of internal cracks that occur in the ingot was due to the heat extraction force of the mold.
They discovered that there is a relationship with the wall volume of the mold and completed the present invention. , a method for making ingots of chromium and chromium alloys using an ingot making mold having a mold ratio of 0.4 to 1.1.
溶製されたクロム溶湯を減圧不活性雰囲気下で鋳造する
に際し、鋳型比が0.4〜1.1の造塊用金型を用いる
ことにより、鋳造時、特には注湯初期の抜熱が所望通り
に行え、造塊後のクロム鋳塊の内部割れを防止したクロ
ムの造塊ができる。When casting the molten chromium metal under reduced pressure and an inert atmosphere, using an ingot-making mold with a mold ratio of 0.4 to 1.1 reduces heat loss during casting, especially at the initial stage of pouring. This process can be carried out as desired, and chromium ingots can be formed that prevents internal cracking of the chrome ingots after ingot formation.
次に、鋳型比を0.4〜1.1に特定した具体的理由に
ついて述べる。Next, the specific reason why the mold ratio was specified to be 0.4 to 1.1 will be described.
鋳型比が0.4未満では、クロム鋳塊の内部割れの防止
効果ををするものの、注湯されるクロム溶湯温度が極め
て高温(約1875’C前後)であるため金型全体が早
期に昇温し、金型の温度制御Jができず金型の溶損が起
こり、クロム溶湯中に不純物として混入し好ましくない
上に、金型の寿命も短くなり金型コストが高(なるので
、鋳型比の下限を0.4以上とした。一方決型比が1.
1を超えると、鋳造時、特には注湯初期の抜熱力が強く
なり、凝固時の鋳塊内部と表面との温度差が大きくなる
ことからクロム鋳塊に内部割れが生じるので、鋳型比の
上限を1.1以下とした。If the mold ratio is less than 0.4, it will have the effect of preventing internal cracks in the chrome ingot, but the temperature of the molten chromium being poured is extremely high (around 1875'C), so the entire mold will rise quickly. If the temperature of the mold cannot be controlled, the mold will melt and be damaged, which is undesirable as impurities will be mixed into the molten chrome metal.The life of the mold will also be shortened and the cost of the mold will be high. The lower limit of the ratio was set to 0.4 or more.The one-sided ratio was 1.
If it exceeds 1, the heat removal force during casting, especially at the beginning of pouring, will be strong, and the temperature difference between the inside of the ingot and the surface during solidification will become large, which will cause internal cracks in the chrome ingot, so the mold ratio will increase. The upper limit was set to 1.1 or less.
尚、溶製されたクロム溶湯を減圧不活性雰囲気下で鋳造
するので、クロムの蒸発が抑制されると同時に、酸化が
防止され歩留のよい造塊ができるそしてこの減圧不活性
雰囲気は、造塊用金型を設けた容器内を所定圧の真空に
した後、アルゴンまたは窒素等の不活性ガスを投入し、
所定の減圧不活性雰囲気とすることにより得られるが、
残存酸素量をより低減させるためには、この操作を繰り
返し行うとよい。Furthermore, since the molten chromium metal is cast under reduced pressure and an inert atmosphere, evaporation of chromium is suppressed, oxidation is prevented, and ingots with a good yield can be produced. After creating a vacuum at a predetermined pressure in the container with the ingot mold, inert gas such as argon or nitrogen is introduced.
It can be obtained by creating a predetermined reduced pressure and inert atmosphere,
In order to further reduce the amount of residual oxygen, this operation may be repeated.
以下に、本発明に係わる実施例について比較例と合わせ
て説明する。Examples according to the present invention will be described below along with comparative examples.
真空誘導溶解炉を使用し、減圧アルゴンガス雰囲気の下
で金属クロムを溶解し、このクロム溶湯を真空鋳造装置
を使用し、200Torrの減圧アルゴンガス雰囲気の
下で、下表に示す鋳型比で構成された造塊用金型に注湯
し、約240m5径×約4301I11高さのクロム鋳
塊を得た。鋳造後、得られたクロム鋳塊の内部割れと金
型の溶損状態を調査した。Using a vacuum induction melting furnace, metal chromium is melted under a reduced pressure argon gas atmosphere, and this molten chromium is melted using a vacuum casting device under a reduced pressure argon gas atmosphere of 200 Torr, with the mold ratio shown in the table below. The molten metal was poured into the prepared ingot forming mold to obtain a chrome ingot with a diameter of approximately 240 m5 and a height of approximately 4301 mm. After casting, internal cracks in the obtained chrome ingot and melting damage of the mold were investigated.
この調査結果を併せて下表に示す。The results of this survey are also shown in the table below.
(以 下 余 白)
尚、上表中、隘1〜隘7まではストレート金型を、麹8
は上広テーバ金型を、海9は押湯部に加熱装置を備えた
上広テーバ金型をそれぞれ使用した。(Left below) In addition, in the above table, the straight molds are used from 1 to 7, and the koji 8
A wide-top Taber mold was used for Sea 9, and a wide-top Taber mold equipped with a heating device in the riser section was used for Sea 9.
上表によれば、8111の比較例は、鋳型比が0.3と
小さいために、金型の内表面に一部溶損が見られた。但
し鋳塊には、内部割れは無かった。According to the above table, in the comparative example of 8111, the mold ratio was as small as 0.3, so some melting damage was observed on the inner surface of the mold. However, there were no internal cracks in the ingot.
弘2〜顯5までの発明例では、金型の内表面の溶損およ
び鋳塊の内部割れは全く無かった。In the invention examples No. 2 to No. 5, there was no melting damage on the inner surface of the mold and no internal cracking of the ingot.
阻6の比較例は、鋳型比が1.2と大きいために、第1
図に示す鋳塊(1)の下から約250m11の高さ(A
−A断面)の所に、第2図に示す形状の内部割れ(2)
が認められた。Comparative example No. 6 has a large mold ratio of 1.2, so the first
A height of approximately 250 m11 from the bottom of the ingot (1) shown in the figure (A
-A cross section), there is an internal crack (2) with the shape shown in Figure 2.
was recognized.
Nα7の比較例は、鋳型比が1.5と上記随6の比較例
より大きい金型を使用して行った。結果は、阻6の比較
例とほぼ同じ位置にほぼ同じ大きさの内部割れが認めら
れた。The comparative example of Nα7 was conducted using a mold with a mold ratio of 1.5, which was larger than that of the sixth comparative example. As a result, internal cracks of approximately the same size were observed at approximately the same location as in the Comparative Example 6.
律8の発明例は、鋳型比が0.6の上広テーバ金型を使
用したもので、淘2〜隘5までのストレート金型の発明
例と比較して、金型の内表面の溶損および鋳塊の内部割
れの結果は同じであったが、第3図に示すように押湯部
(3)の引は巣(4)が小さく、歩留が良くなる結果が
得られた。The invention example of Rule 8 uses a wide-top taber mold with a mold ratio of 0.6, and compared to the straight mold invention examples of No. 2 to No. 5, the melting of the inner surface of the mold is Although the results of loss and internal cracking of the ingot were the same, as shown in FIG. 3, the shrinkage cavities (4) in the feeder section (3) were smaller, resulting in a better yield.
阻9の発明例は、鋳型比が0.6で且つ押湯部に加熱装
置を備えた上広テーパ金型を使用したもので、結果は、
上記阻8の発明例の押湯部(3)の引は巣(4)よりも
より小さい引は巣となり総合的に最も良い結果が得られ
た。The invention example of No. 9 uses a wide taper mold with a mold ratio of 0.6 and a heating device in the riser part, and the results are as follows.
The draw of the feeder part (3) of the above-mentioned Inventive Example No. 8 was smaller than the hole (4), and the best results were obtained overall.
上述したように、本発明のクロムおよびクロム合金の造
塊方法によれば、クロムの蒸発が抑制されると同時に、
酸化が防止され、さらに鋳塊に発生する内部割れを防止
した造塊が行え、歩留良くクロムおよびクロム合金の鋳
塊が得られる。またこれによりクロムおよびクロム合金
を、構造材等の大型製品にも適用できることになる。As described above, according to the method for agglomerating chromium and chromium alloys of the present invention, evaporation of chromium is suppressed, and at the same time,
Oxidation is prevented, and ingots can be formed while preventing internal cracks from occurring in the ingots, and ingots of chromium and chromium alloys can be obtained with good yield. This also allows chromium and chromium alloys to be applied to large products such as structural materials.
第1図は、本発明に係わるクロム鋳塊の正面図、第2図
は、第1図のA−A断面図、第3図は、本発明に係わる
別態様のクロム鋳塊の正面図である。
(1)鋳塊 (2)内部割れ(3)押湯部
(4)引は巣特許出願人 株式会社神戸製
鋼所
代理人 弁理士 金 丸 章 −FIG. 1 is a front view of a chrome ingot according to the present invention, FIG. 2 is a sectional view taken along line A-A in FIG. 1, and FIG. 3 is a front view of another embodiment of a chrome ingot according to the present invention. be. (1) Ingot (2) Internal cracks (3) Feeder section (4) Hikihasu Patent Applicant Kobe Steel Co., Ltd. Representative Patent Attorney Akira Kanemaru -
Claims (1)
活性雰囲気下で鋳造するに際し、鋳型比が0.4〜1.
1の造塊用金型を用いることを特徴とするクロムおよび
クロム合金の造塊方法。 [但し、前記鋳型比は、造塊用金型の造塊部容積に対す
る金型の壁部体積の比率による。](1) When casting molten chromium or chromium alloy in a reduced pressure inert atmosphere, the mold ratio is 0.4 to 1.
1. A method for making ingots of chromium and chromium alloys, characterized by using the die for making ingots according to item 1. [However, the mold ratio depends on the ratio of the wall volume of the mold to the volume of the ingot-forming part of the mold for ingot-forming. ]
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP6120089A JPH02241663A (en) | 1989-03-13 | 1989-03-13 | Method for ingot-making of chromium and chromium alloy |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP6120089A JPH02241663A (en) | 1989-03-13 | 1989-03-13 | Method for ingot-making of chromium and chromium alloy |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| JPH02241663A true JPH02241663A (en) | 1990-09-26 |
Family
ID=13164302
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP6120089A Pending JPH02241663A (en) | 1989-03-13 | 1989-03-13 | Method for ingot-making of chromium and chromium alloy |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPH02241663A (en) |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5357129A (en) * | 1976-11-04 | 1978-05-24 | Kubota Ltd | Metal mold casting method of aluminium alloy casting |
-
1989
- 1989-03-13 JP JP6120089A patent/JPH02241663A/en active Pending
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS5357129A (en) * | 1976-11-04 | 1978-05-24 | Kubota Ltd | Metal mold casting method of aluminium alloy casting |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| RU2490350C2 (en) | METHOD FOR OBTAINING BASIC β-γ-TiAl-ALLOY | |
| US4832112A (en) | Method of forming a fine-grained equiaxed casting | |
| US5226946A (en) | Vacuum melting/casting method to reduce inclusions | |
| CN110983262B (en) | Preparation method of aluminum-scandium alloy target material | |
| US6798821B2 (en) | Method and apparatus for solidification-controllable induction melting of alloy with cold copper crucible | |
| KR102616983B1 (en) | Processes for producing low nitrogen, essentially nitride-free chromium and chromium plus niobium-containing nickel-based alloys and the resulting chromium and nickel-based alloys | |
| US20030106664A1 (en) | Method and apparatus for manufacturing copper and/or copper alloy ingot having no shrinkage cavity and having smooth surface without wrinkles | |
| US5193607A (en) | Method for precision casting of titanium or titanium alloy | |
| JPH02241663A (en) | Method for ingot-making of chromium and chromium alloy | |
| Breig et al. | Induction skull melting of titanium aluminides | |
| US20080096043A1 (en) | Process and Equipment For Obtaining Metal Or Metal Matrix Components With A Varying Chemical Composition Along The Height Of The Component And Components Thus Obtained | |
| TW200811304A (en) | Method of making sputtering target and target produced | |
| EP0457502A1 (en) | Method and apparatus for precision casting | |
| JPS63273562A (en) | Method for manufacturing Ti-Al alloy castings | |
| JPH0531568A (en) | Plasma melting/casting method | |
| JP2000144273A (en) | Consumable electrode type remelting method of super heat resistant alloy | |
| JP2599729B2 (en) | Ingot making method for alloy articles | |
| US3455373A (en) | Apparatus for ultrahigh purity precision casting | |
| CN115058633B (en) | A kind of high-carbon medium-high alloy steel and its preparation method | |
| JPH02108450A (en) | Casting method for titanium or titanium-based alloys | |
| RU2344019C1 (en) | Method of production of cast tube stock out of alloys on nickel and/or cobalt base | |
| EP0277890A1 (en) | Method for forming metals with reduced impurity concentrations | |
| JPH0718464Y2 (en) | Differential pressure casting equipment | |
| Glazunov | Precision casting of titanium | |
| JPH05104208A (en) | Plasma melting and casting method |