JP2000144273A - Consumable electrode type re-melting method for super heat resistant alloy - Google Patents
Consumable electrode type re-melting method for super heat resistant alloyInfo
- Publication number
- JP2000144273A JP2000144273A JP11125655A JP12565599A JP2000144273A JP 2000144273 A JP2000144273 A JP 2000144273A JP 11125655 A JP11125655 A JP 11125655A JP 12565599 A JP12565599 A JP 12565599A JP 2000144273 A JP2000144273 A JP 2000144273A
- Authority
- JP
- Japan
- Prior art keywords
- consumable electrode
- resistant alloy
- temperature
- super heat
- heat resistant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、析出硬化型などの
超耐熱合金の消耗電極式再溶解法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a consumable electrode type remelting method for a super-heat-resistant alloy such as a precipitation hardening type.
【0002】[0002]
【従来の技術】析出硬化型などの超耐熱合金は、真空誘
導炉などで溶解、鋳造して製造したものを消耗電極と
し、エレクトロスラグ再溶解法(以下、「ESR」とい
う。)、真空アーク再溶解法(以下、「VAR」とい
う。)などの消耗電極式再溶解法で溶解、凝固して製造
している。この製造方法で超耐熱合金、特に析出硬化型
のものを製造すると、鋳塊にスポット状の偏析が発生し
たり、場合によっては大きな非金属介在物が含まれるこ
とがある。このスポット状の偏析または大きな非金属介
在物が含まれている鋳塊を鍛造すると、このスポット状
の偏析、非金属介在物を起点とする割れが発生すること
があるという問題があった。2. Description of the Related Art A super-heat-resistant alloy such as a precipitation hardening alloy is manufactured by melting and casting in a vacuum induction furnace or the like, and is used as a consumable electrode. The electroslag remelting method (hereinafter, referred to as "ESR"), vacuum arc. It is manufactured by melting and solidifying by a consumable electrode type remelting method such as a remelting method (hereinafter referred to as “VAR”). When a super heat-resistant alloy, particularly a precipitation hardening type, is produced by this production method, spot-like segregation may occur in the ingot, and in some cases, large nonmetallic inclusions may be contained. Forging an ingot containing this spot-like segregation or large non-metallic inclusions, there is a problem that cracks originating from the spot-like segregation and non-metallic inclusions may occur.
【0003】このスポット状の偏析は、消耗電極内部に
割れ(鋳造時および再溶解中に生成)があるため、再溶
解の際に溶解速度(M/R)が不均一になること(割れ
により熱伝導が悪くなるため、割れより溶解する側の部
分は溶解速度が早くなり、また割れより裏側にある部分
は溶解速度が遅くなるためである。)によって生成する
と推定されている。また非金属介在物は、ESR溶解の
際に消耗電極が割れて破片が欠け落ち、この破片がスラ
グを巻き込んだ状態で凝固されるためのものであると推
定されている。[0003] This spot-shaped segregation has cracks (formed during casting and remelting) inside the consumable electrode, so that the melting rate (M / R) becomes non-uniform during remelting (due to cracking). This is because heat conduction deteriorates, so that the part dissolving from the crack has a higher dissolution rate, and the part behind the crack has a lower dissolution rate.) The nonmetallic inclusions are presumed to be due to the fact that the consumable electrode is broken at the time of ESR melting and fragments are chipped off, and the fragments are solidified in a state involving slag.
【0004】上記スポット状の偏析が再溶解の際の溶解
速度の不均一によるものであることは、溶解速度が不均
一になった部分の鋳塊を切断すると、その断面にスポッ
ト状の偏析が存在することから確認されている。また、
ESRにおいて非金属介在物を巻き込む原因となってい
る消耗電極の割れは、再溶解中に消耗電極が破裂する破
裂音、消耗電極の時間当たりの溶解量、すなわち溶解速
度(M/R)、電気抵抗、電流などを観察していると、
M/Rが急に大きくなった後非常に小さくなるととも
に、電気抵抗および電流などが変化することからも消耗
電極が割れて欠け落ちていることなどで確認されてい
る。The fact that the spot-like segregation is due to the non-uniform dissolution rate at the time of re-melting is that, when the ingot is cut in a portion where the dissolution rate becomes non-uniform, spot-shaped segregation occurs on the cross section. Confirmed by its existence. Also,
The cracks of the consumable electrode causing the non-metallic inclusions in the ESR are caused by a bursting sound of the consumable electrode exploding during remelting, a dissolution amount per hour of the consumable electrode, that is, a dissolution rate (M / R), When observing resistance, current, etc.,
It has been confirmed that the M / R suddenly increased and then became extremely small, and that the consumable electrode was cracked and chipped off due to changes in electric resistance and current.
【0005】この非金属介在物を巻き込む原因となって
いる消耗電極の割れを防止し、異常組織のない鋳塊を安
定して製造する方法として、再溶解する前に予め消耗電
極を均熱処理して脆いラーベス相を基地に溶解しておく
方法が特開平9─241767号公報に開示されてい
る。しかし、予め消耗電極を均熱処理したものを使用し
て再溶解しても、割れを十分防止することができず、ま
た均熱処理は消耗電極を高温に長時間保持する必要があ
るという欠点がある。また、均熱処理しても均熱処理す
る前の鋳造時に生成していた割れを無くすことができな
いので、割れが原因となるスポット状の偏析も防止する
ことができなかった。[0005] As a method for preventing cracks of the consumable electrode causing entrainment of the non-metallic inclusions and stably producing an ingot having no abnormal structure, the consumable electrode is preheated before remelting. A method of dissolving a brittle Laves phase in a matrix is disclosed in JP-A-9-241767. However, even if the consumable electrode is preliminarily soaked and redissolved, the cracking cannot be sufficiently prevented, and the soaking heat treatment has a disadvantage that the consumable electrode needs to be maintained at a high temperature for a long time. . Further, even if the soaking treatment is performed, cracks generated during casting before the soaking treatment cannot be eliminated, so that spot-like segregation caused by the cracks cannot be prevented.
【0006】[0006]
【発明が解決しようとする課題】本発明は、析出硬化型
などの超耐熱合金の消耗電極式再溶解法において、スポ
ット状の偏析の生成を防止するとともに、非金属介在物
を巻き込む原因となる消耗電極の割れを防止し、スポッ
ト状の偏析および非金属介在物のない鋳塊を安定して製
造する方法を提供することを課題とするものである。SUMMARY OF THE INVENTION The present invention prevents the formation of spot-like segregation and causes entrapment of nonmetallic inclusions in a consumable electrode type remelting method of a super-heat-resistant alloy such as a precipitation hardening type. An object of the present invention is to provide a method for preventing cracks of a consumable electrode and stably producing an ingot without spot-like segregation and nonmetallic inclusions.
【0007】[0007]
【課題を解決するための手段】上記課題を解決するた
め、本発明者は、超耐熱合金の消耗電極を作製する際の
鋳造に着目し、鋳造後の冷却速度について研究していた
ところ、溶解した消耗電極材を鋳造し、半凝固状態から
加熱した炉の中に入れて一定時間保持した後炉冷する
と、通常の放冷材に比較してラーベス相が減少するとの
知見を得るともに、このようにして作製した消耗電極が
再溶解の際のM/Rが均一になり、スポット状の偏析が
発生しないとの知見を得て本発明をなしたものである。Means for Solving the Problems In order to solve the above problems, the present inventor focused on casting at the time of producing a consumable electrode made of a super heat resistant alloy, and studied the cooling rate after casting. After casting the consumable electrode material, placing it in a furnace heated from a semi-solidified state, holding it for a certain period of time, and then cooling the furnace, we obtained the knowledge that the Laves phase decreased compared to ordinary cooled material, and obtained this finding. The present invention has been made based on the finding that the M / R at the time of re-dissolution of the consumable electrode manufactured as described above becomes uniform and no spot-like segregation occurs.
【0008】すなわち、本発明の析出硬化型などの超耐
熱合金の消耗電極式再溶解法においては、超耐熱合金の
消耗電極式再溶解法において、溶解した消耗電極材を円
柱状または円錐状鋳塊用鋳型に鋳造し、外周から径の1
/3まで凝固(外周から中心方向に径の1/3まで凝固
すること、周辺全体から凝固するので、両側では径の2
/3凝固すること)する以前に型抜きを実施し、この消
耗電極材の固相温度と固相温度より500℃低い温度と
の間の温度に予め加熱しておいた炉に装入し、1時間以
上保持した後、冷却して作製したものを消耗電極として
使用することである。That is, in the consumable electrode type remelting method of a super-heat-resistant alloy such as a precipitation hardening type of the present invention, in the consumable electrode type re-melting method of a super-heat-resistant alloy, the melted consumable electrode material is cast into a cylindrical or conical shape. Cast into a lump mold and measure 1
Solidified to 1/3 of the diameter (solidifying from the outer periphery to the center to 1/3 of the diameter, solidifying from the entire periphery, 2% of the diameter on both sides
Before solidifying), the consumable electrode material is charged into a furnace which has been preheated to a temperature between the solid phase temperature and 500 ° C. lower than the solid phase temperature, After holding for 1 hour or more, cooling and using the electrode as a consumable electrode.
【0009】[0009]
【発明の実施の形態】次に、本発明を詳細に説明する。
本発明を図1を参照して説明すると、析出硬化型などの
超耐熱合金を真空高周波炉などで溶解し、真空中で円柱
状または円錐状鋳塊用鋳型に鋳造し、外周から径の1/
3が凝固する以前(鋳込完了後約15〜30分後)に型
抜きを実施し、この消耗電極材の固相温度と固相温度よ
り500℃低い温度との間の温度(例えば、810〜9
00℃)保持された炉において1時間以上、例えば約6
〜9時間保持した後、その後炉の電源をオフにして炉冷
(例えば、約4〜10℃/hrの冷却速度)でそのまま
常温まで冷却するか、約400〜600℃まで冷却した
ところで炉から取り出して放冷するなどして冷却して作
製したものを消耗電極として使用する超耐熱合金の消耗
電極式再溶解法である。Next, the present invention will be described in detail.
The present invention will be described with reference to FIG. 1. A super-heat-resistant alloy such as a precipitation hardening type is melted in a vacuum high-frequency furnace or the like, and cast into a cylindrical or conical ingot mold in a vacuum. /
3 is solidified (about 15 to 30 minutes after the completion of casting), and the die is cut out. The temperature between the solid phase temperature of the consumable electrode material and 500 ° C. lower than the solid phase temperature (for example, 810) ~ 9
00 ° C) in a held furnace for more than 1 hour, for example about 6
After holding for about 9 hours, the power of the furnace is then turned off and the furnace is cooled to room temperature (for example, at a cooling rate of about 4 to 10 ° C / hr) or cooled to about 400 to 600 ° C. This is a consumable electrode-type remelting method of a super heat-resistant alloy in which a product prepared by taking out and allowing it to cool by cooling is used as a consumable electrode.
【0010】本発明の消耗電極式再溶解法における、超
耐熱合金は、重量%で(以下同じ)、C:0.10%以
下、Si:1.00%以下、Mn:1.50%以下、N
i:25.0〜78.0%、Cr:12.00〜25.
0%、必要に応じて、Al+Ti:1.3%以上、Nb
+Ta:5.8%以下およびB:0.01%以下の1種
または2種以上を含み、更に必要に応じてMo:3.5
%以下、W:3.5%以下の1種または2種を含み、残
部がFeおよび不可避不純物である析出硬化型などのF
e−Ni−Cr基合金、Cr:18.0〜21.0%、
Co:2.0%以下、Fe:5.0%以下、Ti:1.
8〜2.7%、AI:0.5〜1.8%、残部がNiお
よび不可避不純物である析出硬化型のNi−Cr基合
金、C:0.030%以下、Ni:53.6〜54.9
%、Cr:15.0〜19.0%、Co:12.0〜1
8.5%、Mo:3.0〜6.0%、Al:2.0〜
4.3%、Ti:2.9〜5.0%、B:0.005〜
0.030%、W:1.5%以下、Zr:0.05%以
下からなる析出硬化型のNi−Cr─Co基合金、Co
基合金などである。In the consumable electrode type remelting method of the present invention, the super heat-resistant alloy is 0.10% or less, Si: 1.00% or less, Mn: 1.50% or less by weight (the same applies hereinafter). , N
i: 25.0-78.0%, Cr: 12.00-25.
0%, if necessary, Al + Ti: 1.3% or more, Nb
+ Ta: 5.8% or less and B: 0.01% or less, containing one or more kinds, and if necessary, Mo: 3.5.
% Or less, W: 3.5% or less, containing one or two kinds, and the balance is Fe and precipitation hardening type F or the like inevitable impurities.
e-Ni-Cr-based alloy, Cr: 18.0 to 21.0%,
Co: 2.0% or less, Fe: 5.0% or less, Ti: 1.
8 to 2.7%, AI: 0.5 to 1.8%, the balance being Ni and a precipitation hardening type Ni-Cr base alloy which is an unavoidable impurity, C: 0.030% or less, Ni: 53.6 to 54.9
%, Cr: 15.0 to 19.0%, Co: 12.0 to 1
8.5%, Mo: 3.0 to 6.0%, Al: 2.0 to
4.3%, Ti: 2.9-5.0%, B: 0.005-
0.030%, W: 1.5% or less, Zr: 0.05% or less, precipitation hardening type Ni—Cr─Co-based alloy, Co
Base alloy.
【0011】具体的には、JIS NCF718、NC
F750、NCF751およびNCF80A、A−28
6、Discaioy、V−57、Incoloy90
1、Nimonic80、InconelX750、U
dimet500〜710、Nivcoなどである。Specifically, JIS NCF718, NC
F750, NCF751 and NCF80A, A-28
6, Discaioy, V-57, Incoloy90
1, Nimonic80, InconelX750, U
dimet 500 to 710, Nivco, and the like.
【0012】本発明の析出硬化型などの超耐熱合金の消
耗電極式再溶解法における消耗電極式再溶解法は、上記
ESRおよびVAR、プラズマアーク再溶解法などであ
る。さらに、上記材料の固相温度は、その成分組成によ
って異なるが、約1250〜1400℃程度であり、固
相温度より500℃低い温度とは、約800〜900℃
程度である。The consumable electrode type remelting method in the consumable electrode type remelting method of the precipitation hardening type super-heat-resistant alloy of the present invention includes the above-mentioned ESR and VAR, and plasma arc remelting method. Further, the solid phase temperature of the above-mentioned material varies depending on its component composition, but is about 1250-1400 ° C., and the temperature 500 ° C. lower than the solid phase temperature is about 800-900 ° C.
It is about.
【0013】また、本発明は、外周から径の1/3まで
凝固する以前に鋳型から型抜きを実施し、その後固相温
度と固相温度より500℃低い温度との間の温度に予め
加熱しておいた炉に装入しているが、径の1/3が凝固
する以前に鋳型から型抜きを実施するのは、鋳造後放冷
したものと徐冷処理したものの各部位のラーベス相の面
積率を測定すると、図2に示すようになり、徐冷処理し
たもののラーベス相の面積率は放冷したものと比較する
と全体的に小さくなっており、径の1/3が凝固する以
前に型抜きし、その後徐冷すれば、ラーベス相の面積率
を小さくすることができる効果があるからである。この
鋳型から型抜きを実施する時期は、図2に示すように早
ければ早いほど好ましいが、型抜きを実施するには強度
が必要であるので、具体的には、周囲が50mm程度凝
固した状態になってからである。In the present invention, the mold is removed from the mold before solidification from the outer periphery to 1/3 of the diameter, and then the pre-heated solid is heated to a temperature between the solid phase temperature and 500 ° C. lower than the solid phase temperature. The mold was removed from the mold before one-third of its diameter was solidified, because the Laves phase of each part was cooled after casting and gradually cooled. As shown in FIG. 2, the area ratio of the Laves phase was gradually reduced as compared with that of the naturally cooled one, and one third of the diameter was solidified before solidification. This is because if the mold is cut out and then cooled slowly, the area ratio of the Laves phase can be reduced. As shown in FIG. 2, it is preferable that the mold be removed from the mold as soon as possible. However, since strength is required to perform the mold removal, specifically, a state in which the periphery is solidified by about 50 mm. It has been since.
【0014】[0014]
【作用】本発明は、外周から径の1/3まで凝固(両側
で径の2/3まで凝固)する以前に鋳型から型抜きを実
施し、その消耗電極をその固相温度と固相温度より50
0℃低い温度との間の温度、例えば810〜900℃に
保持された炉において1時間以上、好ましくは4時間以
上、さらに好ましくは6時間以上保持した後、冷却する
ことにより、再溶解中の溶解速度の変動、電極の欠落ち
を抑制または防止することができる。この理由は、上記
のように処理をすると、脆化相であるラーベス相の晶
出の低減、消耗電極凝固時の収縮に伴う割れの軽減お
よび熱応力の緩和がなされるので、再溶解中の割れの
起点となる消耗電極凝固時の熱応力および再溶解時の熱
応力による消耗電極内部の割れが発生せず、また割れが
発生しても、割れの進展が抑制(粒界に脆化相がないた
め)されるためであると推測される。According to the present invention, the mold is removed from the mold before solidification to 1/3 of the diameter from the outer periphery (solidification to 2/3 of the diameter on both sides), and the consumable electrode is subjected to its solid phase temperature and solid phase temperature. More than 50
After holding for 1 hour or more, preferably for 4 hours or more, more preferably for 6 hours or more in a furnace maintained at a temperature between 0 ° C. lower and, for example, 810 to 900 ° C., the solution is cooled, Fluctuation in dissolution rate and dropout of the electrode can be suppressed or prevented. The reason for this is that when the treatment is performed as described above, the crystallization of the Laves phase, which is the embrittlement phase, is reduced, the cracks due to shrinkage during solidification of the consumable electrode, and the thermal stress are alleviated. The cracks inside the consumable electrode do not occur due to the thermal stress at the time of solidification of the consumable electrode and the thermal stress at the time of re-melting, which are the starting points of cracking. It is presumed that there is no).
【0015】[0015]
【実施例】次に、本発明の超耐熱合金の消耗電極式再溶
解法の実施例を説明する。 実施例 下記表1に示す成分組成の消耗電極材料(固相温度12
60℃)を真空高周波誘導炉で溶製し、この溶湯を寸法
が約φ380mm×長さ2400mmの鋳型に真空中で
注入し、鋳込完了から約1.8分後に真空容器から鋳型
を取り出した。この時の消耗電極のトップの温度は12
70℃であった。その後外周から径の約1/7が凝固
(鋳込完了から約15分後、周囲が約50mm凝固)後
に鋳型から消耗電極を突き上げて取り出し(消耗電極の
トップの表面温度は980℃、ボトムの表面温度900
℃)、その6分後に843℃に加熱されていた炉に着床
した(消耗電極のトップの温度は975℃、ボトムの温
度997℃)。Next, an embodiment of a consumable electrode type remelting method for a super heat-resistant alloy according to the present invention will be described. Examples Consumable electrode materials (solid phase temperature 12
60 ° C.) in a vacuum high-frequency induction furnace, and poured the molten metal into a mold having a size of about φ380 mm × 2400 mm in vacuum, and removed the mold from the vacuum vessel about 1.8 minutes after the casting was completed. . At this time, the temperature of the top of the consumable electrode is 12
70 ° C. After that, about 1/7 of the diameter from the outer circumference solidifies (about 15 minutes after the casting is completed, the circumference solidifies about 50 mm), and then pushes out the consumable electrode from the mold (the surface temperature of the top of the consumable electrode is 980 ° C., Surface temperature 900
6 minutes later, the sample was placed in a furnace heated to 843 ° C. (the temperature of the top of the consumable electrode was 975 ° C. and the temperature of the bottom was 997 ° C.).
【0016】[0016]
【表1】 [Table 1]
【0017】炉の温度は、消耗電極が高温であったた
め、最高873℃まで上昇したが、4.3時間後に84
3℃になり、8.3時間後に炉の電源をオフにして炉冷
(6.5℃/hr)し、62.05時間後に496℃に
なったところで炉外に搬出し、放冷した。この消耗電極
をVAR法により溶解・凝固させて直径440mmの鋳
塊を得た。この再溶解中、約5%の溶解速度の変動が1
回あった。この鋳塊のM/R変動があった部分を切断し
てその断面を観察したが、スポット状の偏析は観察でき
なかった。The temperature of the furnace rose to a maximum of 873 ° C. due to the high temperature of the consumable electrode.
When the temperature reached 3 ° C., the power of the furnace was turned off after 8.3 hours, and the furnace was cooled (6.5 ° C./hr). When the temperature reached 496 ° C. after 62.05 hours, it was carried out of the furnace and allowed to cool. The consumable electrode was melted and solidified by the VAR method to obtain an ingot having a diameter of 440 mm. During this re-dissolution, a variation in dissolution rate of about 5%
There were times. A section of the ingot where the M / R fluctuated was cut and its cross section was observed, but no spot-like segregation was observed.
【0018】比較例 比較例として上記実施例と同じ成分組成の消耗電極材料
を同じ炉で溶製し、この溶湯を同じ温度から同じ鋳型に
真空中で注入し、鋳込完了から約1.8分後に真空容器
から鋳型を取り出し、鋳込完了から90分後に鋳型から
消耗電極を突き上げて取り出し、そのまま常温まで放冷
した。Comparative Example As a comparative example, a consumable electrode material having the same composition as that of the above-described embodiment was melted in the same furnace, and the molten metal was poured into the same mold at the same temperature in a vacuum. A minute later, the mold was taken out of the vacuum vessel, and 90 minutes after the completion of casting, the consumable electrode was thrust up and taken out of the mold, and allowed to cool to room temperature.
【0019】この消耗電極を上記実施例と同じ条件でV
AR法により上記実施例のものとほぼ同じ大きさの鋳塊
を得た。この再溶解中、20%以上の溶解速度の変動が
6回あった。この鋳塊のM/R変動があった部分の1か
所を切断してその断面を観察したところ、スポット状の
偏析があることが観察された。This consumable electrode was subjected to V under the same conditions as in the above embodiment.
An ingot of almost the same size as that of the above example was obtained by the AR method. During this re-dissolution, the dissolution rate fluctuated by 20% or more six times. When one of the portions of the ingot where the M / R fluctuated was cut and the cross section thereof was observed, spot-like segregation was observed.
【0020】[0020]
【発明の効果】本発明の超耐熱合金の消耗電極式再溶解
法は、上記構成にしたことにより、再溶解中に消耗電極
が割れることがなく、またスポット状の偏析がない鋳塊
を安定して製造することができるという優れた効果を奏
する。According to the consumable electrode type remelting method for a super heat-resistant alloy of the present invention, the consumable electrode is not cracked during remelting and the ingot without spot-like segregation is stabilized by the above-mentioned structure. This has an excellent effect that it can be manufactured.
【図1】本発明の超耐熱合金の消耗電極式再溶解法に使
用する消耗電極の鋳込み後の冷却の温度と時間の関係を
説明するための図である。FIG. 1 is a diagram for explaining a relationship between a cooling temperature and a time after casting of a consumable electrode used in a consumable electrode type remelting method of a super heat resistant alloy of the present invention.
【図2】超耐熱合金製消耗電極の鋳造後放冷したものと
徐冷処理したものの各部位とラーベス相の面積率との関
係を示すグラフである。FIG. 2 is a graph showing the relationship between each part and the Laves phase area ratio of a consumable electrode made of a super-heat-resistant alloy, which was left to cool after casting and was gradually cooled.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22B 9/20 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22B 9/20
Claims (2)
て、溶解した消耗電極材を鋳型に鋳造し、外周から径の
1/3まで凝固する以前に型抜きを実施し、この消耗電
極材の固相温度と固相温度より500℃低い温度との間
の温度に予め加熱しておいた炉に装入し、1時間以上保
持して作製したものを消耗電極として使用することを特
徴とする超耐熱合金の消耗電極式再溶解法。1. In a consumable electrode type remelting method for a super heat-resistant alloy, a melted consumable electrode material is cast into a mold, and a die is cut before solidifying from the outer circumference to 1/3 of the diameter. Characterized in that it is charged into a furnace preheated to a temperature between the solidus temperature and 500 ° C lower than the solidus temperature, held for at least one hour, and used as a consumable electrode. Consumable electrode type remelting method for super heat resistant alloys.
金であることを特徴とする請求項1記載の超耐熱合金の
消耗電極式再溶解法。2. The consumable electrode type remelting method for a super heat resistant alloy according to claim 1, wherein said super heat resistant alloy is a precipitation hardening type super heat resistant alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12565599A JP4164780B2 (en) | 1998-08-28 | 1999-05-06 | Consumable electrode type remelting method of super heat-resistant alloy |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24380898 | 1998-08-28 | ||
JP10-243808 | 1998-08-28 | ||
JP12565599A JP4164780B2 (en) | 1998-08-28 | 1999-05-06 | Consumable electrode type remelting method of super heat-resistant alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000144273A true JP2000144273A (en) | 2000-05-26 |
JP4164780B2 JP4164780B2 (en) | 2008-10-15 |
Family
ID=26462021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12565599A Expired - Fee Related JP4164780B2 (en) | 1998-08-28 | 1999-05-06 | Consumable electrode type remelting method of super heat-resistant alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4164780B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009097073A (en) * | 2007-09-26 | 2009-05-07 | Daido Steel Co Ltd | Method for manufacturing consumable electrode for remelting, and consumable electrode for remelting |
JP2014121713A (en) * | 2012-12-20 | 2014-07-03 | Hitachi Metals Ltd | Consumable electrode for remelting |
JP2014121712A (en) * | 2012-12-20 | 2014-07-03 | Hitachi Metals Ltd | Consumable electrode for remelting |
JP2016006217A (en) * | 2014-05-28 | 2016-01-14 | 大同特殊鋼株式会社 | Method for manufacturing consumable electrode |
JP2016069726A (en) * | 2014-09-29 | 2016-05-09 | 日立金属株式会社 | PRODUCTION METHOD FOR Fe-Ni-BASED SUPERALLOY |
CN111172403A (en) * | 2020-01-07 | 2020-05-19 | 北京钢研高纳科技股份有限公司 | Pre-melted slag for smelting electroslag remelting continuous directional solidification high-temperature alloy ingot and application thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05345934A (en) * | 1992-06-11 | 1993-12-27 | Japan Steel Works Ltd:The | Electrode for remelting electroslag and production of alloy using the electrode |
JPH06136469A (en) * | 1992-10-22 | 1994-05-17 | Japan Steel Works Ltd:The | Production of ni-fe base superalloy ingot |
JPH09241767A (en) * | 1996-03-08 | 1997-09-16 | Hitachi Metals Ltd | Consumable electrode type remelting method for superalloy |
-
1999
- 1999-05-06 JP JP12565599A patent/JP4164780B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05345934A (en) * | 1992-06-11 | 1993-12-27 | Japan Steel Works Ltd:The | Electrode for remelting electroslag and production of alloy using the electrode |
JPH06136469A (en) * | 1992-10-22 | 1994-05-17 | Japan Steel Works Ltd:The | Production of ni-fe base superalloy ingot |
JPH09241767A (en) * | 1996-03-08 | 1997-09-16 | Hitachi Metals Ltd | Consumable electrode type remelting method for superalloy |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009097073A (en) * | 2007-09-26 | 2009-05-07 | Daido Steel Co Ltd | Method for manufacturing consumable electrode for remelting, and consumable electrode for remelting |
JP2014121713A (en) * | 2012-12-20 | 2014-07-03 | Hitachi Metals Ltd | Consumable electrode for remelting |
JP2014121712A (en) * | 2012-12-20 | 2014-07-03 | Hitachi Metals Ltd | Consumable electrode for remelting |
JP2016006217A (en) * | 2014-05-28 | 2016-01-14 | 大同特殊鋼株式会社 | Method for manufacturing consumable electrode |
JP2016069726A (en) * | 2014-09-29 | 2016-05-09 | 日立金属株式会社 | PRODUCTION METHOD FOR Fe-Ni-BASED SUPERALLOY |
CN111172403A (en) * | 2020-01-07 | 2020-05-19 | 北京钢研高纳科技股份有限公司 | Pre-melted slag for smelting electroslag remelting continuous directional solidification high-temperature alloy ingot and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4164780B2 (en) | 2008-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111876651B (en) | Large-size high-niobium high-temperature 706 alloy ingot and smelting process thereof | |
CA2771264C (en) | Method for producing large diameter ingots of nickel base alloys | |
JP5492982B2 (en) | Method for producing β-γ-TiAl based alloy | |
AU2002242239A1 (en) | Method for producing large diameter ingots of nickel base alloys | |
EP4023779A1 (en) | Smelting process for high-niobium high-temperature alloy large-size cast ingot, and high-niobium high-temperature alloy large-size cast ingot | |
JP2004527377A5 (en) | ||
AU2006218029B2 (en) | Method for casting titanium alloy | |
JP6620924B2 (en) | Method for producing Fe-Ni base superalloy | |
CN113430406B (en) | Precipitation strengthening CoCrNiAlNb multi-principal-element alloy and preparation method thereof | |
JP4164780B2 (en) | Consumable electrode type remelting method of super heat-resistant alloy | |
AU2019253975B2 (en) | A process for producing a superalloy and superalloy obtained by said process | |
JPH06287661A (en) | Production of smelted material of refractory metal | |
CN110484742B (en) | Method for preparing Fe-W intermediate alloy by electron beam melting and high purification | |
JP2003247033A (en) | Copper based alloy and method of producing high strength, high thermal conductivity forging using the same | |
JPS6220847A (en) | Metallic material having fine crystal grain and its production | |
RU2694098C1 (en) | Method of producing semi-finished products from high-strength nickel alloys | |
JP2989053B2 (en) | Method for producing low oxygen Ti-Al alloy and low oxygen Ti-Al alloy | |
JP5956205B2 (en) | Method for producing Ni-based alloy | |
JP2000109940A (en) | CONSUMABLE ELECTRODE TYPE REMELTING METHOD FOR Al AND Ti-CONTAINING SUPER HEAT-RESISTANT ALLOY | |
CN118726776A (en) | TiAl alloy prepared by casting high-melting-point refractory metal and preparation method thereof | |
CN112941393A (en) | Quinary master alloy material and preparation method and application thereof | |
Srawley | Iron-Chromium-Aluminum Alloys | |
JPH04324905A (en) | Manufacture of permanent magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060426 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080701 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080704 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080717 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110808 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110808 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120808 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130808 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |